第十讲残余应力-精品
- 格式:ppt
- 大小:7.24 MB
- 文档页数:85
焊接残余应力残余应力是什么?残余应力是指在没有外力或外力矩作用的条件下,构件或材料内部存在并且自身保持平衡的宏观应力。
一、残余应力是哪种内应力?1内应力的分类根据作用范围大小可分为三类:第一类内应力(又称“宏观应力”)贯穿于整个物体内部;第二类内应力存在于单个晶粒的内部,当这种平衡遭到破坏时,晶粒尺寸会发生变化;2残余应力所属类别残余应力是第一类内应力的工程名称。
残余应力形成的根本原因是微观上不同原子或者同种原子不同排列方式造成材料成分或者结构上的不均匀性导致的原子间相互作用力的变化在宏观上的体现。
二、哪些加工成型过程会导致残余应力?铸造、锻压、焊接、喷涂以及各类机械加工成型过程中都会导致材料出现残余应力。
本文关注的对象是焊接残余应力。
焊接残余应力是焊件产生变形、开裂等工艺缺陷的主要原因,焊接变形在制造过程中危及形状与尺寸公差、接头安装偏差和增加坡口间隙,使制造过程更加困难;焊接残余应力可使焊缝特别是定位焊缝部分或完全断开;机械加工过程中释放的残余应力也会导致工件产生不允许的变形。
同时,焊接残余力可能引起结构的脆性断裂,拉伸残余应力会降低疲劳强度和腐蚀抗力,压缩残余应力会减小稳定性极限。
因此,焊接残余应力一直是焊接界关注的重点问题之一。
三、焊接残余应力的控制方法在制造过程中的工艺措施和方法采用线能量小的工艺参数和焊接方法及强制冷却措施采用合理的焊接顺序和方向,调整残余应力分布1)先焊收缩量大的焊缝和应力较大的焊缝;2)焊缝交叉时,先焊短焊缝,后焊直通长焊缝;采取降低焊缝拘束度的工艺措施,补偿焊缝收缩量;锤击多层焊缝中间各层,使之延展,降低应力和拘束度;预拉伸补偿焊缝收缩(机械拉伸或热拉伸)局部加热,在构件的相应部分形成可补偿焊缝收缩的变形;低应力无变形焊接法四、焊接残余应力的消除方法1)利用机械力或冲击能分为焊缝滚压法、机械拉伸法、锤击法、振动法、爆炸法。
2)热处理整体高温退火、局部高温退火、温差拉伸法(低温消除应力法)、拟焊接加热法。
残余应力(Residual Stress)消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力。
机械加工和强化工艺都能引起残余应力。
如冷拉、弯曲、切削加工、滚压、喷丸、铸造、锻压、焊接和金属热处理等,因不均匀塑性变形或相变都可能引起残余应力。
残余应力一般是有害的,如零件在不适当的热处理、焊接或切削加工后,残余应力会引起零件发生翘曲或扭曲变形,甚至开裂。
或经淬火、磨削后表面会出现裂纹。
残余应力的存在有时不会立即表现为缺陷,而当零件在工作中因工作应力与残余应力的叠加,使总应力超过强度极限时,便出现裂纹和断裂。
零件的残余应力大部分都可通过适当的热处理消除。
残余应力有时也有有益的方而,它可以被控制用来提高零件的疲劳强度和耐磨性能。
[1]工件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用与影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响。
也称残余应力。
残余应力是当物体没有外部因素作用时,在物体内部保持平衡而存在的应力。
凡是没有外部作用,物体内部保持自相平衡的应力,称为物体的固有应力,或称为初应力,亦称为内应力。
测试仪器编辑残余应力分析仪其原理是基于著名的布拉格方程2dsinθ=nλ :即一定波长的X射线照射到晶体材料上,相邻两个原子面衍射时的X射线光程差正好是波长的整数倍。
通过测量衍射角变化Δθ从而得到晶格间距变化Δd,根据胡克定律和弹性力学原理,计算出材料的残余应力。
应力方程根据弹性力学理论, 在宏观各向同性晶体材料上角度φ和ψ(见图1)方向的应变可以用如下方程表述:(图1)正应力和剪切应力应力分量σφ和τφ为方向Sφ上正应力和剪切应力:含剪切应力的应力方程和曲线如果在垂直于试样表面上的平面上有剪应力存在(τ13≠0和/或τ23≠0),则εφψ与sin2ψ的函数关系是一个椭圆曲线,在ψ> 0和ψ<0是图形显示为“ψ分叉”(见图3)。
残余应力的产生、释放与测量一、残余应力的产生产生残余应力的原因归结为三类:一是不均匀的塑性变形;二是不均匀的温度变化;三是不均匀的相变。
根据产生残余应力机理的不同,可将其分为热应力和组织应力,车轴热处理后的残余应力是热应力与组织应力的综合作用结果。
由于构件内、外部温度不均,引起材料的收缩与膨胀而产生的应力称为“热应力”。
热应力是由于快速冷却时工件截面温差造成的,淬火冷却速度与工件截面尺寸共同决定了热应力的大小。
在相同冷却介质的情况下,淬火加热温度越高、截面尺寸越大、钢材热导率和线膨胀系数越大,均能导致淬火件内外温差增大,热应力越大。
而加工过程中,由工件内外组织转变的时刻不同多引起的内应力成为“组织应力”。
淬火时,表层材料先于内部开始马氏体的相变,并引起体积膨胀,由于表层的体积膨胀受到未转变的心部的牵制,于是在试样表层产生压应力,心部产生拉应力。
随着冷却的进行,心部体积膨胀有收到表层的阻碍。
随着心部马氏体相变的体积效应逐渐增大,在某个瞬间组织应力状态暂时为零后,式样的组织应力发生反向,最终形成表层为拉应力而心部为压应力的应力状态。
组织应力大小与钢的含碳量、淬火件尺寸、在马氏体转变温度范围内的冷却速度、钢的导热性及淬透性、加热温度、保温时间等因素有关。
二、残余应力的释放针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把工件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
一般认为,经过一年自然时效的工件,残余应力仅下降2%~10%,但工件的松弛刚度得到了较大地提高,因而工件的尺寸稳定性很好。
但由于时效时间过长,一般不采用。
②热时效热时效是传统的时效方法,利用热处理中的退火技术,将工件加热到500~650℃进行较长时间的保温后再缓慢冷却至室温。
残余应力的产生和对策书籍《残余应力的产生和对策》第一章什么是残余应力残余应力是指在物体内部或表面存在的一种剩余应力,它是由于物体经历了外部力的作用或热应变引起的。
这种应力可能会对物体的性能和稳定性产生重要影响。
第二章残余应力的产生机制2.1 材料加工过程中的残余应力在材料的加工过程中,如锻造、轧制、淬火等,由于外部力的作用,会在材料内部产生残余应力。
这些应力可能会导致材料的变形、裂纹甚至破坏。
2.2 热应变引起的残余应力材料在冷却过程中,由于温度变化引起的热应变会导致残余应力的产生。
这种应力可能会导致材料的变形和破坏。
第三章残余应力对物体的影响3.1 对材料性能的影响残余应力会改变材料的力学性能,如强度、韧性等。
这些应力可能会导致材料的脆化、疲劳寿命的降低等问题。
3.2 对结构的影响残余应力可能会导致结构的变形和破坏,从而影响结构的稳定性和安全性。
第四章残余应力的对策4.1 应力退火通过加热材料并保持一段时间,使其内部的残余应力逐渐释放。
这种方法可以有效地减少残余应力,提高材料的稳定性和性能。
4.2 加工控制在材料的加工过程中,合理控制外部力的大小和方向,可以减少残余应力的产生。
例如,在锻造过程中使用适当的温度和应力控制方法,可以降低残余应力的产生。
4.3 热处理通过对材料进行热处理,可以改变其晶体结构,从而减少残余应力的产生。
这种方法可以提高材料的稳定性和机械性能。
第五章结语残余应力是材料工程中一个重要的问题,它对材料的性能和结构的稳定性有着重要影响。
通过了解残余应力的产生机制和对策,我们可以采取有效的方法来减少残余应力的影响,提高材料的性能和结构的稳定性。
在今后的工程实践中,我们应该重视残余应力的问题,并采取相应的措施来解决。
只有这样,我们才能更好地保障工程的质量和安全性。
残余应力(Residual Stress)消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力。
机械加工和强化工艺都能引起残余应力。
如冷拉、弯曲、切削加工、滚压、喷丸、铸造、锻压、焊接和金属热处理等,因不均匀塑性变形或相变都可能引起残余应力。
残余应力一般是有害的,如零件在不适当的热处理、焊接或切削加工后,残余应力会引起零件发生翘曲或扭曲变形,甚至开裂。
或经淬火、磨削后表面会出现裂纹。
残余应力的存在有时不会立即表现为缺陷,而当零件在工作中因工作应力与残余应力的叠加,使总应力超过强度极限时,便出现裂纹和断裂。
零件的残余应力大部分都可通过适当的热处理消除。
残余应力有时也有有益的方而,它可以被控制用来提高零件的疲劳强度和耐磨性能。
[1]工件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用与影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响。
也称残余应力。
残余应力是当物体没有外部因素作用时,在物体内部保持平衡而存在的应力。
凡是没有外部作用,物体内部保持自相平衡的应力,称为物体的固有应力,或称为初应力,亦称为内应力。
测试仪器编辑残余应力分析仪其原理是基于著名的布拉格方程2dsinθ=nλ :即一定波长的X射线照射到晶体材料上,相邻两个原子面衍射时的X射线光程差正好是波长的整数倍。
通过测量衍射角变化Δθ从而得到晶格间距变化Δd,根据胡克定律和弹性力学原理,计算出材料的残余应力。
应力方程根据弹性力学理论, 在宏观各向同性晶体材料上角度φ和ψ(见图1)方向的应变可以用如下方程表述:(图1)正应力和剪切应力应力分量σφ和τφ为方向Sφ上正应力和剪切应力:含剪切应力的应力方程和曲线如果在垂直于试样表面上的平面上有剪应力存在(τ13≠0和/或τ23≠0),则εφψ与sin2ψ的函数关系是一个椭圆曲线,在ψ> 0和ψ<0是图形显示为“ψ分叉”(见图3)。
残余应力测定方法(精)第二章残余应力测定方法残余应力的测定方法大致可分为机械测量法和物理测量法两类。
物理测量法包括X射线法、磁性法、和超声波法等。
它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。
它们是无损的测量方法。
其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。
磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。
物理法的测试设备复杂.昂贵.精度不高。
特别是应用于现场实测时,都有一定的局限性和困难。
机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。
残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。
从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。
因此两种方法测试的结果一般来说是有区别的。
一、分离法测量残余应力切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。
它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。
(一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。
在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。
然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。
切割后,再测应变计得到的释放应变。
它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。
释放后的残余应力计算方法如下:1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。
分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1)2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。
残余应力的产生第一章残余应力的产生残余应力是指在没有对物体施加外力时,物体内部存在的保持自相平衡的应力系统。
它是固有应力或内应力的一种。
产生残余应力的机理:各种机械加工工艺如铸造、切削、焊接、热处理、装配等都会产生不同程度残余应力。
下面用力学模型分析残余应力产生的原因。
一、机械加工引起的残余应力这是金属构件在加工中最易产生的残余应力。
当施加外力时,物体的一部分出现塑性变形,卸载后,塑性变形部分,限制了与其相邻部分变形的恢复,因而出现了残余应力。
如图1.1a所示,当一均匀梁受纯弯曲且上下表面进入塑性时,沿横截面各层上的应变分布如aa`线所示。
其中mn部分产生了塑性变形,而no部分仍处于弹性状态。
当外力去除时梁的变形得到恢复,各点的应变也得到释放,但梁的上表面m点深至n 点这一层内已产生塑性变形,设上表面m点的塑性应变为εt,则当截面mm`各点的应变恢复到折线bnon`b`时,整个截面内将不存在应力。
但实际上梁截面内应变分布是以中性层为坐标原点的线性分布,所以当上表面的应变值从εa降至εt时,截面内各点仍有不平衡的弹性应变如△bon所示。
因此梁的变形将继续恢复,并使表面往下某一深度内产生压缩应变如△bpc所示。
这时梁内出现了如图1.1b所示的应力分布。
直到所有的应力在梁轴向总和为零且对o点的力矩为0时,截面处于平衡状态而不再发生变形。
这时沿截面各点出现了正负相间的自相平衡的应力系统,这就是残余应力。
上述分析可见,构件在外力作用下出现局部的塑性变形,当外力去除时,这些局部的塑性变形限制了整个截面变形的恢复,因此产生了残余应力。
这种由局部塑性变形引起的残余应力,在很多加工工艺中均会出现,如锻压、切削、冷拔、冷弯等等。
这种残余应力往往是很大的。
二、温度不均匀引起的残余应力这种残余应力的产生主要有以下两种原因:第一是由于温度不均匀造成局部热塑性变形;第二是由于相变引起的体积膨胀不均匀造成局部塑性变形。
1、于热塑性变形不均而产生的残余应力;金属材料在高温下其性能将发生很大的变化,如屈服极限、弹性模量等都随温度的升高而下降。