初中数学 过三点的圆 教案
- 格式:docx
- 大小:23.54 KB
- 文档页数:9
冀教版数学九年级上册28.2《过三点的圆》教学设计一. 教材分析冀教版数学九年级上册第28.2节《过三点的圆》是中学数学中的重要内容,主要讲述了通过给定点来确定一个圆的方法。
本节内容是在学生已经掌握了圆的基本概念、性质和直线与圆的位置关系的基础上进行教学的。
通过本节内容的学习,使学生掌握过三点的圆的定义、性质和判定方法,提高学生的空间想象能力和思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的基本概念和性质有一定的了解。
但是,对于通过给定点来确定一个圆的方法,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握过三点的圆的性质和判定方法。
三. 教学目标1.让学生理解过三点的圆的定义和性质。
2.使学生掌握过三点的圆的判定方法。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.过三点的圆的定义和性质。
2.过三点的圆的判定方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出过三点的圆的概念和性质。
2.通过多媒体辅助教学,展示过三点的圆的图形,帮助学生直观地理解其性质和判定方法。
3.采用小组合作学习的方式,让学生在讨论中思考和解决问题,培养学生的合作精神。
六. 教学准备1.多媒体教学设备。
2.过三点的圆的相关图片和实例。
3.练习题和测试题。
七. 教学过程导入(5分钟)教师通过展示一些实际问题,如在平面上有三个点,如何找到一个圆,使其通过这三个点。
引导学生从实际问题中抽象出过三点的圆的概念。
呈现(10分钟)教师通过多媒体展示过三点的圆的图形,引导学生观察和思考过三点的圆的性质。
同时,教师给出过三点的圆的定义,并解释其性质。
操练(15分钟)教师给出一些练习题,让学生独立完成。
题目内容包括判断给定的三个点是否能确定一个圆,以及找出通过给定点的最小圆等。
教师在学生解答过程中进行个别辅导。
巩固(5分钟)教师学生进行小组讨论,让学生分享自己的解题思路和方法。
过三点的圆数学教案
主题:过三点的圆
一、教学目标:
1. 理解并掌握如何通过三个不在同一直线上的点作圆。
2. 能够运用所学知识解决实际问题。
3. 培养学生的观察力、思考能力和解决问题的能力。
二、教学重点与难点:
1. 重点:过三点作圆的方法。
2. 难点:理解为什么必须是三个不在同一直线上的点才能确定一个圆。
三、教学过程:
1. 引入新课:
教师可以通过展示一些关于圆形的实物或图片,引导学生讨论并思考,引出“如何确定一个圆”的问题。
2. 讲授新知:
(1)定义:不在同一条直线上的三个点确定一个圆。
(2)过三点作圆的方法:
a. 找到任意两点连线的中垂线;
b. 第三个点到这条中垂线的距离就是圆的半径;
c. 以中垂线的交点为圆心,以半径画圆。
3. 演示与实践:
教师在黑板上演示过三点作圆的过程,然后让学生自己动手尝试。
4. 练习与应用:
设计一些相关的练习题,让学生巩固所学的知识,并能运用到实际问题中。
5. 小结:
总结本节课的主要内容,强调重点和难点。
6. 作业布置:
布置一些相关习题,要求学生回家完成。
四、教学评价:
通过课堂观察、作业批改和测验等方式,对学生的学习情况进行评估。
《过三点的圆》初中数学教案一、教学目标1.让学生理解圆的定义和相关性质,掌握过三点的圆的作法。
2.培养学生的几何直观能力和逻辑思维能力。
3.培养学生合作探究、解决问题的能力。
二、教学重点与难点重点:过三点的圆的作法。
难点:确定圆心和半径的方法。
三、教学过程1.导入师:同学们,我们先来回顾一下圆的定义。
圆是由无数个等距离于圆心的点组成的图形。
那么,如何确定一个圆呢?今天我们就来学习如何过三点画一个圆。
2.探究师:请同学们拿出一张白纸和一支笔,我们来进行一个探究活动。
请在纸上任意画三个点,并尝试找到一个圆,使得这三个点都在圆上。
(学生活动,教师巡回指导)师:同学们,你们发现了吗?过任意三个点,我们可以画出一个圆。
但要注意,这三个点不能在一条直线上。
3.知识讲解师:那么,如何确定这个圆的圆心和半径呢?这里有一个简单的方法。
(1)连接两点,作垂直平分线。
(2)连接另外两点,作垂直平分线。
(3)两条垂直平分线的交点即为圆心。
(4)圆心到任意一点的距离即为半径。
4.示例讲解师:我们来看一个具体的例子。
例题:已知平面直角坐标系中,有三个点A(2,3)、B(4,5)、C(6,1),请画出一个过这三点的圆。
(教师边讲解边示范)5.练习(1)已知平面直角坐标系中,有三个点D(1,2)、E(3,4)、F (5,2),请画出一个过这三点的圆。
(2)已知平面直角坐标系中,有三个点G(-1,-2)、H(1,-3)、I(3,-1),请画出一个过这三点的圆。
(学生练习,教师巡回指导)师:同学们,通过今天的学习,我们掌握了过三点的圆的作法。
请你们回顾一下,我们是如何确定圆心和半径的?(学生回答)师:很好!请你们思考一下,如果给出的三个点中有两个点在一条直线上,我们应该如何处理?(学生回答)师:如果给出的三个点中有两个点在一条直线上,那么这三个点不能构成一个圆。
我们需要重新选择三个不在同一直线上的点。
7.作业布置师:今天的作业是:(1)完成练习册上的相关题目。
冀教版数学九年级上册《28.2 过三点的圆》教学设计2一. 教材分析冀教版数学九年级上册《28.2 过三点的圆》是本册教材中的重要内容,它让学生了解到在确定一个圆时,需要三个关键点,并学会通过这三个点来求解圆的方程。
本节内容是在学生已经掌握了圆的基本概念、方程的基础上进行学习的,有助于培养学生的逻辑思维能力和空间想象力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的概念和方程有所了解。
但学生在求解过三点的圆时,可能会对如何正确选择三个点、如何列出方程组等问题感到困惑。
因此,在教学过程中,教师需要引导学生正确选择三点,并教会学生如何列出方程组求解。
三. 教学目标1.让学生掌握过三点的圆的求解方法。
2.培养学生的逻辑思维能力和空间想象力。
3.提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:过三点的圆的求解方法。
2.教学难点:如何正确选择三个点,列出方程组求解。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT,包括知识点、例题、练习等。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如:“在平面上有三个点A、B、C,如何找到一个圆,使其经过这三个点?”引导学生思考过三点的圆的求解方法。
2.呈现(15分钟)讲解过三点的圆的求解方法,引导学生了解如何选择三个点,并教会学生如何列出方程组求解。
通过PPT展示相关的知识点、例题和练习。
3.操练(10分钟)让学生分组进行练习,每组选择三个点,尝试求解过三点的圆。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)针对学生在练习中遇到的问题,进行讲解和巩固。
通过PPT展示一些典型的错误和注意事项,帮助学生加深理解。
5.拓展(5分钟)引导学生思考过三点的圆在实际应用中的意义,如:在工程、设计等领域中的应用。
《过三点的圆》教案【基础知识精讲】1.基本概念经过三角形各顶点的圆叫三角形的外接圆.三角形的外接圆的圆心叫三角形的外心.三个顶点在圆上的三角形叫做这个圆的内接三角形.2.定理不在同一直线上的三个点确定一个圆.3.反证法的基本步骤①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定命题的结论正确.【重点难点解析】本节的重点在于通过尺规作图理解不共线三点确立一个圆,掌握三角形的外接圆,外心以及圆内接三角形等概念,难点是运用反证法解题.例1 已知,用圆规直尺找到的圆心解:①在上任取不同的三点C、D、E②顺次连结C、D、E得△CDE③作△CDE的二边CD与DE的垂直平分线相交于点O,则点O即为的圆心.说明:此例中的圆心即为△CDE的外心,而三角形的外心是其三边中垂线的交点,从而问题得以解决.例2 已知直角三角形的两条直角边分别是6 cm和8cm,求其外接圆半径解:∵其斜边长为: =10cm∴其外接圆半径为:×10=5cm说明:此题主要搞清直角三角形的外心就是斜边的中点,外接圆半径等于斜边的一半.例3 求证:三角形中至少有一个角不大于60°证明:假设△ABC的三个角均大于60°则∠A+∠B+∠C>60°+60°+60°=180°这与∠A+∠B+∠C=180°矛盾∴命题成立说明:运用反证法证题主要是在假设的基础上推出与已知或定理相矛盾的结论.本例就是推出一个与三角形内角和定理矛盾的结论.例4 求证:六条边都等于1的凸六边形至少有一条对角线的长不大于 .证明:假设存在一个边长为1的凸六边形ABCDEF,其每一条对角线之长均大于,如图7-7,作BM⊥AC,∵AB=BC=1,AC>∴sin∠ABM= >∴∠ABM>60°,则∠ABC>120°那此六边形的内角之和大于120°×6=720°这与六边形的内角和等于720°矛盾∴命题成立说明:命题的结论包含的情形较多,直接证明有些困难,而其反面“每条对角线之长大于”却只有一种情形,因此考虑用反证法.【难题巧解点拨】例1 已知平面上有六个圆,每个圆的圆心都在其余各圆的外部.求证平面上任何一点都不会同时在此六个圆的内部.证明:已知六个圆⊙A1、⊙A2、⊙A3、⊙A4、⊙A5、⊙A6,其中每个圆的圆心都在其余各圆的外部,假设存在一点M,同时在此六个圆的内部.依题意,MA1小于⊙A1的半径,A1A2大于⊙A1的半径,∴A1A2>MA1,同样有:A1A2>A2M,考虑△MA1A2知:其最大内角为∠A1MA2,∴∠A1MA2>60°同理可证:∠A2MA3,∠A3MA4,∠A4MA5,∠A5MA6,∠A6MA1均大于60°,则这六个角之和大于360°,由图7-8知这六角之和应等于360°,矛盾,所以原命题成立.说明:本例采用反证法、将问题转为三角形的内角,推出矛盾.例2 设a、b、c是满足的正数,试证方程组=1 ①=1 ②有唯一实数解=1 ③证明:∵等边三角形内任一点到三边的距离之和等于一边上的高,∴由此作一边长为1的正△ABC,在△ABC内必存在一点P,它到三边的距离依次为、、,如图7-9,取x1=PA2,y1=PB2,z1=PC2,则(x1,y1,z1)即为方程组的解.再由反证法证明唯一性,如(x2,y2,z2)也是原方程组的解,它与(x1,y1,z1)中至少有一个相对应的数不等,不妨x2≠x1,若 x2>x1,则>,由方程③知:< .于是y2<y1,由方程③知z2>z1,再由方程②知x2<x1,这与x2>x1矛盾.同理若x2<x1,也会导致矛盾,故x1=x2,同理y1=y2,z1=z2,所以原方程组只有唯一的实数解.【课本难题解答】作一个圆,使它们过已知点A和B、并且圆心在已知直线l上.(1)当直线l和AB斜交时,可作几个?(2)当直线l和AB垂直但不经过AB的中点时可作几个?(3)当直线l是线段AB的垂直平分线时,怎样呢?分析:所求的圆的圆心既在直线l上,又在线段AB的垂直平分线上.因此(1)可作一个圆;(2)不能作圆;(3)可作无数个圆.【知识探究学习】反证法是数学证明的一个重要方法,巧妙地运用反证法解题可使一些说不清楚的问题变得简单明了.例如本节中的例3,如果要直接说明此命题,有一种无从下手的感觉,但用反证法证明则很简单,又如要证明“是无理数”.若从正面证是没有办法的.但采用反证法就好说明了.不过反证法不是万能的,要学会对不同的命题选用不同的方法.【典型热点考题】例1 已知△ABC的内切圆为⊙O,与各边相切于D、E、F,那么点O是△DEF的( )(2000年四川省中考题)A.三点中线的交点B.三条角平分线的交点C.三高的交点D.三边中垂线的交点分析:显然圆O与△ABC相切于D、E、F三点,因此⊙O是△DEF的内切圆,从而选B.例2 求证:两条直线相交只有一个交点证明:假设两条相交直线有不只一个交点.若A、B为其两个不同的交点,则经过A、B两点有两条直线,这与经过两点有且仅有一条直线矛盾,故两条直线相交有且只有一个交点.【同步达纲练习】一、填空题(1)一个圆的圆心决定这个圆的,这个圆的半径决定这个圆的 .(2)不在一直线上的三点可以确定一个圆,确定的意思是 .(3)锐角三角形的外心的位置在,直角三角形的外心的位置在,钝角三角形外心的位置 .(4)经过三角形各顶点的圆叫做三角形的,每个圆有个内接三角形.(5)三角形的外心是的交点.(6)反证法的三个步骤是 .二、选择题(1)下面几个三角形(a、b、c表示△ABC的三边的长)中,外心不在三角形的一边上的是( )A.a=1,b= ,c=2B.a=5,b=12,c=13C.a= ,b= ,c=2D.a=7,b=8,c=9(2)经过不在同一直线上的三点可以确定一个圆,则经过矩形ABCD的四个顶点( )A.最多可作一个圆B.最多可作两个圆C.最多可作三个圆D.最多可作四个圆(3)直角三角形的两条直角边分别是12cm、5cm,这个三角形外接圆的半径是( )A.5cmB.12cmC.13cmD.6.5cm(4)已知等腰梯形ABCD,则( )A.它的外接圆只有一个B.它无外接圆C.它的外接圆不止一个D.以上都不对三、解答题(1)求证:平行于同一直线的两条直线平行.(2)求证:三角形的三条角平分线相交于一点.参考答案一、(1)位置、大小 (2)有且只有 (3)三角形内;斜边中点,三角形外 (4)外接圆,无数个(5)三边中垂线的交点 (6)略二、D A D A三、(略)。
数学教案-过三点的圆_九年级数学教案_模板第一课时过三点的圆(一)学习活动设计:(二)学习载体设计:(1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个?(b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题).(2)实验:应用电脑动画,使学生观察、发现新问题.(3)作图:已知:不在同一条直线上的三个已知点A、B、C(如图)求作:⊙O,使它经过点A、B、C.(4)应用和拓展:给弧找圆心、三角形的外接圆.不在同一条直线上的四个点能否作圆,什么情况下能?什么情况下不能?(三)学生交流、师生对话活动设计:学生交流与师生对话,在上课之前无法确定,要根据学生学习中的需要,但在两处必须要进行:(1)在实践(或实验)中发现的问题;(2)解决问题的方法.探究活动确定圆的个数1、如图1,直线上两个不同点A、B和直线外一点P可以确定一个圆;如图2,直线上三个不同点A、B、C和直线外一点P可以确定三个圆;……;那么直线上n个不同点A1、A2、A3……An和直线外一点P可以确定多少个圆?……2、如图4,直线上n个不同点A1、A2、A3……An和直线外两个不同的点P、Q,则这(n+2)个点最多可以确定多少个圆?3、如图5,在⊙O上的n个不同点A1、A2、A3……An和P,可以确定多少个圆?参考答案:1、可以确定个圆;2、分类求解(1)取P点和直线上两个点,一共可以确定个圆;(2)取Q 点和直线上两个点,一共可以确定个圆;(3)取P 、Q 两点和直线上一个点,一共n个圆;∴最多可以确定个圆.3、可以确定个圆.锐角的三角比------正切和余切一、教学目标:1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。
2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。
冀教版数学九年级上册28.2《过三点的圆》教学设计一. 教材分析冀教版数学九年级上册28.2《过三点的圆》是本册教材中的一个重要知识点。
这部分内容主要让学生掌握过三点的圆的性质,学会如何寻找过三点的圆,并了解其在实际生活中的应用。
教材通过生动的实例和丰富的练习,引导学生探索、发现、总结过三点的圆的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形、四边形等基本几何知识,具备一定的空间想象能力和逻辑思维能力。
但学生在解决实际问题时,仍存在对概念理解不深、思路不清晰等问题。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解过三点的圆的性质,提高解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握过三点的圆的性质,学会寻找过三点的圆,并能运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的空间想象能力、逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的良好学习习惯。
四. 教学重难点1.重点:过三点的圆的性质及其寻找方法。
2.难点:如何运用过三点的圆的性质解决实际问题。
五. 教学方法1.情境教学法:通过生动实例,引导学生进入学习情境,激发学生兴趣。
2.启发式教学法:引导学生观察、思考、交流,培养学生发现问题、解决问题的能力。
3.实践活动法:让学生动手操作,提高学生的实践能力和空间想象能力。
4.小组合作学习:培养学生团队合作精神,提高交流表达能力。
六. 教学准备1.教学课件:制作课件,展示过三点的圆的实例和性质。
2.练习题:准备相关练习题,巩固所学知识。
3.教学道具:准备一些圆形的教具,方便学生观察和操作。
七. 教学过程1.导入(5分钟)利用实例引入过三点的圆的概念,让学生初步了解过三点的圆的性质。
2.呈现(10分钟)展示过三点的圆的实例,引导学生观察、思考,发现过三点的圆的性质。
初中数学过三点的圆教案教学目标:(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.教学重点:正多边形的概念与正多边形和圆的关系的第一个定理.教学难点:对定理的理解以及定理的证明方法.教学活动设计:(一)观察、分析、归纳:观察、分析:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?归纳:等边三角形与正方形的边、角性质的共同点.教师组织学生进行,并可以提问学生问题.(二)正多边形的概念:(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.(2)概念理解:①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….)②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.(三)分析、发现:问题:正多边形与圆有什么关系呢?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?(四)多边形和圆的关系的定理定理:把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是这个圆的内接正n边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.我们以n=5的情况进行证明.已知:⊙O中,= = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O的切线.求证:(1)五边形ABCDE是⊙O的内接正五边形;(2)五边形PQRST是⊙O的外切正五边形.证明:(略)引导学生分析、归纳证明思路:弧相等说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.(2)要注意定理中的“依次”、“相邻”等条件.(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.(五)初步应用P157练习1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?2.求证:正五边形的对角线相等.3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.(六)小结:知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.能力和方法:正多边形的证明方法和思路,正多边形判断能力(七)作业教材P172习题A组2、3.教学设计示例2教学目标:(1)理解正多边形与圆的关系定理;(2)理解正多边形的对称性和边数相同的正多边形相似的性质;(3)理解正多边形的中心、半径、边心距、中心角等概念;(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;教学重点:理解正多边形的中心、半径、边心距、中心角的概念和性质定理.教学难点:对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.教学活动设计:(一)提出问题:问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?(二)实践与探究:组织学生自己完成以下活动.实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(3)正方形有内切圆吗?圆心在哪?半径是谁?(三)拓展、推理、归纳:(1)拓展、推理:过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.同理,点E在⊙O上.所以正五边形ABCDE有一个外接圆⊙O.因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.(2)归纳:正五边形的任意三个顶点都不在同一条直线上它的任意三个顶点确定一个圆,即确定了圆心和半径.其他两个顶点到圆心的距离都等于半径.正五边形的各顶点共圆.正五边形有外接圆.圆心到各边的距离相等.正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.照此法证明,正六边形、正七边形、…正n边形都有一个外接圆和内切圆.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于.(3)巩固练习:1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.4、正n边形的一个外角度数与它的______角的度数相等.(四)正多边形的性质:1、各边都相等.2、各角都相等.观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神.(五)总结知识:(1)正多边形的中心、半径、边心距、中心角等概念;(2)正多边形与圆的关系定理、正多边形的性质.能力:探索、推理、归纳等能力.方法:证明点共圆的方法.(六)作业P159中练习1、2、3.教学设计示例3教学目标:(1)巩固正多边形的有关概念、性质和定理;(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识.教学重点:综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归.教学难点:综合运用知识证题.教学活动设计:(一)知识回顾1.什么叫做正多边形?2.什么是正多边形的中心、半径、边心距、中心角?3.正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)4.正n边形的每个中心角都等于.5.正多边形的有关的定理.(二)例题研究:例1、求证:各角相等的圆外切五边形是正五边形.已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’.求证:五边形ABCDE是正五边形.分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可.教师引导学生分析,学生动手证明.证法1:连结OA、OB、OC,∵五边形ABCDE外切于⊙O.∴∠BAO=∠OAE,∠OCB=∠OCD,∠OBA=∠OBC,又∵∠BAE=∠ABC=∠BCD.∴∠BAO=∠OCB.又∵OB=OB∴△ABO≌△CBO,∴AB=BC,同理BC=CD=DE=EA.∴五边形ABCDE是正五边形.证法2:作⊙O的半径OA’、OB’、OC’,则OA’⊥AB,OB’⊥BC、OC’⊥CD.∠B=∠C∠1=∠2= .同理= = = ,即切点A’、B’、C’、D’、E’是⊙O的5等分点.所以五边形ABCDE是正五边形.反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证出各切点为圆的等分点.由同样的方法还可以证明“各角相等的圆外切n边形是正边形”.此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。
拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.求证:五边形ABCDE是正五边形.(证明略)分小组进行证明竞赛,并归纳学生的证明方法.拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、N.求证:五边形ABCDE是正五边形.(证明略)学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬.例2、已知:正六边形ABCDEF.求作:正六边形ABCDEF的外接圆和内切圆.作法:1过A、B、C三点作⊙O.⊙O就是所求作的正六边形的外接圆.2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆.用同样的方法,我们可以作正n边形的外接圆与内切圆.练习:P1611、求证:各边相等的圆内接多边形是正多边形.2、(口答)下列命题是真命题吗?如果不是,举出一个反例.(1)各边相等的圆外切多边形是正多边形;(2)各角相等的圆内接多边形是正多边形.3、已知:正方形ABCD.求作:正方形ABCD的外接圆与内切圆.(三)小结知识:复习了正多边形的定义、概念、性质和判定方法.能力与方法:重点复习了正多边形的判定.正多边形的外接圆与内切圆的画法.(四)作业教材P172习题4、5;另A层学生:P174B组3、4.探究活动折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最大的正六边形.(提示:①对折;②再折使A、B、C分别与O点重合即可)(2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4的正六边形.(提示:可以.主要应用把一个直角三等分的原理.参考图形如下:①对折成小正方形ABCD;②对折小正方形ABCD的中线;③对折使点B在小正方形ABCD的中线上(即B’);④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形.)探究问题:(安徽省2002)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形;乙同学:我发现边数是6时,它也不一定是正多边形.如图一,△ABC是正三角形, 形,= = ,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等.(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证).(3)根据以上探索过程,提出你的猜想(不必证明).(1)[说明](2)[证明](3)[猜想]解:(1)由图知∠AFC对.因为= ,而∠DAF对的= + = + = .所以∠AFC=∠DAF.同理可证,其余各角都等于∠AFC.所以,图1中六边形各内角相.(2)因为∠A对,∠B对,又因为∠A=∠B,所以= .所以= .同理= = = = = = .所以七边形ABCDEFG是正七边形.猜想:当边数是奇数时(或当边数是3,5,7,9,……时),各内角相等的圆内接多边形是正多边形.。