高考理科数学复习题解析 充分条件与必要条件
- 格式:doc
- 大小:197.50 KB
- 文档页数:6
高三数学充分条件与必要条件试题答案及解析1.设,则“”是“”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】若,①,则,即成立;②,则显然成立;③,则,即,∴成立;若,①,,则;②,,则显然成立;③,,则,故综上所述,“”是“”的充要条件.【考点】1.不等式的性质;2.充分必要条件.2.在△中,“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.3.已知a∈R,且a≠0,则是“a>1”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】B【解析】由或.所以是“a>1”的必要不充分条件.故选B【考点】1.分式不等式的解法.2.充要条件.4.“”是“函数(且)在区间上存在零点”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】令,得,若,则,所以充分性成立;若函数在区间上存在零点时,则有,显然存在,且由不能得出,所以必要性不成立.故正确答案为A.【考点】1.充分条件;必要条件;充要条件;2.函数零点.5.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,有,但当时,,故选A.【考点】充分与必要条件.6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=,a4=-,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件,选A.7.已知a∈R,则“a>2”是“a2>2a”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.8.设a,b∈R,则“a>1且0<b<1”是“a-b>0且>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】显然a>1且0<b<1⇒a-b>0且>1;反之,a-b>0且>1⇒a>b且>0⇒a>b且b>0,推不出a>1且0<b<1.故“a>1且0<b<1”是“a-b>0且>1”的充分而不必要条件.9.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】命题①在c=0时不正确,即“a=b”只是“ac=bc”的充分而不必要条件;注意到无理数的概念与实数的加法运算,可知命题②是真命题;命题③在a,b至少有一个是负数时不一定正确,命题③为假命题;由不等式的性质,若a<3,必有a<5,命题④是真命题.综上所述,命题②④是真命题,选B.10.设,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】即又,,,即成立,相反,代入特殊值,当时,满足,但不成立.所以是充分不必要条件,故选A.【考点】充分必要条件的判定11.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.12.己知实数满足,则“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】C【解析】这是考查不等式的性质,由于,因此不等式两边同乘以可得,即,同样在不等式两边同除以可得,即,因此应该选C.当然也可这样分析:说明同正同负,由于函数在和两个区间上都是减函数,因此“”与“”是等价的,即本题选C.【考点】不等式的性质,13.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、(),定义它的倾斜度为则“t=1”是“为等边三角形”的。
高三数学充分条件与必要条件试题答案及解析1.“”是“且”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】试题分析:根据不等式的性质,由“且”成立,可以推出“”成立,反过来,令,此时“”成立,但“且”不成立;所以“”是“且”的必要不充分条件.故选A.【考点】1、不等式的性质;2、充要条件.2.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,成立;当时,或,∴不一定成立.【考点】充分必要条件.3.设,则“”是“”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件【答案】B【解析】若,则,但当时也有,故本题就选B.【考点】充分必要条件.4.已知是虚数单位,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,,反过来,则,解得或,故是的充分不必要条件,故选A【考点】充要条件的判断,复数相等.5.[2014·黄山模拟]“-3<m<5”是“方程+=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】要使方程+=1表示椭圆,应满足,解得-3<m<5且m≠1,因此“-3<m<5”是“方程+=1表示椭圆”的必要不充分条件.6.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.7.已知数列,则“”是“数列为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由题意,若“数列为递增数列”,则,但不能推出,如,则不能推出“数列为递增数列”,所以“”是“数列为递增数列”的必要而不充分条件.故选B.【考点】1.充分必要条件;2.数列的单调性.8.已知是定义在R上的偶函数,且以2为周期,则“为上的增函数”是“为上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件【答案】D【解析】因为为偶函数,所以当在上是增函数,则在上则为减函数,又函数的周期是4,所以在区间也为减函数.若在区间为减函数,根据函数的周期可知在上则为减函数,又函数为偶函数,根据对称性可知,在上是增函数,综上可知,“在上是增函数”是“为区间上的减函数”成立的充要条件.9.已知条件,条件,则是成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【解析】由等价于,得:,,所以,是成立的必要不充分条件,选B.【考点】充要条件,不等关系.10.是的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要【答案】A【解析】因为的解为或,所以是的充分不必要条件.【考点】逻辑与命题.11.设命题p和q,在下列结论中,正确的是()①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“p”为假的必要不充分条件;④“p”为真是“p∧q”为假的必要不充分条件.A.①②B.①③C.②④D.③④【答案】B【解析】据真值表知:当“p∧q”为真时,p和q皆为真,此时“p∨q”为真,反之当“p∨q”为真时,p和q至少有一个为真,“p∧q”不一定为真,故①正确.若“p∧q”为假,则p,q中至少有一个为假,所以②不正确.若“p”为假,则p为真,故③正确.若“p”为真,则p为假,因此“p”为真是“p∧q”为假的充分不必要条件,故④不正确.故选B.12.设,则“” 是“且”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【答案】B【解析】由不能得到且,如也满足;由且一定可以得到,因为,故选B.【考点】充要条件13.已知a,b为非零向量,则“函数f(x)=(ax+b)2为偶函数”是“a⊥b”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【答案】C【解析】因为f(x)=(ax+b)2=ax2+2a·bx+b2,所以若f(x)=(ax+b)2为偶数,则a·b=0,即a⊥b.若a⊥b,则有a·b=0,所以f(x)=(ax+b)2=a2x2+2a·bx+b2=a2x2+b2,为偶函数.14.设f(x)在R上可导,其导数为f′(x),给出下列四组条件:①p:f(x)是奇函数,q:f′(x)是偶函数;②p:f(x)是以T为周期的函数,q:f′(x)是以T为周期的函数;③p:f(x)在区间(-∞,+∞)上为增函数,q:f′(x)>0在(-∞,+∞)恒成立;④p:f(x)在x0处取得极值,q:f′(x)=0.由以上条件中,能使p⇒q成立的序号为 ().A.①②③B.①②④C.①③④D.②③④【答案】B【解析】由f(-x)=-f(x),得-f′(-x)=-f′(x).∴f′(-x)=f′(x).即f′(x)是偶函数①正确.易知②正确.③不正确.根据f′(x0)=0是可导函数f(x)在x=x取得极值的必要不充分条件,∴④正确.15.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】当时,,故是充分条件.当时,所以,所以也是必要条件.选C.【考点】充要条件.16.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.17.设为向量。
高三数学充分条件与必要条件试题答案及解析1.在△中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.2.若实数满足,且=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【答案】C【解析】由φ(a,b)=0得-a-b=0且;所以φ(a,b)=0是a与b互补的充分条件;再由a与b互补得到:,且=0;从而有,所以φ(a,b)=0是a与b互补的必要条件;故得φ(a,b)=0是a与b互补的充要条件;故选C.【考点】充要条件的判定.3.在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【答案】A【解析】由正弦定理得(其中为外接圆的半径),则,,,因此是的充分必要必要条件,故选A.【考点】本题考查正弦定理与充分必要条件的判定,属于中等题.4.已知条件:,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】A【解析】解:因为::,所以:而:所以是的充分不必要条件,故选A.【考点】1、一元二次不等式及分式不等式的解法;2、充要条件.5.求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>,这个条件是其充分条件吗?为什么?【答案】必要条件但不是充分条件,见解析【解析】证明:设x2+ax+1=0的两实根为x1,x2,则平方和大于3的等价条件是即a>或a<-.∵{a|a>或a<-},{a||a|>},∴|a|>这个条件是必要条件但不是充分条件.6.(2011•浙江)若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵a、b为实数,0<ab<1,∴“0<a<”或“0>b>”∴“0<ab<1”⇒“a<”或“b>”.“a<”或“b>”不能推出“0<ab<1”,所以“0<ab<1”是“a<”或“b>”的充分而不必要条件.故选A.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.8.(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.9.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.10.已知向量,,则的充要条件是()A.B.C.D.【答案】A【解析】,,由于,则,即,即,故选A.【考点】平面向量垂直的等价条件11.设,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】B【解析】当时,,而当时,;当时,,∴,∴综上可知:是的必要而不充分条件.【考点】充分必要条件.12.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.【考点】解不等式,充要条件.13.“”是“” 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以“”是“” 的必要不充分条件.【考点】充分与必要条件.14.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.15.“m=1”是“直线x-my=1和直线x+my=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为m=1时,直线x-my=1和直线x+my=0即可化为x-y=1和x+y=0.即y=x-1和y=-x所以斜率积为-1,所以这两条直线垂直.所以充分性成立.若直线x-my=1和直线x+my=0互相垂直,因为m=0显然不成立.所以两条直线分别为和.所以由斜率乘积为-1可得.所以即.所以必要条件不存在.故选A.【考点】1.充分必要条件.2.直线的位置关系.3.含参数的讨论.16.“”是“函数为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】函数为奇函数,则当时,,即,因此“”是“函数为奇函数” 的充分不必要条件,故选A.【考点】1.三角函数的奇偶性;2.充分必要条件17.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.18.设命题甲:关于的不等式对一切恒成立,命题乙:对数函数在上递减,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若的不等式对一切恒成立,则,解得;在上递减,则,解得,易知甲是乙的必要不充分条件,故选B.【考点】1.充分条件与充要条件;2.二次函数与对数函数的性质.19.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,又,解得,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件.故选C.【考点】等比数列的通项公式,充要条件.20.两个非零向量的夹角为,则“”是“为锐角”的( )A.充分不必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】B【解析】由可得,所以“”是“为锐角”的必要不充分条件.【考点】充分必要条件.21.或是的条件.【答案】必要不充分【解析】若,,则,故或是的必要不充分条件.【考点】充要条件的判断.22.“”是“”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)【答案】充分不必要【解析】如果时,那么,所以“”是“”的充分条件,如果,那么,或,所以“”是“”的不必要条件,综上所以“”是“”的充分不必要条件.【考点】充分条件和必要条件.23.“函数在区间上存在零点”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】函数在区间上存在零点,则:.即.所以“函数在区间上存在零点”是“”的必要不充分条件.【考点】1、函数的零点;2、充分条件与必要条件.24.“a≥0”是“函数在区间(-∞,0)内单调递减”的()A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件【答案】A【解析】令t=(ax-1)x=ax2-x,则,设=0,解得x=,所以,当a≥0时,函数t=(ax-1)x在(-∞,)上是减函数,在(,+∞)上是增函数,即极小值为-,当x<0时,t>0,所以a≥0时,函数在区间(-∞,0)内单调递减;若函数在区间(-∞,0)内单调递减,则x时,<0,即成立,所以2a ≥0,故选A.【考点】1.导数的应用;2.充分必要条件的判断.25.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】显然是等比数列一定是等方比数列,是等方比数列不一定是等比数列,故甲是乙的必要不充分条件,选B.【考点】充要条件.26.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为_________________.【答案】【解析】将两个命题化简得,命题,命题.因为是成立的必要不充分条件,所以或,故的取值范围是.【考点】1.一元二次不等式的解法;2.必要不充分条件.27.已知是实数,则“且”是“且”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】C【解析】因为,且,所以,且;反之,当且时,说明a,b同号,而若a,b均为负数,与a+b>0矛盾,所以且。
高考数学复习典型题型专题讲解与练习专题4 充分条件与必要条件题型一 根据充分不必要条件求参数1.已知集合A ={x |﹣1<x <2},B ={x |﹣1<x <m +1},若x ∈A 是x ∈B 成立的一个充分不必要条件,则实数m 的取值范围是_____.. 【答案】m >1.【解析】由x ∈A 是x ∈B 成立的一个充分不必要条件, 得:A B ,即1112m m +>-⎧⎨+>⎩,即m >1,2.已知命题“关于x 的方程2250x mx m +++=有两个不相等的实数根”是假命题. (1)求实数m 的取值集合A ;(2)设集合{|121}B x a x a =-≤≤-,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.【答案】(1){}|210A x m =-≤≤;(2)11a ≥.【解析】(1)若关于x 的方程2250x mx m +++=有两个不相等的实数根”是真命题,则()24250m m ∆=-+>,即28200m m -->,解得:2m <-或10m >,所以方程2250x mx m +++=有两个不相等的实数根”是假命题则{}|210x m -≤≤, 所以{}|210A x m =-≤≤,(2)x A ∈是x B ∈的充分不必要条件,则AB ,则122110a a -≤-⎧⎨-≥⎩,解得11a ≥,经检验11a =时,{|2110}B x x =-≤≤,满足A B ,所以11a =成立,所以实数a 的取值范围是11a ≥.3.已知不等式11m x m -<<+成立的充分不必要条件是1132x <<,求实数m 的取值范围.【答案】1423m -≤≤【解析】由题意11,32⎛⎫⎪⎝⎭ ()1,1m m -+,所以113112m m ⎧-≤⎪⎪⎨⎪+≥⎪⎩,所以1423m -≤≤4.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求A B ;(2)若>0a ,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围. 【答案】(1){11A B x x ⋂=-≤≤或}45x ≤≤;(2)01a <<. 【解析】(1)∵当3a =时,{}15A x x =-≤≤, {1B x x =≤或}4x ≥, ∴{11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{1B x x =≤或}4x ≥,∴{}14R B x x =<<,由“x A ∈”是“R x B ∈”的充分不必要条件,得A 是B R 的真子集,且A ≠∅, 又{}()22>0A x a x a a =-≤≤+,∴2>1,012+4a a a -⎧∴<<⎨<⎩.5.已知全集U R =,集合{|15}A x x =≤<,{|28}B x x =<<,{|3}C x a x a =<≤+.()1求A B ⋃,()U A B ⋂;()2若“x C ∈”为“x A ∈”的充分不必要条件,求a 的取值范围. 【答案】(1){}()|18{|58}U A B x x C A B x x ⋃=≤<⋂=≤<,;(2)12a ≤< 【解析】解:()1集合{|15}A x x =≤<,{|28}{|18}B x x A B x x =<<∴⋃=≤<,(){|1U C A x x =<或5}x ,(){|58}U C A B x x ⋂=≤<;()2“x C ∈”为“x A ∈”的充分不必要条件,得CA ,351a a +<⎧∴⎨≥⎩,解得12a ≤<,题型二 根据必要不充分条件求参数1.已知命题p :关于x 的方程x 2-(3m -2)x +2m 2-m -3=0有两个大于1的实数根. (1)若命题p 为真命题,求实数m 的取值范围;(2)命题q :3-a <m <3+a ,是否存在实数a 使得p 是q 的必要不充分条件,若存在,求出实数a 的取值范围;若不存在,说明理由. 【答案】(1)m >2;(2)存在a ≤1.【解析】(1)由x 2-(3m -2)x +2m 2-m -3=0得[x -(m +1)][x -(2m -3)]=0, 所以x =m +1或x =2m -3,因为命题p 为真命题,所以m +1>1且2m -3>1,得m >2. (2)设集合A ={}|2m m >,集合B ={}|33m a m a -<<+, 因为p 是q 的必要不充分条件,所以B A ,当B =时,33a a -+≥,解得a ≤0; 当B ≠时,33,32,a a a -<+⎧⎨-≥⎩解得01a <≤.综上所述:存在a ≤1,满足条件.2.(1)已知集合{}{}21241A a B a ==,,,,,,且A B B =,求实数a 的取值范围; (2)已知2040p x q ax ->->:,:,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】(1)4a =或16a =或0a =;(2)02a ≤< 【解析】(1)B A ⊆.①当2a =时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. ②当4a =时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. ③当2a a ='时,0a =或l ,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =. (2)∵p 是q 的必要不充分条件, ∴{}{}240A x x B x ax =>=->,, ∴BA .①当0a >时,42a >, ∴02a <<,②当0a <时,不满足题意. ③当0a =时,40q ->:, ∴B =∅,∴符合题意. 综上:02a ≤<.3.已知:p 关于x 的方程242250x ax a -++=的解集至多有两个子集,:11q m a m -≤≤+,0m >.若q 是p 的必要不充分条件,求实数m 的取值范围.【答案】9m ≥【解析】解:∵q 是p 的必要不充分条件,∴p 是q 的充分不必要条件, 对于p ,依题意,知()()()222442548200a a a a ∆=--⨯+=--≤,∴210a -≤≤,设{}210P a a =-≤≤,{}11,0Q a m a m m =-≤≤+>,由题意知P Q ,∴012110m m m >⎧⎪-<-⎨⎪+≥⎩,或012110m m m >⎧⎪-≤-⎨⎪+>⎩,解得9m ≥,故实数 m 的取值范围是:9m ≥.4.已知集合2{|320}A x x x =-+=,2(1)0{|}B x x ax a -+==-,2{|20}C x x mx =-+=. (1)命题p :“x B ∀∈,都有x A ∈”,若命题p 为真命题,求a 的值; (2)若“x A ∈”是“x C ∈”的必要条件,求m 的取值范围. 【答案】(1)2或3 (2){|3m m =或}2222m -<< 【解析】解:(1)由题意得{1,2}A =,∵命题p 为真命题, ∴B A ⊆.又∵{|[-(-1)](-1)0}B x x a x ==, 由B A ⊆,可知B 有两种可能, ①若{1}B =,则11a -=,解得2a =; ②若{1,2}B =,则12a -=,解得3a =. 因此a 的值为2或3.(2)∵“x A ∈”是“x C ∈”的必要条件, ∴“x C ∈”能推出“x A ∈”,从而C A ⊆, 因此集合C 有四种可能:①C A =,此时280,12,m m ⎧∆=->⎨=+⎩解得3m =;②{1}C =,此时280,2,m m ⎧∆=-=⎨=⎩此时方程组无实数解,m 的值不存在;③{2}C =,280,4,m m ⎧∆=-=⎨=⎩此时方程组无实数解,m 的值不存在;④C =∅,此时280m ∆=-<,解得2222m -<<. 综上可知,m 的取值范围为{|3m m =或2222}m -<<. 题型三 根据充要条件求参数1.已知:{|20p x x +≥且100}x -≤,,0:{|44}q x m x m m -≤≤>+,若p 是q 的充要条件,则实数m 的值是( ) A .4B .5C .6D .7 【答案】C【解析】由已知,:{|210}p x x -≤≤,由p 是q 充要条件得{|210}{|44x x x m x m -≤≤=-≤≤+,0}m >,因此42,410,m m -=-⎧⎨+=⎩解得6m =,故选:C .2.设p :x >a ,q :x >3.(1)若p 是q 的必要不充分条件,求a 的取值范围; (2)若p 是q 的充分不必要条件,求a 的取值范围; (3)若a 是方程x 2-6x +90=的根,判断p 是q 的什么条件. 【答案】(1){a |a <3};(2){a |a >3};(3)p 是q 的充要条件. 【解析】设A={x |x >a },B={x |x >3}.(1)若p 是q 的必要不充分条件,则有B ⫋A ,所以a 的取值范围为{a |a <<3}. (2)若p 是q 的充分不必要条件,则有A ⫋B ,所以a 的取值范围为{a |a >3}. (3)因为方程x 2-6x +9=0的根为3,则有A=B ,所以p 是q 的充要条件.3.已知{}210P x x =-<<,{}11S x m x m =-<<+.是否存在实数m ,使得x P ∈是x S ∈的充要条件?若存在,求实数m 的取值范围.【答案】不存在实数m ,使得x P ∈是x S ∈的充要条件 【解析】解:因为x P ∈是x S ∈的充要条件,则P S =, 由{}210P x x =-<<,{}11S x m x m =-<<+, 知要使P S =,则12110m m -=-⎧⎨+=⎩,无解,故不存在实数m ,使得x P ∈是x S ∈的充要条件.4.已知m Z ∈,关于x 的一元二次方程222440,44450x x m x mx m m -+=-+--=,求上述两个方程的根都是整数的充要条件. 【答案】1m =【解析】∵2440mx x -+=是一元二次方程,∴m≠0.又另一方程为2244450x mx m m -+--=,且两方程都要有实根,∴21222(4)160164(445)0m m m m ⎧∆=--≥⎨∆=---≥⎩,解得145≤≤-m ∵两方程的根都是整数,故其根的和与积也为整数,∴244445Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩,∴m 为4的约数. 又∵145≤≤-m ,∴m=-1或1.当m =-1时,第一个方程x 2+4x -4=0的根不是整数; 而当m =1时,两方程的根均为整数, ∴两方程的根均为整数的充要条件是m =1.题型四充要条件的证明1.方程2210ax x++=至少有一个负根的充要条件是A.01a<≤B.1a<C.1a≤D.01a<≤或0a<【答案】C【解析】①0a≠时,显然方程没有等于零的根.若方程有两异号实根,则0a<;若方程有两个负的实根,则必有12{001440aaaa>-<∴≤∆=-≥<..②若0a=时,可得12x=-也适合题意.综上知,若方程至少有一个负实根,则1a≤.反之,若1a≤,则方程至少有一个负的实根,因此,关于x的方程2210ax x++=至少有一负的实根的充要条件是1a≤.故答案为C2.已知ab≠0,求证:a3+b3+ab-a2-b2=0是a+b=1的充要条件.(提示:a3+b3=(a+b)(a2-ab+b2))【答案】证明见解析【解析】设p:a3+b3+ab-a2-b2=0,q:a+b=1.(1)充分性(p⇒q):因为a3+b3+ab-a2-b2=0,所以(a+b)(a2-ab+b2)-(a2-ab+b2)=0,即(a2-ab+b2)(a+b-1)=0,因为ab≠0,a2-ab+b2=21-2a b⎛⎫⎪⎝⎭+34b2>0,所以a+b-1=0,即a+b=1. (2)必要性(q⇒p):因为a +b =1,所以b =1-a ,所以a 3+b 3+ab -a 2-b 2=a 3+(1-a )3+a (1-a )-a 2-(1-a )2 =a 3+1-3a +3a 2-a 3+a -a 2-a 2-1+2a -a 2=0,综上所述,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.3.已知0ab ≠,求证:1a b +=的充要条件是33220a b ab a b ++-=-. 【答案】证明见解析 【解析】(1)证明必要性: 因为1a b +=, 所以10a b +-=.所以()()33222222()a b ab a b a b a ab b a ab b ++--=+-+--+()22(1)a b a ab b =+--+0=.所以必要性成立. (2)证明充分性: 因为33220a b ab a b ++-=-,即()22(1)0a b a ab b +--+=,又0ab ≠, 所以0a ≠且0b ≠.因为22223024b a ab b a b ⎛⎫-+=-+> ⎪⎝⎭,所以10a b +-=, 即1a b +=. 所以充分性成立.综上可得当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++-=-.4.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 【答案】见解析.【解析】 (1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,cx x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.。
1.4充分条件与必要条件1.命题(1)命题的定义在数学中,把用语言、符号、或式子表达的,可以判断真假的陈述语句叫做命题。
(2)真命题,假命题判断为真的语句叫做真命题,判断为假的语句叫做假命题(3)命题的一般形式通常用“若p,则q”的形式来表达,其中p称为命题的条件,q称为命题的结论。
考点1:判断语句是否为命题例1:下列语句中不是命题的是()A.36B.二次函数的图象不一定关于y轴对称xC.0xD.对任意x R,总有20【答案】C【分析】根据命题的定义进行判断即可.【详解】选项A,B,D中均为陈述句,且能够判断真假,故均为命题,C选项虽然是陈述句但无法判断真假,故不是命题.故选:C.【点睛】判断一个语句是不是命题,要看它符不符合“是陈述句”和“可以判断真假”这两个条件.考点2:判断命题的真假例2:下列命题是真命题的是().A .空集是任何集合的真子集B .等腰三角形是锐角三角形C .函数21y ax x 是二次函数D .若a A B ∩,则a B【答案】D【分析】由真子集的定义、等腰三角形的特征,二次函数的定义以及集合的运算即可得出选项。
【详解】空集是任何非空集合的真子集,故选项A 错误;等腰三角形顶角可以为钝角,故选项B 错误;函数21y ax x ,当0a 时是一次函数,故选项C 错误;若a A B ∩,则a 是集合A ,B 的公共元素,所以a B 。
所以答案为D【点睛】本题考查命题真假的判断。
变式2-1:如果命题“若m <3,则q ”为真命题,那么该命题的结论q 可以是()A .m <2B .m <4C .m >2D .m >4【答案】B【分析】根据集合的性质,小集合可以推导出大集合,并且要求命题为真命题,即可直接得出结论.【详解】由集合的性质,小范围推大范围,故可知4m 的范围要比题干中m 的范围大,所以取4m ;故选B.变式2-2:下列命题是假命题的是().A .若AB B ,则A BB .若a A ,则a A BC .若a A B ∩,则a BD .若a A B ,则a A B∩【答案】B【分析】根据集合的性质,小集合可以推导出大集合,并且要求命题为真命题,即可直接得出结论.【详解】由集合的性质,小范围推大范围,故可知4m 的范围要比题干中m 的范围大,所以取4m ;故选B.考点3:命题的一般形式例3.判断下列语句是否为命题,若是,请判断真假并改写成“若p ,则q ”的形式.(1)垂直于同一条直线的两条直线平行吗?(2)三角形中,大角所对的边大于小角所对的边;(3)当x y 是有理数时,,x y 都是有理数;(4)1232014 ;(5)这盆花长得太好了!【答案】(2)(3)为命题,(2)为真命题,改写成“若p ,则q ”的形式是:在ABC 中,,,A B C 所对的边为,,a b c ,若A B ,则a b .(3)为假命题,改成“若p ,则q ”的形式是:若x y 为有理数,则,x y 为有理数.【分析】能判断真假的陈述句是命题,从而可得(2)(3)为命题,找出两者的前提和结论,从而可得它们“若p ,则q ”的形式.【详解】(1)为疑问句,(5)为感叹句,两者均不是命题,(4)为一个和式,无法判断其真假,故也不是命题.(2)为命题,且为真命题,改成“若p ,则q ”的形式是:在ABC 中,,,A B C 所对的边为,,a b c ,若A B ,则a b .(3)为命题,且为假命题,比如1 .改成“若p ,则q ”的形式是:若x y 为有理数,则,x y 为有理数.【点睛】本题考查命题的判断以及命题的结构,注意可以判断真假的陈述句才是命题,命题由前提和结论构成,本题属于基础题.变式3-1.判断下列命题的真假并说明理由.(1)某个整数不是偶数,则这个数不能被4整除;(2)若,a b R ,且0ab ,则0a ,且0b ;(3)合数一定是偶数;(4)若A B ,则A B A ∩;(5)两个三角形两边一对角对应相等,则这两个三角形全等;(6)若实系数一元二次方程20ax bx c 满足0ac ,那么这个方程有两个不相等的实根;(7)若集合A ,B ,C 满足A B A C ,则B C ;(8)已知集合A ,B ,C ,如果A B ,那么A C B C .【答案】(1)真;(2)假;(3)假;(4)真;(5)假;(6)真;(7)假;(8)真【分析】(1)先判断逆否命题的真假,即可判定出结果;(2)根据不等式性质,直接判断即可;(3)特殊值验证即可;(4)根据子集的性质,即可判定结果;(5)根据全等三角形的判定定理,即可判定结果;(6)根据判别式,即可判定结果;(7)特殊值法验证即可;(8)根据子集与交集的性质,即可判定结果.【详解】(1)命题“某个整数不是偶数,则这个数不能被4整除”的逆否命题为“某个整数能被4整除,则这个数是偶数”,显然为真命题,故(1)是真命题;(2)若,a b R ,且0ab ,则00a b 或00a b ;故(2)是假命题;(3)合数是指自然数中除了能被1和本身整除外,还能被其他整数整除的数;因此,合数不一定是偶数,如9,是合数,但不是偶数;故(3)是假命题;(4)若A B ,根据子集的性质,有A B A ∩;故(4)是真命题;(5)有两边及其夹角对应相等的两个三角形全等;题干中所说对角不一定是夹角,故这两个三角形不一定全等;故(5)是假命题;(6)若实系数一元二次方程20ax bx c 满足0ac ,则240b ac ,所以这个方程有两个不相等的实根;故(6)是真命题;(7)若集合 1,3A , 2,3B , 3,5C ,显然满足A B A C ,但B C ;故(7)是假命题;(8)已知集合A ,B ,C ,如果A B ,根据交集与子集的性质,可得:A CBC .故(8)是真命题.【点睛】本题主要考查命题真假的判定,熟记对应的知识点,灵活运用特殊值法即可,属于常考题型.2.充分条件与必要条件(1)充分条件与必要条件的定义一般地,“若p ,则q ”为真命题,是指由条件p 通过推理可以得出q 。
高三数学充分条件与必要条件试题答案及解析1.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A.【解析】解一元二次不等式,可得或,“”是“”的充分不必要条件.【考点】1.一元二次不等式;2.充分必要条件.2.是直线和直线垂直的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】时,两直线方程分别为,斜率分别为,两直线垂直;反之,两直线垂直,则,解得或,即是直线和直线垂直的充分而不必要条件,故选.【考点】充要条件,直线的斜率.3.[2014·河源模拟]对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是________.【答案】②④【解析】①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a >b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.4.若集合,,,则“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】∵=,∴又∵且x≠2∴B={x|1<x<3且x≠2}∴A∩B=(1,2)∪(2,)∪(,3)还∵∴C={x|1<x<2}∵C A∩B∴满足集合C的元素一定满足集合A∩B,反之不成立.∴“”是“”的必要不充分条件5.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.6.已知命题p:命题q:1-m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,则实数m的取值范围是()A.m≥0B.m≥9C.m≤9D.m≤-2【答案】B【解析】p:x∈[-2,10],q:x∈[1-m,1+m],m>0,∵¬p是¬q的必要不充分条件,∴p⇒q.∴[-2,10][1-m,1+m].∴∴m≥9,故选B.7.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=<sin 60°=,故sinα>sinβ不成立;当sinα>sinβ时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件,选D.8.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件【答案】B【解析】钱大姐常说“便宜没好货”, “便宜没好货”是一个真命题,则它的逆否命题也是真命题,即“好货则不便宜”,所以“不便宜”是“好货”的必要条件.【考点】命题及其充要条件.9.“方程有实数根”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】【解析】由方程有实数根,知;由,成立,所以,方程有实数根,即“方程有实数根”是“”的必要不充分条件,故选.【考点】充要条件10.已知条件,条件,则是成立的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】B【解析】由等价于,得:,,所以,是成立的必要不充分条件,选B.【考点】充要条件,不等关系.11.“”是“关于x的不等式的解集非空”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分又不必要条件【答案】C【解析】解:因为,所以由不等式的解集非空得:所以,“”是“关于x的不等式的解集非空”的充分不必要条件,故选C.【考点】1、绝对值不等式的性质;2、充要条件.12.下列说法错误的是:().A.命题“若x2-4x+3=0,则x=3”的逆否命题是“若x≠3”,则x2-4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”【答案】C【解析】若p∧q为假命题,则p,q至少有一个为假命题,所以C错误.13.“x>l”是“x2>1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】解得,所以“x>l”是“x2>1”的充分不必要条件。
1.4充分条件与必要条件一、单选题1.已知:02p x ,:13q x ,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】将,p q 相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由:02p x ,可得出:13q x ,故p q ,由:13q x ,得不出:02p x ,所以p 是q 的充分而不必要条件,故选:A.2.设R a ,则“1a ”是“21a ”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A【分析】根据给定条件,利用充分条件、必要条件的定义判断作答.【详解】由21a 得1a 或1a ,因此“若1a ,则21a ”是真命题,“若21a ,则1a ”是假命题,所以“1a ”是“21a ”的充分不必要条件.故选:A3.“2x 且3y ”是“5x y ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】利用充分条件与必要条件的定义判断结果.【详解】2x 且3y 能够推出5x y ,反之5x y 不能推出2x 且3y ,所以“2x 且3y ”是“5x y ”的充分不必要条件.故选:A .4.已知a 、b 、R c ,则“a b ”是“22ac bc ”的().A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】B【分析】当0c =时,代入验证不充分,根据不等式性质得到必要性,得到答案.【详解】若a b ,当0c =时,220ac bc ,故不充分;若22ac bc ,则0c ,故a b ,必要性.故“a b ”是“22ac bc ”的必要非充分条件.故选:B5.设,R x y ,则“0x y ”是“0xy ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【分析】先判断充分性是否满足,再判断必要性是否满足,即可得答案.【详解】解:充分性:若0x y ,则可得,x y 有三种可能:①两个都为正;②一个为正、一个为零;③一个为正、一个为负且正数的绝对值大于负数的绝对值,所以0xy 或0xy 或0xy ,故0x y 不是0xy 的充分条件;必要性:若0xy ,则0,0x y 或0,0x y ,故0x y 或0x y ,故“0x y ”不是“0xy ”的必要条件.综上,“0x y ”是“0xy ”的既不充分也不必要条件.故选:D.6.已知集合M ,P ,则“x M 或x P ”是“ x M P ”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】A【分析】x M 或x P 即()x M P ,再利用 x M P 与()x M P 之间的关系即可判断出结论.【详解】由x M 或x P 得()x M P ,又 ()M P M P ∩ ,∴x M 或x P 不能推出 x M P , x M P 能推出x M 或x P .则“x M 或x P ”是“ x M P ”的必要不充分条件.故选:A.7.设x R ,则“2x ”是“24x ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件的定义判断即可.【详解】当2x 时24x ,故充分性成立,由24x 可得2x 或2x ,故必要性不成立,所以“2x ”是“24x ”的充分不必要条件.故选:A8.若,R a b ,则“2()0a b a ”是“a b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据不等式的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】由不等式2()0a b a ,可得0a b ,可得a b ,即充分性成立;反之:由a b ,可得0a b ,又因为20a ,所以2()0a b a ,所以必要性不成立,所以2()0a b a 是a b 的充分不必要条件.故选:A.9.若,,R a b c ,则“ac bc ”是“a b ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件、必要条件的定义即可得解.【详解】若0c =,令2,1a b ,满足ac bc ,但a b ¹;若a b ,则ac bc 一定成立,所以“ac bc ”是“a b ”的必要不充分条件.故选:B10)A .0,0a bB .0,0a bC .0,0a bD .0,0a b 【答案】BA中,0b ,根据充分条件的定义知,选项A不是充分条件;选项C、D中,由0a 可知,C、D不是充分条件;选项B,由0,0a bB是充分条件.【详解】对于选项A,因为0b项A不是充分条件;对于选项B,当0,0a ba≥0,b>0.根据充分条件的定义知,选项B是充分条件;对于选项C、D,由0a没意义,所以选项C、D不是充分条件;故选:B.11.已知a,b为非零实数,则“1ba”是“b a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分析】利用特殊值法结合充分条件、必要条件的定义判断可得出结论.【详解】由222222111||||b b b b a b aa a a,即b a成立,故充分性成立;取2b ,1a ,则b a成立,但1ba不成立,故必要性不成立.因此,“1ba”是“b a”的充分不必要条件.故选:A12.设命题121,:1.xpx命题12122,:1.x xqx x则p是q的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件【答案】A【分析】判断p ,q 间关系可得答案.【详解】当1211x x ,则121221x x x x ,故p 是q 的充分条件;当121221x x x x ,则可令1250.3x x ,不能得到1211x x ,则p 不是q 的必要条件.则p 是q 的充分不必要条件.故选:A二、多选题13.有以下四种说法,其中说法正确的是()A .“m 是实数”是“m 是有理数”的必要不充分条件B .“0a b ”是“22a b ”的充要条件C .“3x ”是“2230x x ”的充分不必要条件D .“1a ”是“11a”的必要不充分条件【答案】AC【分析】根据充分条件和必要条件的定义逐个分析即可.【详解】当m 是实数时,m 可能为有理数,可能为无理数,而当m 为有理数时,m 一定为实数,所以“m 是实数”是“m ”的必要不充分条件,A 正确;当0a b 时,22a b 成立,而当22a b 时,有可能0a b ,所以“0a b ”是“22a b ”的充分不必要条件,B 错误;当3x 时,2230x x 成立,而当2230x x 时,3x 或=1x ,所以“3x ”是“2230x x ”的充分不必要条件,C 正确;当1a 时,11a 成立,而当11a 时,有可能a<0,所以“1a ”是“11a”的充分不必要条件,D 错误;故选:AC14.设全集为U ,在下列选项中,是B A 的充要条件的是()A .AB B B .()U A B Ç=ÆðC .()()U U A B Í痧D .()U A B UÈ=ð【答案】BCD【分析】利用维恩图解决集合运算问题.【详解】由维恩图可知,A 不是B A 的充要条件,B ,C ,D 都是B A 的充要条件,故选:BCD .15.下列命题中叙述不正确...的是()A .“关于x 的方程 200ax bx c a 有实数根”的充要条件是“240b ac ”B .“三角形为正三角形”是“三角形为等腰三角形”的必要而不充分条件C .“4x ”的一个充分不必要条件可以是“3x ”D .若集合A B ,则“x A ”是“x B ”的充分而不必要条件【答案】BCD【分析】根据充分条件和必要条件的定义逐项判断各选项即可.【详解】由关于x 的方程 200ax bx c a 有实数根可得240b ac ,由240b ac 可得关于x 的方程 200ax bx c a 有实数根,所以“关于x 的方程 200ax bx c a 有实数根”的充要条件是“240b ac ”,A正确;由三角形为正三角形可得该三角形为等腰三角形,所以“三角形为正三角形”是“三角形为等腰三角形”的充分条件,B 错误;由3x 不能推出>4x ,所以“3x ”不是“4x ”的充分条件,C 错误;当A B 时,若x A ,则x B ,若x B ,则x A ,所以“x A ”是“x B ”的充要条件,所以若集合A B ,则“x A ”可能是“x B ”的充要条件,D 错误;故选:BCD.16.下列说法正确的是()A .a P Q 是a P 的必要不充分条件B .U UP Q痧(U 是全集)是P Q 的充分不必要条件C .a b 是22a b 的充分不必要条件D .a b 是33a b 的充要条件【答案】AD【分析】根据充分条件与必要条件的定义逐项分析即可.【详解】对于A ,若a P Q ,则可能a Q 且a P ,不能推出a P ,若a P ,则必有a P Q ,故a P Q 是a P 的必要不充分条件,故A 正确;对于B ,若U UP Q 痧,则Q P ,故U UP Q痧(U 是全集)是P Q 的既不充分也不必要条件,故B 错误;对于C ,若a b ,取2,1a b ,则22a b ,若22a b ,取1,2a b ,则a b ,故a b 是22a b 的既不充分也不必要条件,故C 错误;对于D ,因为33a b a b ,所以a b 是33a b 的充要条件,故D 正确.故选:AD.17.对任意实数,,a b c ,给出下列命题,其中假命题是()A .“a b ”是“ac bc ”的充要条件B .“5a ”是“3a ”的必要条件C .“a b ”是“22a b ”的充分条件D .“5a 是无理数”是“a 是无理数”的充要条件【答案】AC【分析】根据充分必有条件的定义逐项分析.【详解】对于A ,如果a b ,则必定有ac bc ,是充分条件,如果ac bc ,则 0c a b ,得0c =或a b ,不是必要条件,所以“a b ”是“ac bc ”的充分不必要条件,错误;对于B ,如果3a <,必定有5a <,是必要条件,正确;对于C ,如果a b >,比如1,2a b , 2212 <,不能推出22a b >,不是充分条件,错误;对于D ,因为有理数+无理数=无理数,有理数+有理数=有理数,5是有理数,所以“a +5是无理数”必定有a 是无理数,是充分条件,如果“a 是无理数”则“a +5也是无理数”,是必要条件,所以“a +5是无理数”是“a 是无理数”的充要条件,正确;故选:AC.18.若关于x 的方程 2110x m x 至多有一个实数根,则它成立的必要条件可以是()A .13mB .24m C .4m D .12m 【答案】BC【分析】利用 2110x m x 的判别式0 ,求出m 的范围,再利用必要条件的定义即可求得.【详解】因为方程 2110x m x 至多有一个实数根,所以方程 2110x m x 的判别式0 ,即:2(1)40m ,解得13m ≤≤,利用必要条件的定义,结合选项可知,13m ≤≤成立的必要条件可以是选项B 和选项C.故选:BC.19.已知集合 |123|{ ,2A x a x a B x x 或7}x ,则A B 的必要不充分条件可能是()A .7a B .6a C .5a D .4a 【答案】AB【分析】分别在A 、A 的情况下,根据A B ∩求得a 的范围,即为A B ∩的充要条件,再根据选项即可得解.【详解】解:因为集合 |123|{ ,2A x a x a B x x 或7}x ,当A 时,123a a ,解得4a ,此时A B ∩,当A时,123a a ,解得4a ,若A B ∩,则12237a a,解得15a ,又4a ,则45a ,则A B ∩的充要条件为5a ,所以A B ∩的必要不充分条件可能是7a ,6a ,故选:AB .三、填空题20.已知集合 3A x x ,集合 B x x a ,若命题“x A ”是命题“x B ”的充分不必要条件,则实数a 的取值范围是______.【答案】3a 【分析】根据充分不必要条件转化为集合的真包含关系,即可得解.【详解】因为命题“x A ”是命题“x B ”的充分不必要条件,所以集合A 真包含于集合B ,又集合 3A x x ,集合 B x x a ,所以3a .故答案为:3a 21.设 :14x , :x >m , 是 的充分条件,则实数m 的取值范围是________.【答案】,1 【分析】设 14,A x x B x x m ,根据充分条件的定义结合包含关系得出实数m 的取值范围.【详解】设 14,A x x B x x m ,因为 是 的充分条件,所以集合A 是集合B 的子集,所以1m £.故答案为:,1 22.已知:p x a ,:3q x ,p 是q 的必要不充分条件,则实数a 的取值范围为___________.【答案】3, 【分析】由充分条件和必要条件的定义即可得出答案.【详解】因为:p x a ,:3q x ,因为p 是q 的必要不充分条件,所以3a .所以实数a 的取值范围为 3, .故答案为: 3, .23.:x 是2的倍数,:x 是6的倍数,则 是 的______条件.【答案】必要非充分【分析】利用充要条件的定义判定即可.【详解】当4x 时,满足x 是2的倍数,但不满足x 是6的倍数, 充分性不成立;若x 是6的倍数,则x 一定是2的倍数, 必要性成立.则 是 的必要非充分条件.故答案为:必要非充分.24.设甲、乙、丙、丁是四个命题,甲是乙的充分不必要条件,丙是乙的充要条件,丁是丙的必要不充分条件,那么丁是甲的______条件.【答案】必要不充分【分析】利用充分条件,必要条件的概念即可得解.【详解】因为甲是乙的充分不必要条件,所以甲 乙,乙推不出甲;因为丙是乙的充要条件,即乙⇔丙;因为丁是丙的必要不充分条件,所以丙 丁,丁推不出丙.故甲 丁,丁推不出甲,即丁是甲的必要不充分条件.故答案为:必要不充分四、解答题25.已知集合2126A x a x a , 04B x x ,全集U R .(1)当1a 时,求 U A B ∩ð;(2)若“x B ”是“x A ”的充分不必要条件,求实数a 的取值范围.【答案】(1) 48U A B x x ð(2)1,1 【分析】(1)化简集合A ,根据补集运算、交集运算求解;(2)由题意转化为BA ,列出不等式组求解即可.【详解】(1)当1a 时,集合 08A x x ,{0U B x x ð或4}x ,故 48U A B x x ð(2)由题知:BA ,即BA 且B A ,当B A 时,210264a a ,解得11a ,当B A 时,210264a a,解得1a ,由B A 得,1a ;综上所述:实数a 的取值范围为 1,1 .26.已知集合 310A x x ,29140B x x x , 32C x x m ,(1)求A B ,A B , A B R ∩ð;(2)若x C 是 x A B ∩的充分而不必要条件,求实数m 的取值范围.【答案】(1) |37x x ; 210x x ;23x x (2)7,2【分析】(1)先解出集合B ,再由集合间的运算性质求解即可;(2)由题意可得C A B ∩,分C 和C 两种情况讨论即可.【详解】(1)2|9140|270|27B x x x x x x x x ∵, |37A B x x , 210A B x x ,又 R =3A x x ð或 10x ,R 23A B x x ð.(2)x C ∵是 x A B ∩的充分而不必要条件,C A B ∩,当C 时,有23m ,即32m;当C 时,有2327m m ,即3722 m ,综上所述,实数m 的取值范围为7,2.27.已知集合 121,P x a x a a R , 25Q x x .(1)若3a ,求 P Q R ð;(2)若“x P ”是“x Q ”的充分不必要条件,求实数a 的取值范围.【答案】(1)[2,4)(2) 2 ,【分析】(1)由交集,补集的概念求解;(2)转化为集合间关系后分情况列式求解.【详解】(1)当3a 时,[4,7]P ,{|25}Q x x ,则,47,P R ð, 2,4P Q R ð,(2)由题意得P 是Q 的真子集,当P 是空集时,121a a ,解得a<0;当P 是非空集合时,则012215a a a且12a 与215a 不同时成立,解得02a ,故a 的取值范围是 2 ,28.已知集合 114A x x , 23B x x , 2121C x a x a .(1)若x C 是“x A ”的充分条件,求实数a 的取值范围.(2)若 A B C ∩,求实数a 的取值范围.【答案】(1)3,22a (2)31,2【分析】(1)解不等式得到集合A x C 是x A 的充分条件列不等式求解即可;(2)根据交集的定义得到 23A B x x ,然后根据集合的包含关系列不等式求解即可.【详解】(1)因为 114A x x ,所以 25A x x .因为x C 是x A 的充分条件,所以221532122a a a a ,解得322a ,3,22a .(2)因为 23A B x x , A B C ∩,所以212213a a ,解得312a .故a 的取值范围为31,2.29.已知{|1A x x 或1}x ,{|21}B x a x a (B 为非空集合),记:p x A ,:q x B ,若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】1(,2][,1)2【分析】根据题意,转化为B 是A 的非空真子集,列出不等式组,即可求解.【详解】由题意知,{|1A x x 或1}x ,{|21}B x a x a (B 为非空集合),因为p 是q 的必要不充分条件,所以B 是A 的非空真子集,可得2121a a a 或2111a a a ,解得2a 或112a ,所以实数a 的取值范围是1(,2][,1)2.30.已知集合 121,24A xa x a B x x ∣∣.在①A B B ;②“x A ”是“x B ”的充分不必要条件;③A B 这三个条件中任选一个,补充到本题第②问的横线处,求解下列问题.(1)当3a 时,求 R A B ð;(2)若______,求实数a 的取值范围.【答案】(1) R {2A B xx ∩∣ð或4}x (2)答案见解析【分析】(1)利用集合的交并补运算即可得解;(2)选①③,利用集合的基本运算,结合数轴法即可得解;选②,由充分不必要条件.【详解】(1)当3a 时, 27A xx ∣,而 24B x x ∣,所以 24A B x x ∩∣,则 R {2A B xx ∩∣ð或4}x .(2)选①:因为A B B ,所以A B ,当A 时,则121a a ,即2a ,满足A B ,则2a ;当A 时,2a ,由A B 得12214a a ,解得312a ;综上:2a 或312a,即实数a 的取值范围为 3,21,2;选②:因为“x A ”是“x B ”的充分不必要条件,所以A 是B 的真子集,当A 时,则121a a ,即2a ,满足题意,则2a ;当A 时,2a ,则12214a a ,且不能同时取等号,解得312a ;综上:2a 或312a,即实数a 的取值范围为 3,21,2;选③:因为A B ,所以当A 时,则121a a ,即2a ,满足A B ,则2a ;当A 时,2a ,由A B 得212a 或14a ,解得32a 或5a ,又2a ,所以322a 或5a ;综上:32a 或5a ,实数a 的取值范围为 3,5,2.31.设U R ,已知集合 |25A x x , |121B x m x m .(1)当4B 时,求实数m 的范围;(2)设:p x A ;:q x B ,若p 是q 的必要不充分条件,求实数m 的范围.【答案】(1)532m (2)3m 【分析】(1)由题意知,4是集合B 的元素,代入可得答案;(2)由题可得B 是A 的真子集,分类讨论B 为空集和B 不为空集合两种情况,即可求得m 的取值范围.【详解】(1)由题可得1421m m ,则532m ;(2)由题可得B 是A 的真子集,当B ,则1212m m m ;当B ,2m ,则21512m m (等号不同时成立),解得23m 综上:3m .32.已知集合 13A x x ,集合 21B x m x m .(1)若A B ,求实数m 的取值范围;(2)命题:p x A ,命题:q x B ,若p 是q 成立的充分不必要条件,求实数m 的取值范围.【答案】(1) 0mm ∣(2) 2mm ∣【分析】(1)讨论B ,B 两种情况,结合交集运算的结果得出实数m 的取值范围;(2)由p 是q 成立的充分不必要条件,得出A 是B 的真子集,再由包含关系得出实数m 的取值范围.【详解】(1)由A B ,得①若21m m ³-,即13m 时,B ,符合题意;②若21m m <-,即13m 时,需1311m m 或1323m m,解得103m .综上,实数m 的取值范围为 0mm ∣.(2)由已知A 是B 的真子集,知122113m m m m两个端不同时取等号,解得2m .由实数m 的取值范围为 2mm ∣.33.已知集合 12A x x ,22B x m x m (1)当2m 时,求A B ;(2)若______,求实数m 的取值范围.请从①x A 且x B ;②“x B 是“x A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)【答案】(1)12A B x x (2)答案见解析【分析】(1)先求两个集合,再求交集;(2)若选择①,则A B ,再分集合B 和B ,两种情况,列式求解;若选择②,则A B ,列式求m 的取值范围.【详解】(1)当2m 时, 04B x x ,所以 12A B x x (2)若选择条件①,由x A 且x B 得:A B ,当B 时,22m m ,即2m ;当B 时,22m m ,即2m 22m 或21m ,即4m 或12m ,所以4m 或122m ,综上所述:m 的取值范围为:4m 或12m .若选择条件②,由“x B ”是“x A ”的必要条件得:A B ,即2122m m,所以13m .34.已知全集R U ,集合 |11A x m x m , |4B x x .(1)当4m 时,求A B 和 R A B ð;(2)若“x A ”是“x B ”成立的充分不必要条件,求实数m 的取值范围.【答案】(1) |5x x ,|45x x (2)3m 【分析】(1)根据集合并集、交集、补集运算求解即可;(2)根据充分不必要条件转化为集合的包含关系求解即可【详解】(1)当4m 时,集合 ||35A x x x ,因为 |4B x x ,所以 R |4B x x ð.所以 |5A B x x ,R |45A B x x ð(2)因为“x A ”是“x B ”所以A 是B 的真子集,而A 不为空集,所以14m ,因此3m .。
高考数学复习第二节充分条件与必要条件[考纲传真] 1.通过对典型数学命题的梳理、理解充分条件,必要条件的意义、理解充分条件与判定定理、必要条件与性质定理的关系.2.理解充要条件的意义,理解数学定义与充要条件的关系.充分条件、必要条件与充要条件若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q pp是q的必要不充分条件p q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p q且q p[常用结论]1.充分条件、必要条件的两个结论(1)若p是q的充分不必要条件,q是r的充分不必要条件,则p是r的充分不必要条件;(2)若p是q的充分不必要条件,则q是p的必要不充分条件.2.充分条件、必要条件与集合的关系p成立的对象构成的集合为A,q成立的对象构成的集合为Bp是q的充分条件A⊆Bp是q的必要条件B⊆Ap是q的充分不必要条件A Bp是q的必要不充分条件B Ap是q的充要条件A=B1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)q是p的必要条件时,p是q的充分条件.( )(2)若p是q的充要条件,则命题p和q是两个相互等价的命题.( )(3)q 不是p 的必要条件时,“p q ”成立. ( )[答案] (1)√ (2)√ (3)√2.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件C .既是充分条件,也是必要条件D .既不充分也不必要条件 [答案] A3.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件A [a =3时,A ={1,3},显然A ⊆B . 但A ⊆B 时,a =2或3.∴“a =3”是“A ⊆B ”的充分不必要条件.]4.设p :x <3,q :-1<x <3,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 B [x <3-1<x <3,但-1<x <3⇒x <3,因此p 是q 的必要不充分条件,故选B.]5.已知A ⊆B ,则“x ∈A ”是“x ∈B ”的________条件,“x ∈B ”是“x ∈A ”的________条件.[答案] 充分 必要充分条件、必要条件的判断【例1】 ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“m ∉M ”是“m ∉N ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(1)B (2)A [(1)a ,b ,c ,d 是非零实数,若ad =bc ,则b a =d c,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =c d,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件,故选B.(2)条件与结论都是否定形式,可转化为判断“m ∈N ”是“m ∈M ”的什么条件.由NM知,“m ∈N ”是“m ∈M ”的充分不必要条件,从而“m ∉M ”是“m ∉N ”的充分不必要条件,故选A.][规律方法] 充分条件和必要条件的两种判断方法 1定义法:可按照以下三个步骤进行 ①确定条件p 是什么,结论q 是什么; ②尝试由条件p 推结论q ,由结论q 推条件p ; ③确定条件p 和结论q 的关系.2集合法:根据p ,q 成立时对应的集合之间的包含关系进行判断.易错警示:判断条件之间的充要关系要注意条件之间的语句描述,比如正确理解“p 的一个充分不必要条件是q ”应是“q 推出p ,而p 不能推出q ”.(1)(2018·天津高考)设x ∈R ,则“x 3>8”是“|x |>2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)设a ∈R ,则“a =4”是“直线l 1:ax +8y -8=0与直线l 2:2x +ay -a =0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)D [(1)由x 3>8可得x >2,从而|x |>2成立, 由|x |>2可得x >2或x <-2,从而x 3>8不一定成立. 因此“x 3>8”是“|x |>2”的充分不必要条件,故选A.(2)∵当a ≠0时,a 2=8a =-8-a ⇒直线l 1与直线l 2重合,∴无论a 取何值,直线l 1与直线l 2均不可能平行,当a =4时,l 1与l 2重合.故选D.]充分条件、必要条件的探求及证明【例2】( ) A .m ⊥n ,n ∥α B .m ∥β,β⊥α C .m ⊥β,n ⊥β,n ⊥αD .m ⊥n ,n ⊥β,β⊥αC [对于选项C ,因为m ⊥β,n ⊥β,所以m ∥n ,又n ⊥α,所以m ⊥α,故选C.] (2)已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 法一:充分性:由xy >0及x >y ,得x xy >y xy,即1x <1y.必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.[规律方法] 充要条件的证明1证明p 是q 的充要条件,既要证明命题“p ⇒q ”为真,又要证明“q ⇒p ”为真,前者证明的是充分性,后者证明的是必要性.2证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件”与“p的充要条件是q ”这两种说法的差异,分清哪个是条件,哪个是结论.A .x ∈(0,2)B .x ∈[-1,+∞)C .x ∈(0,1)D .x ∈(1,3)B [由x (x -2)<0得0<x <2,因为(0,2)[-1,+∞),所以“x ∈[-1,+∞)”是“不等式x (x -2)<0成立”的一个必要不充分条件.](2)求证:关于x 的方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0. [证明] 必要性:∵x =1是方程ax 2+bx +c =0的根, ∴a ·12+b ·1+c =0,即a +b +c =0. 充分性:由a +b +c =0,得c =-a -b . ∵ax 2+bx +c =0, ∴ax 2+bx -a -b =0, 即a (x 2-1)+b (x -1)=0. 故(x -1)(ax +a +b )=0. ∴x =1是方程的一个根.故方程ax 2+bx +c =0有一个根是1的充要条件是a +b +c =0.充分条件、必要条件的应用【例3】 (1)设命题p :(4x -3)2≤1,命题q :x 2-(2m +1)x +m (m +1)≤0,若p 是q 的充分不必要条件,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,12B.⎝ ⎛⎭⎪⎫0,12 C .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞ D .(-∞,0)∪(0,+∞)(2)“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的一个充分不必要条件可以是( )A .-1≤k <3B .-1≤k ≤3C .0<k <3D .k <-1或k >3(1)A (2)C [(1)由(4x -3)2≤1得12≤x ≤1,即p :12≤x ≤1,由x 2-(2m +1)x +m (m +1)≤0得m ≤x ≤m +1,即q :m ≤x ≤m +1. 由p 是q 的充分不必要条件,从而⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1{x |m ≤x ≤m +1}.∴⎩⎪⎨⎪⎧m ≤12m +1≥1,解得0≤m ≤12,故选A.(2)“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的充要条件是|1-k |2<2,即-1<k <3.故所求应是集合{k |-1<k <3}的一个子集,故选C.] [规律方法] 利用充要条件求参数的关注点1巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式或不等式组求解.2端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍.围是( )A.[-1,1] B.[-1,0]C.[1,2] D.[-1,2](2)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.(1)A(2)3或4[(1)由题意知(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1,故选A.(2)当Δ=16-4n≥0,即n≤4时,方程x2-4x+n=0的两根为x=4±16-4n2=2±4-n.又n∈N*,且n≤4,则当n=3,4时,方程有整数根.]。