单因素方差分析解释
- 格式:doc
- 大小:16.00 KB
- 文档页数:1
单因素方差分析1.基本理解方差分析:是一种利用实验获取数据并进行分析的统计方法,经常用于研究不同效应对指定实验的影响是否显著。
方差分析用于检验连续型随机变量在三及以上分类数据不同水平上的差异情况。
方差分析包括:单因素方差分析、多元素方差分析、多元方差分析、协方差分析、重复测量方差分析。
在问卷数据中:单因素方差分析使用较多。
单因素方差分析:用于检验单个因素取不同水平是某因变量的均值是否有显著的变化,也可进一步用于因变量均值的多重比较(检验某些水平下的实验结果具体区别于其他水平的显著差异)。
图1检验步骤2.单因素方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值后,点击分析、比较平均值、单因素ANOVA检验。
图2单因素方差分析第一步操作步骤第二步:进入图中对话框后将需检验的变量放入因变量列表中,在因子中放入分类变量,点击事后比较勾选假定等方差(LSD),不假定等方差(塔姆黑泥T2)点击继续。
图3单因素方差分析事后比较勾选3.当因素方差分析结果后点击线性进入图中下方选项框、勾选描述、方差齐性检验点击继续、确定。
图4单因素方差分析选项勾选然后单因素方差分析的描述、方差齐性、假设检验就出来了。
图5单因素方差分析结果单因素方差分析事后两两比较结果。
图6事后比较结果4.结果整理将首先将描述统计的结果粘贴复制到Excel表格中进行整理,保留均值和标准差及前面的内容,后在后面加入ANOVA表中的F和p值,将整理好的两两比较结果粘贴到表格的最后,最后将整理好的结果粘贴到Word文档中进行整理。
可参考图中结果整理。
(注:一般在看结果时首先看ANOVA表的结果,看显著情况,显著(p<0.05)看方差齐性检验的结果,若方差齐性检验的结果方差齐(p>0.05),然后再看事后比较的结果,方差齐看LSD,方差不齐看塔姆黑泥的结果,同样差异的显著看事后比较每行对应的显著性(若p<0.05,代表比较的对象显著。
SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。
二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。
灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。
(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。
(5)在主对话框中,单击“OK”提交进行。
五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。
单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。
例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
前提:1总体正态分布。
当有证据表明总体分布不是正态分布时,可以将数据做正态转化。
2变异的相互独立性。
3各实验处理内的方差要一致。
进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。
一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。
2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。
因变量是用户所研究的目标变量。
因子变量是影响因变量的因素,例如分组变量。
标注个案是区分每个观测量的变量。
带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。
正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。
即p值≥0.05,数据服从正态分布。
4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。
单因素方差分析样本量30以上单因素方差分析(多实现途径)1. 基本概念方差分析(Analysis of Variance,简称ANOVA),又称"变异数分析"或"F 检验",是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状。
造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。
2. 假设条件与假设检验2.1 方差分析的假定条件(1)各处理条件下的样本是随机的。
(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。
(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。
(4)各处理条件下的样本方差相同,即具有齐效性。
2.2 方差分析的假设检验假设有[公式] 组样本,如果原假设[公式] 样本均数都相同,[公式] 组样本有共同的方差[公式] ,则[公式] 个样本来自具有共同方差[公式] 和相同均值[公式] 的总体。
如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。
否则承认原假设,样本来自相同总体,处理间无差异。
3. 两类方差分析根据资料设计类型的不同,有以下两种方差分析的方法:①对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。
②对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即多因素方差分析。
异同:两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内;而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。
单因素重复测量方差分析单因素重复测量方差分析是统计学中常用的一种方法,用于比较在同一组个体上进行多次测量所得到的数据之间的差异。
本文将从介绍单因素重复测量方差分析的基本概念、假设条件、计算方法和结果解读等方面进行详细阐述。
一、基本概念单因素重复测量方差分析是通过比较同一组个体在不同时间点或条件下的多次测量结果,判断这些测量结果是否存在显著差异。
在进行单因素重复测量方差分析时,通常需要有一个待测因素(也称为处理因素),以及一个或多个水平(也称为处理水平)。
二、假设条件在进行单因素重复测量方差分析时,需要满足以下假设条件:1. 观测值之间相互独立;2. 测量误差服从正态分布;3. 同方差性:不同处理水平下的观测值方差应相等。
三、计算方法进行单因素重复测量方差分析时,需要先计算各个处理水平下的观测值的均值和总平均值,并构建方差分析表。
方差分析表包含总平方和、处理平方和、误差平方和、总均方、处理均方、误差均方和F值等信息。
通过比较F值与临界值(一般为0.05),来判断各处理水平之间是否存在显著差异。
四、结果解读在进行单因素重复测量方差分析后,如F值小于临界值,则说明各处理水平之间没有显著差异,即处理因素对测量结果没有影响;反之,如F值大于临界值,则可以认为各处理水平之间存在显著差异,即处理因素对测量结果有影响。
需要注意的是,在进行单因素重复测量方差分析时,存在一种可能的误解,即称F值大于临界值就代表存在显著差异。
事实上,F值较大仅表明处理因素对测量结果有影响,而具体哪些处理水平之间存在显著差异,还需要进行进一步的事后多重比较。
五、应用案例为了更好地理解单因素重复测量方差分析的应用,下面举一个简单的应用案例来说明。
假设我们要比较三种不同肥料对植物生长的影响,我们在相同的土壤条件下,随机选取了10个种子进行种植,并分别施加三种不同的肥料。
每天测量植物的生长量,连续记录了10天。
现在我们想知道这三种肥料对植物生长是否有影响。
所谓单因素方差分析就是在某因素作用下,以该因素为区分依据分别得到几组数据,并从几组数据方差的差异来推断该因素的影响是否存在或显著。
不难看出,方差的差异来源于两方面:一是由某因素引起的组间偏差,二是由实验误差引起的组内偏差。
这张表第一列就给出了方差类别,
第二列给出了组间平方和、组内平方和、总和(就是前两者相加)的具体数值,
第三列表示自由度,可以理解为由平方和计算方差时除的那个值(联想方差计算公式),反映了相互独立的样本数,组间自由度为2 = r - 1 说明共有r = 3 组实验数据,组内自由度为12 = n - r 说明实验总样本数为n = 15,
第四列为均方值,即方差值,是由该行平方和除自由度得到的,
第五列F值是由组间方差除组内方差得到的,反映了组间方差与组内方差的相对大小,若该值很小,说明总方差基本是由误差引起的,也就是说之前提到的那个因素对实验结果没什么影响,若该值较大,则说明有影响。
至于到底多“大”算大这个标准是由显著性水平衡量的,
第六列显著性由显著性水平及自由度决定,一般显著性水平取0.05,所谓显著性是指零假设为真的情况下拒绝零假设所要承担的风险水平。
而零假设就是假设因素对实验结果没有影响。
这里显著性为0.855说明有85.5%的概率该因素对实验结果无影响,故零假设成立。