反渗透和纳滤的基础知识
- 格式:docx
- 大小:378.60 KB
- 文档页数:24
反渗透和纳滤原理渗透我们知道渗透是指稀溶液中的溶剂(水分子)自发地透过半透膜(反渗透膜或纳滤膜)进入浓溶液(浓水)侧的溶剂(水分子)流动现象。
渗透压定义为某溶液在自然渗透的过程中,浓溶液侧液面不断升高,稀溶液侧液面相应降低,直到两侧形成的水柱压力抵销了溶剂分子的迁移,溶液两侧的液面不再变化,渗透过程达到平衡点,此时的液柱高差称为该浓溶液的渗透压。
反渗透原理即在进水(浓溶液)侧施加操作压力以克服自然渗透压,当高于自然渗透压的操作压力施加于浓溶液侧时,水分子自然渗透的流动方向就会逆转,进水(浓溶液)中的水分子部分通过膜成为稀溶液侧的净化产水。
纳滤原理纳滤与反渗透没有明显的界限。
纳滤膜对溶解性盐或溶质不是完美的阻挡层,这些溶质透过纳滤膜的高低取决于盐份或溶质及纳滤膜的种类,透过率越低,纳滤膜两侧的渗透压就越高,也就越接近反渗透过程,相反,如果透过率越高,纳滤膜两侧的渗透压就越低,渗透压对纳滤过程的影响就越小。
反渗透和纳滤过程根据反渗透和纳滤原理可知,渗透和反渗透及纳滤必须与具有允许溶剂(水分子)透过的半透膜(反渗透膜或纳滤膜)联系在一起才有意义,才会出现渗透现象和反渗透或纳滤操作。
反渗透膜:允许溶剂分子透过而不允许溶质分子透过的一种功能性的半透膜称为反渗透膜;纳滤膜:允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜称为纳滤膜;膜元件:将反渗透或纳滤膜膜片与进水流道网格、产水流道材料、产水中心管和抗应力器等用胶粘剂等组装在一起,能实现进水与产水分开的反渗透或纳滤过程的最小单元称为膜元件;膜组件:膜元件安装在受压力的压力容器外壳内构成膜组件;膜装置:由膜组件、仪表、管道、阀门、高压泵、保安滤器、就地控制盘柜和机架组成的可独立运行的成套单元膜设备称为膜装置,反渗透和纳滤过程通过该膜装置来实现;膜系统:针对特定水源条件和产水要求设计的,由预处理、加药装置、增压泵、水箱、膜装置和电气仪表连锁控制的完整膜法水处理工艺过程称为系统。
反渗透、纳滤基础知识1 分离膜与膜过程膜分离物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。
人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的物质。
膜分离技术的基础是分离膜。
分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。
这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。
当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。
按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。
表-1 主要的膜分离过程气体分离气体、气体与蒸汽分离浓度差易透过气体不易透过气体薄膜复合膜薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。
基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜(即0.2mm厚),超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。
薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。
它们能在温度0-40℃及pH2-l2间连续操作。
像芳香聚酰胺一样,这些材料的抗氯及其他氧化性物质的性能差。
过滤图谱平膜结构图-1 非对称膜与复合膜结构比较美国海德能公司的RO/NF膜(CPA, ESPA, SWC, ESNA, LFC)均是复合膜。
CPA3的断面结构如图-2所示。
可以看出在支撑层上形成褶皱状的表面致密层。
原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。
图-2 CPA3的断面结构表面致密层构造根据膜种类不同,制作平膜的表面致密层材质也有差异。
目录3-1 ........................................................................................ 反渗透和纳滤技术发展历史3-2 3-2 ........................................................................................................ 膜法分离过程分类3-2 3-3 ........................................................................................................ 反渗透和纳滤原理3-3 3-4.................................................................... 影响反渗透和纳滤膜性能的因素3-4 3-5........................................................................ 了解反渗透膜元件脱盐率规范3-73-1 反渗透和纳滤技术发展历史自从上世纪五十年代未六十年代初期,反渗透(RO)和纳滤(NF)技术产品商品化投放市场,尤其是陶氏化学公司全资子公司发明的超薄聚酰胺复合膜进入实用阶段,使得RO和NF成为实用化的化工分离单元操作,它们的应用领域得到不断地扩展。
起初,反渗透主要用于海水和苦咸水脱盐,由于工业领域对保护水源、减少能耗、控制污染以及从废水中回收有价值物质的需求日益增加,反渗透和纳滤的新用途变得更有经济价值。
此外,伴随着膜分离技术的发展,促进了生物技术和制药行业的技术进步,相对于传统蒸馏法,膜法分离浓缩技术更加节省能量消耗,同时也不会引起产品热分解变质。
纳滤膜和反渗透膜孔径纳滤膜和反渗透膜是两种常用的膜分离技术,它们在水处理、生物医药、食品加工等领域被广泛应用。
本文将从孔径、工作原理和应用领域等方面介绍纳滤膜和反渗透膜的特点和应用。
一、纳滤膜孔径纳滤膜是一种具有特定孔径的薄膜,能够根据溶质的分子大小和电荷选择性地分离溶液中的物质。
纳滤膜的孔径通常在1纳米到100纳米之间,可以将溶液中的大分子、胶体和悬浮物截留在膜外,而让水和小分子通过。
纳滤膜的孔径大小对其分离性能有重要影响。
孔径越小,纳滤膜的截留能力越强,可以截留更小的溶质。
常见的纳滤膜孔径有超滤膜(孔径范围为1-100纳米)和微滤膜(孔径范围为0.1-10微米)等。
二、反渗透膜孔径反渗透膜是一种通过压力驱动使溶质逆向渗透的薄膜,其孔径通常在0.1纳米到1纳米之间。
反渗透膜具有高选择性,可以有效去除水中的溶解性离子、有机物、微生物等。
反渗透膜的孔径比纳滤膜更小,因此其分离效果更好。
在反渗透过程中,水分子可以通过膜孔径,而溶质则被截留在膜外。
这使得反渗透膜在海水淡化、饮用水处理、工业废水处理等方面具有广泛应用。
三、纳滤膜和反渗透膜的工作原理纳滤膜的分离机制主要包括筛分、拦截和吸附三种方式。
当液体通过纳滤膜时,溶质分子受到膜孔径的限制,分子尺寸较大的物质被截留在膜外,分子尺寸较小的物质则通过膜孔径进入滤液。
反渗透膜的分离机制主要是通过半透膜的渗透作用实现的。
当给予反渗透膜一定的压力时,溶液中的水分子会逆向通过膜孔径流向低浓度的一侧,而溶质则被截留在膜外,从而实现对溶质的分离。
四、纳滤膜和反渗透膜的应用领域纳滤膜和反渗透膜在水处理领域具有广泛的应用。
纳滤膜可以用于海水淡化、饮用水处理、工业废水处理等。
例如,海水淡化中使用反渗透膜可以将海水中的盐分和杂质去除,得到高纯净的淡水。
饮用水处理中的纳滤膜可以去除水中的微生物、胶体等有害物质。
工业废水处理中的纳滤膜可以回收和净化水资源。
纳滤膜和反渗透膜还在生物医药、食品加工等领域得到了广泛应用。
超滤、纳滤、反渗透、微滤的概念和区别超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。
是一种利用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保留对人体有益的一些矿物质元素。
是矿泉水、山泉水生产工艺中的核心部件。
超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。
超滤不需要加电加压,仅依靠自来水压力就可进行过滤,流量大,使用成本低廉,较适合家庭饮用水的全面净化。
因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以达到较宽的处理范围,更全面地消除水中的污染物质。
2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法分离技术,水的回收率较低。
也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。
这是一般家庭不能接受的。
一般用于工业纯水制造。
3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法分离技术。
可滤除水中的几乎一切的杂质(包括有害的和有益的),只能允许水分子通过。
也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。
这是一般家庭不能接受的。
一般用于纯净水、工业超纯水、医药超纯水的制造。
反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。
4、微滤(MF):过滤精度一般在0.1-50微米,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、8、当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。
超滤膜的结构有对称和非对称之分。
前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。
超滤、纳滤、反渗透、微滤的区别1、超滤(UF):过滤精度在0.001-0.1微米,属于二十一世纪高新技术之一。
是一种利用压差的膜法别离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体、细菌、大分子有机物等有害物质,并能保存对人体有益的一些矿物质元素。
是矿泉水、山泉水生产工艺中的核心部件。
超滤工艺中水的回收率高达95%以上,并且可方便的实现冲洗与反冲洗,不易堵塞,使用寿命相对较长。
超滤不需要加电加压,仅依靠自来水压力就可进展过滤,流量大,使用本钱低廉,较适合家庭饮用水的全面净化。
因此未来生活饮用水的净化将以超滤技术为主,并结合其他的过滤材料,以到达较宽的处理范围,更全面地消除水中的污染物质。
2、纳滤(NF):过滤精度介于超滤和反渗透之间,脱盐率比反渗透低,也是一种需要加电、加压的膜法别离技术,水的回收率较低。
也就是说用纳滤膜制水的过程中,一定会浪费将近30%的自来水。
这是一般家庭不能承受的。
一般用于工业纯水制造。
3、反渗透(RO):过滤精度为0.0001微米左右,是美国60年代初研制的一种超高精度的利用压差的膜法别离技术。
可滤除水中的几乎一切的杂质〔包括有害的和有益的〕,只能允许水分子通过。
也就是说用反渗膜制水的过程中,一定会浪费将近50%以上的自来水。
这是一般家庭不能承受的。
一般用于纯洁水、工业超纯水、医药超纯水的制造。
反渗透技术需要加压、加电,流量小,水的利用率低,不适合大量生活饮用水的净化。
4、微滤〔MF〕:过,常见的各种PP滤芯,活性碳滤芯,陶瓷滤芯等都属于微滤范畴,用于简单的粗过滤,过滤水中的泥沙、铁锈等大颗粒杂质,但不能去除水中的细菌等有害物质。
滤芯通常不能清洗,为一次性过滤材料,需要经常更换。
①PP棉芯:一般只用于要求不高的粗滤,去除水中泥沙、铁锈等大颗粒物质。
②活性碳:可以消除水中的异色和异味,但是不能去除水中的细菌,对泥沙、铁锈的去除效果也很差。
③陶瓷滤芯:最小过滤精度也只0.1微米,通常流量小,不易清洗。
正渗透、反渗透、超滤、纳滤知识总结一、反渗透膜、超滤膜、纳滤膜对比1、反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。
反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。
2、超滤膜:能截留0.002-0.1微米之间的大分子物质和蛋白质。
超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。
超滤膜的运行压力一般1-7ba r。
3、纳滤膜:能截留纳米级(0.001微米)的物质。
纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800M W左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。
纳滤膜的运行压力一般 3.5-30b a r。
二、反渗透膜与超滤膜的优劣对比反渗透膜的孔径只有超滤膜的1/100比例大小,因此反渗透水处理设备能够有效去除水质当中的重金属、农药、三氯甲烷等化学污染物,超滤净水器对此则是无能为力的。
而超滤净水器能去除的颗粒污染物及细菌,反渗透全能去除。
(一)反渗透和超滤,核心部件都是膜元件。
主要区别一共有两点:1、出水水质和卫生部门的检测标准有所不同,给大家举一个例子来说明,出水细菌指标,超滤按照“一般水质处理器”,菌落总数为100个/毫升;而反渗透水处理设备则为20个/毫升,要求较为严格,当然反渗透水处理设备出水水质也要比超滤好很多。
2、反渗透水处理设备是分质供水,纯水供应饮用,浓水用来洗涤;而超滤一般都是用作洗涤用水;当自来水水质较为优质时也可以用作饮用水超纯水设备。
(二)超滤的优点与缺点:优点:一般不用泵、不耗电,无电气安全问题;接头少、水压低,故障率及漏水概率相对较低;结构简单、价格便宜;其缺点是:去除水中化学污染物效果差;对供水特发事件效果较差;出水口感稍差;不能降低水的硬度,如自来水硬度高,煮水容器可能会结垢。
反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。
反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。
除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。
一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。
2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。
由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。
3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。
反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。
二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。
我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。
1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。
它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。
物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。
(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。
第三章反渗透和纳滤的原理
3.1 反渗透和纳滤基础
3.1.1 膜与膜过程
膜在自然界中是广泛存在的,尤其在生物体内。
但是人类首次注意到由生物膜引起的渗透现象是在1748 年,法国学者Abbe Nollet(1700 – 1770)很偶然的发现包裹在猪膀胱里的水可以自己扩散到膀胱外侧的酒精溶液中。
法国植物学家Henri Dutrochet(1776 – 1847)在1827 年提出了Osmosis(渗透)一词来定义Abbe Nollet 发现的现象。
但是,这一现象并未能引起足够的重视,直到1854 年英国科学家Thomas Graham(1805 – 1869)在实验中发现,放置在半透膜一侧的晶体会比胶体更快的扩散到另一侧,并提出了Dialysis(透析)的概念。
这时人们才对半透膜产生了兴趣,并由德国生物化学家Moritz Traube(1826 – 1894)在1864 年制造出了人类历史上第一张人造膜——亚铁氰化铜膜。
完整的渗透压理论直到20 世纪才由荷兰物理化学家Van't Hoff(1852 – 1911)提出。
后来,随着各个学科的不断发展,膜分离现象也不断为人们发现并研究。
1960 年,人类终于实现了从苦咸水中制取淡水的梦想,工作于美国加利福尼亚大学洛杉矶分校(UCLA)的科学家Sidney Loeb (1917 –)和Srinivasa Sourirajan(1923 –)共同研制出世界第一张非对称醋酸纤维素反渗透膜。
从那时起的近半个世纪以来,膜分离技术,包括反渗透和纳滤,在世界范围得到了广泛的发展和应用。
表3.1 列出了膜分离技术发展简史。
表3.1 膜分离技术发展史
随着膜材料、制膜方法以及膜应用的不断发展,膜分离技术逐渐成为分离技术大家族中的重要成员。
与传统的分离技术(例如:过滤、蒸馏、萃取、电泳和层析等)相比,膜分离技术的分离精度高、易于操作和管理、在应用中对环境造成的二次污染小。
正是由于这些优点,膜分离技术在短短的半个世纪中就发展成为一种重要的单元分离工艺,并且发展出若干具有不同特点和应用领域的膜分离过程。
主要的膜分离过程包括:微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、透析(DA)、电渗析(ED)、电脱盐(EDI)、渗透汽化(PV)、膜萃取(ME)、膜蒸馏(MD)、液膜技术(LM)和气体分离(GS)等。
表3.2 将主要的膜分离过程做了分类和介绍。
按照这些膜分离过程所能分离物质的不同物理尺寸,我们可以画出分离谱图,如图3.1。
表3.2 主要的膜分离过程
图 3.1 分离谱图
3.1.2 反渗透和纳滤基本原理
当一张半透膜隔开溶液与纯溶剂时,加在溶液上并使其恰好能阻止纯溶剂进入溶液的额外压力称之为渗透压,通常溶液中溶质的浓度越高渗透压就越大。
当溶液一侧没有加压时,纯溶剂会通过半透膜向溶液一侧扩散,这一现象称为渗透
(Osmosis )。
反之,如果加在溶液侧所加压力超过了渗透压,则反而可以使溶液中的溶剂向纯溶剂一侧流动,这个过程就叫做反渗透(Reverse Osmosis ),如图 3.2 所示。
反渗透膜分离技术就是利用反渗透原理分离溶质和溶剂的方法。
反渗透膜分离技术具有以下特点:
• 在常温不发生相变化的条件下,可以对溶质和水进行分离,适用于对热敏感物质
的分离、浓缩,并且与有相变化的分离方法相比,能耗较低;
• 杂质去除范围广,不仅可以去除溶解的无机盐类,而且还可以去除各类有机物杂
质; • 脱盐率高;
• 由于只是利用压力作为膜分离的推动力,因此分离装置简单,易操作、控制和维
护;
• 反渗透膜对进水水质有一定的要求,如:浊度、污染密度指数(SDI 15,相关论述
请参见第二部分第三章 3.2.2)和余氯等。
半透膜 半透膜 半透膜 (a )渗透
(b )渗透平衡
(c )反渗透
图 3.2 反渗透的原理
纳滤膜元件最早被称为疏松反渗透,其截留特性介于超滤与反渗透之间,大约为 100 – 1 000 道尔顿(Daltons )。
因此,纳滤膜元件对水中溶解的小分子有机物,例
盐水 纯水 大于渗 透压的压力
盐水 纯水
纯水 盐水 渗透压
x
如:三卤甲烷(THM )有很高的脱除率;同时纳滤膜元件对水溶液中的离子也有一定的脱除率(一般在 10 – 90 %之间)。
反渗透膜的发展分为两个阶段:非对称膜和复合膜。
在反渗透膜发展的早期,主要的膜材料为三醋酸纤维素(CA )。
这种膜材料对进水 pH 值的要求比较严格(一般在 4 – 6 之间),且工作压力相对较高、脱盐率相对较低,但是其具有耐生物污染和耐氧化性杀菌剂的优点。
近年来,随着高分子材料科学的不断发展。
脱盐率更高、水通量更大、工作压力更低的芳香聚酰胺(结构见图 3.3)被用来制备反渗透膜。
与 CA 非对称膜不同的是,芳香聚酰胺反渗透膜是复合膜,即分离层与支撑层不是同一种材料,并且是通过界面聚合交联在一起的。
图 3.4 显示了非对称膜和复合膜的区别。
H H O O H
N
N C
C N
CO
H O O N C
C
COOH
图 3.3 交链全芳香族聚酰胺结构
①
②
①:表面密致层 ①:表面密致层
②:支撑层 ②:支撑层
材质①=② 材质①≠②
非对称膜
复合膜
图 3.4 非对称膜与复合膜结构比较
①
②
y。