有机化学第五版 质谱分析-1
- 格式:ppt
- 大小:352.50 KB
- 文档页数:95
第四章:质谱法第一节: 概述1.1 发展历史1.1886年,E. Goldstein在低压放电实验中观察到正电荷粒子.2. 1898年,W. Wen发现正电荷粒子束在磁场中发生偏转.3.现代质谱学之父: J. J. Thomson(获1906年诺贝尔物理奖).4.1922年, F.W.Aston[英]因发明了质谱仪等成就获诺贝尔化学奖. 1942年, 第一台商品质谱仪.5.50年代起,有机质谱研究(有机物离子裂解机理, 运用质谱推断有机分子结构)6.各种离子源质谱, 联机技术的研究及其在生物大分子研究中的应用(CI, FD, FAB, ESI-MS等)1.2 特点:1.灵敏度高(几微克甚至更少的样品, 检出极限可达10-14克)2.是唯一可以确定分子式的方法.3.分析速度快(几秒)4.可同色谱联用.第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。
而分子式对推测结构是至关重要的。
质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。
具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。
由此可见质谱最简单形式的三项基本功能是:(1)气化挥发度范围很广的化合物;(2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物);(3)根据质荷比(m/z e)将它们分开,并进行检测、记录。
由于多电荷离子产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的电荷),因而就表征了离子的质量。
这样,质谱就成为了产生并称量离子的装置。
由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构。
《有机化学》第五版ppt文档全文免费预览•绪论•烃类化合物•烃的衍生物•有机合成与反应机理•有机化合物的结构与性质•有机化学在日常生活中的应用绪论碳氢化合物研究碳氢化合物及其衍生物的结构、性质、合成和反应机理。
生命体系中的有机物质探讨生物体内的氨基酸、蛋白质、核酸、多糖等有机物的组成、结构和功能。
有机功能材料研究具有光、电、磁等特殊功能的有机材料的设计、合成与应用。
早期有机化学从炼金术到燃素说的兴衰,再到拉瓦锡的元素学说,奠定了有机化学的基础。
经典有机化学以凯库勒、范特霍夫等为代表,发现了苯环结构、立体化学等基本概念,推动了有机化学的飞速发展。
现代有机化学20世纪以来,随着物理方法的应用和计算机技术的发展,有机化学在合成方法、反应机理、生物活性等方面取得了重大突破。
有机化学的研究方法合成方法通过有机合成,制备具有特定结构和功能的有机化合物,如不对称合成、金属有机合成等。
结构测定利用波谱分析(红外光谱、核磁共振谱等)和X射线衍射等方法,确定有机化合物的分子结构和空间构型。
反应机理研究有机反应中的化学键断裂和形成过程,揭示反应的本质和规律,如周环反应、自由基反应等。
生物活性研究探讨有机化合物与生物体之间的相互作用,如药物设计、农药合成等。
烃类化合物B CD烷烃的通式与命名介绍了烷烃的通式、同系列和同系物的概念,以及烷烃的命名方法和命名规则。
烷烃的物理性质系统总结了烷烃的物理性质,如熔沸点、密度、溶解度等,并解释了影响这些性质的因素。
烷烃的化学性质深入探讨了烷烃的化学性质,包括自由基取代反应、氧化反应、裂解反应等,以及这些反应的反应机理和应用。
烷烃的结构与异构详细阐述了烷烃的结构特点,包括碳原子的杂化方式、键角、键长等,以及烷烃的同分异构现象和异构体的命名。
A烯烃的通式与命名烯烃的结构与异构烯烃的物理性质烯烃的化学性质详细阐述了烯烃的结构特点,包括碳碳双键的形成、构型和稳定性等,以及烯烃的同分异构现象和异构体的命名。
有机化学中的质谱定量分析质谱分析是一种重要的分析技术,在化学领域中扮演着至关重要的角色。
它通过将化合物离子化并鉴定其质荷比,以定量分析样品中的化合物。
有机化学中的质谱定量分析具有广泛的应用,本文将探讨其原理、方法以及在有机化学研究中的应用。
一、质谱定量分析的原理质谱定量分析是利用化合物的质荷比(mass-to-charge ratio,m/z)来衡量各种化学分析过程中的物质。
它基于质谱仪的原理,即将化合物分子离子化并将其分离,然后通过检测离子的质荷比来确定化合物的类型和相对丰度。
二、质谱定量分析的方法1. 质谱图的解读质谱图是质谱分析的结果,通常呈现为一个横轴为质荷比(m/z),纵轴为相对丰度的图形。
在解读质谱图时,主要关注以下几个方面:- 基峰(Base peak):质谱图中最高峰对应的质荷比,通常被定义为基峰。
其他峰的相对丰度都相对于基峰进行表示。
- 碎片峰(Fragment peaks):质谱图中低于基峰的峰,表征了样品分子的离解和断裂过程。
- 分子峰(Molecular ion peak):质谱图中最高的单一峰,代表化合物的分子离子。
- 同位素峰(Isotopic peaks):由同一化合物分子离子的不同同位素引起的峰。
2. 标准曲线法标准曲线法是质谱定量分析中常用的方法之一。
它通过构建不同浓度的标准溶液,测定每个浓度下质谱图中目标化合物的峰面积,然后绘制质谱峰面积与浓度之间的关系曲线。
通过测定待测样品的质谱峰面积,然后利用标准曲线,可以准确地计算出待测样品中目标化合物的浓度。
三、有机化学中的应用1. 药物分析质谱定量分析在药物研发与检测中发挥着重要作用。
通过准确测定药物样品中的化合物浓度,可以帮助研究人员了解药物的纯度、合成效率以及在体内的代谢过程。
2. 环境分析有机污染物是环境中的重要问题之一。
质谱定量分析可以帮助分析师测定环境中有机污染物的含量,并评估其对环境和人类健康的潜在危害。
有机质谱解析第一章导论第一节引言质谱,即质量的谱图,物质的分子在高真空下,经物理作用或化学反应等途径形成带电粒子,某些带电粒了可进一步断裂。
如用电子轰击有机化合物(M),使其产生离子的过程如下:每一离子的质量及所带电荷的比称为质荷比(m/z ,曾用m/e)。
不同质荷比的离子经质量分离器一一分离后,由检测器测定每一离子的质荷比及相对强度,由此得出的谱图称为质谱质谱分析中常用术语和缩写式如下:游离基阳离子,奇电子离子(例如CH4)(全箭头) 电子对转移(鱼钩)单个电子转移α断裂;及奇电子原子邻接原子的键断裂(不是它们间的键断裂)“A”元素只有一种同位素的元素(氢也归入“A”元素)。
“A+1”元素某种元素,它只含有比最高丰度同位素高1amu 的同位素。
“A+2”元素某种元素,它含有比最高丰度同位素高2 amu的同位素。
A峰元素组成只含有最高丰度同位素的质谱峰。
A+1峰比A峰高一个质量单位的峰。
分子离子(M)失去一个电荷形成的离子,其质荷比相当于该分子的分子量。
碎片离子:分子或分子离子裂解产生的离子。
包括正离子(A+)及游离基离子(A+.)。
同位素离子:元素组成中含有非最高天然丰度同位素的离子。
亚稳离子(m*)离子在质谱仪的无场漂移区中分解而形成的较低质量的离子。
质谱图上反应各离子的质荷比及丰度的峰被称为某离子峰。
基峰:谱图中丰度最高离子的峰绝对丰度:每一离子的丰度占所有离子丰度总和的百分比,记作%∑。
相对丰度:每一离子及丰度最高离子的丰度百分比。
第二章谱图中的离子第一节分子离子分子离子(M+)是质谱图中最有价值的信息,它不但是测定化合物分子量的依据,而且可以推测化合物的分子式,用高分辨质谱可以直接测定化合物的分子式。
一、分子离子的形成分子失去一个电子后形成分子离子。
一般来讲,从分子中失去的电子应该是分子中束缚最弱的电子,如双键或叁键的π电子,杂原子上的非键电子。
失去电子的难易顺序为:杂原子> C = C > C —C > C —H易难分子离子的丰度主要取决于其稳定性和分子电离所需要的能量。
有机化学实验第五版简介本文档是有机化学实验的第五版,旨在为有机化学实验课程提供详细的实验操作指南和实验结果分析。
有机化学实验是一门重要的实践课程,通过实验的方式培养学生的实验技能和科学思维能力。
实验一:有机化合物的合成与表征1.1 实验目的本实验旨在通过合成和表征有机化合物的方法,加深学生对有机化学反应和实验技术的理解,并培养学生的实验操作技能和数据分析能力。
1.2 实验原理本实验采用了总结有机化学反应、合成和表征方法的综合性实验,具体的实验操作步骤如下:1.通过碘代烷和乙酸钠的反应制备一个有机化合物。
2.通过H-NMR、C-NMR和质谱等方法对有机化合物进行表征。
1.3 实验步骤1.按照实验原理中的方法制备有机化合物。
2.使用NMR仪器对有机化合物进行H-NMR和C-NMR谱图的测定。
3.使用质谱仪对有机化合物进行质谱谱图的测定。
1.4 数据分析根据H-NMR和C-NMR谱图的测定结果,确定有机化合物的结构式。
根据质谱谱图的测定结果,确定有机化合物的分子量和分子结构。
1.5 结论通过实验得到了有机化合物的结构式,并确定了其分子量和分子结构。
实验二:有机反应的机理研究2.1 实验目的本实验旨在通过研究有机反应的机理,加深学生对有机化学反应机理的理解,培养学生的科学研究能力和实验操作技能。
2.2 实验原理本实验采用了研究有机反应机理的方法,具体的实验操作步骤如下:1.选择一种有机反应,确定反应的基本条件和反应物。
2.通过实验方法,确定该有机反应的速率方程和反应级数。
3.通过实验数据的处理和分析,确定该有机反应的机理。
1.按照实验原理中的方法选择有机反应,并制备反应所需的反应物和溶液。
2.根据反应条件进行反应,并记录反应前后的物质质量变化和产物的生成情况。
3.根据实验数据,计算反应速率和反应级数。
4.分析实验数据,推导反应机理。
2.4 数据分析根据实验数据计算反应速率和反应级数,并根据实验数据的分析推导反应机理。
有机化合物的质谱分析(一)分子离子峰分子受电子束轰击后失去一个电子而生成的离子M.+称为分子离子,例如:M+e¨→M.+ + 2e¨在质谱图中由M.+ 所形成的峰称为分子离子峰.因此,分子离子峰的m/z值就是中性分子的相对分子质量Mr,而Mr是有机化合物的重要质谱数据. 分子离子峰的强弱,随化合物结构不同而异,其强弱一般为:芳环>醚>酯>胺>酸>醇>高分子烃.分子离子峰的强弱可以为推测化合物的类型提供参考信息.(二)碎片离子峰当电子轰击的能量超过分子离子电离所需要的能量时(约为50~70eV),可能使分子离子的化学键进一步断裂,产生质量数较低的碎片,称为碎片离子.在质谱图上出现相应的峰,称为碎片离子峰.碎片离子峰在质谱图上位于分子离子峰的左侧.(三)同位素离子峰在组成有机化合物的常见十几种元素中,有几种元素具有天然同位素,如C,H,N,O,S,Cl,Br 等.所以,在质谱图中除了最轻同位素组成的分子离子所形成的M.+峰外,还会出现一个或多个重同位素组成的分子离子峰.如(M+1).+,(M+2).+,(M+3).+等,这种离子峰叫做同位素离子峰.对应的m/z为M+1,M+2,M+3表示.人们通常把某元素的同位素占该元素的原子质量分数称为同位素丰度.同位素峰的强度与同位素的丰度是相对应的.下表列出了有机化合物中元素的同位素丰度及峰类型.由下表可见,S,Cl,Br等元素的同位素丰度高,因此,含S,C,Br等元素的同位素其M+2峰强度较大.一般根据M和M+2两个峰的强度来判断化合物中是否含有这些元素.(四)重排离子峰分子离子裂解成碎片时,有些碎片离子不是仅仅通过键的简单断裂有时还会通过分子内某些原子或基团的重新排列或转移而形成离子,这种碎片离子称为重排离子.质谱图上相应的峰称为重排峰. 重排的方式很多,其中最重要的是麦氏重排(Mclafferty Rearrangement).可以发生麦氏重排的化合物有醛,酮,酸,酯等.这些化合物含有C=X(X为O,S,N,C)基团,当与此基团相连的键上具有γ氢原子时,氢原子可以转移到X原子上,同时β键断裂.例如,正丁醛的质谱图中出现很强的m/z=44峰,就是麦氏重排所形成的.重排离子形成的机理如下:[略,如有参考需要,可查阅原出处].(五)亚稳离子峰前面所阐述的离子都是稳定的离子.实际上,在电离,裂解,重排过程中有些离子处于亚稳态.例如,在离子源中生成质量为m1的离子,在进入质量分析器前的无场飞行时发生断裂,使其质量由m1变为m2, 形成较低质量的离子.这类离子具有质量为m1离子的速度,进入质量分析器是具有m2的质量,在磁场作用下,离子运动的偏转半径大,它的表观质量m*=[m2]^2/m1,这类离子叫亚稳离子,m*形成的质谱峰叫亚稳离子峰,在质谱图上,m*峰不在m2处,而出现在比m2更低的m*处. 由于在无场区裂解的离子m*不能聚焦与一点,故在质谱图上m*峰弱而钝一般可能跨2~5个质量单位,并且m/z常常为非整数,所以m*峰不难识别.例如,在十六烷的质谱图中,有若干个亚稳离子峰,其m/z分别位于32.9,29.5,28.8,25.7,21.7处.m/z=29.5的m*,因41^2/57≈29.5,所以m*=29.5表示存在如下裂解机理: C4H9+→C3H5+ +CH4 m/z=57 m/z=41 由此可见,根据m1和m2就可计算m*,并证实有m1+→m2+的裂解过程,这对解析一个复杂质谱图很有参考价值.一、分子量的确定规律:1、分子离子峰一定是质谱中质量数最大的峰;2、分子离子峰应有合理的质量丢失:例如:在比分子离子峰小4-14及20-25质量单位处不应有离子峰出现,因为一个有机化合物不可能失去4-14个氢而不断链,但如果断链,失去最小碎片应为CH3,质量数为15,同理,不可能失去20-25质量单位。
有机化学Organic Chemistry教材:汪小兰主编《有机化学》(第五版),高等教育出版社。
参考书:邢其毅等《基础有机化学》(第二版),高等教育出版社胡宏纹等,《有机化学》(第二版),人民教学出版社第一章绪 论Introduction有机化学的研究对象与任务(一) 初期阶段 18世纪—19世纪有机化合物最早的有机化合物来自于动植物体(有机体)生命论:有机化合物只能由有机体产生。
无机化合物则存在于无生命的矿藏中,同时也可由有机体产生。
阻碍了有机化学的发展20多年,人们放弃了人工合成有机物的想法.代表人物:瑞典科学家贝采利乌斯得到了一系列较纯的有机物公元770—180年间,就出现关于酿酒的记载 汉朝 出现制纸、染色工艺由动植物取得较纯的有机物1769年 葡萄汁 葡萄糖1780年 酸牛奶 乳酸柠檬汁 柠檬酸尿 尿素1805年 从鸦片内取得第一个生物碱 吗啡 1820年 从金鸡纳树喹啉(二) 形成阶段:19世纪-19世纪中期1 有机物在实验室被制备,强有力反驳了“生命论”。
1828年德国化学家维勒氰酸铵尿素1845年德国柯尔伯合成醋酸1854年法国贝特洛合成属于油脂的物质2 人工合成一系列有机物1950年利用煤焦油合成药物、染料、炸药,从此打破了“生命论”,开辟了有机化学新天地。
3 通过元素分析发现有机物都含有碳1781年拉瓦锡通过燃烧的方法来分析有机物植物: C H O动物: C H O N把含有碳的化合物称为有机物4 确立了经典的有机结构理论1855年,Kekule (凯库勒)和 Couper(古柏尔)提出了有机物的分子结构两个重要基本原则(i) 碳是四价的(ii) 碳可以结合成链或者环有机化学(Organic Chemistry )—— 研究有机化合物的结构和性质的科学H CN O F P S ClBrI Si B 有机化合物中常见的元素有机化合物:碳氢化合物(烃)及其衍生物。
有机化学:研究有机物制备、结构、性质、应用的科学.有机化学意义:是研究生物体及生命现象的基础二.化学键与分子结构1.化学键的两种基本类型共价键:原子间共用电子对形成的。