工程光学实验I期末复习重点.
- 格式:pdf
- 大小:469.76 KB
- 文档页数:10
一、n·sin I'=nsinI。
sinI m=n'/n。
发生全反射的条件:①光线从光密介质向光疏介质入射,②入射角大于临界角。
光程s=n l=ct(l是介质中传播的几何路程)完善成像条件:入射光为同心光束,出射光也为同心光束。
通过物点和光轴的截面称为子午面。
i=(l-r)*u/r i'=n*i/n'u'=u+i-i'l'=r(1+i'/u')n'/l'—n/l=(n'—n)/r ,β=y'/y=n l'/n'l,α=(n'/n)*β2,γ=(n/n')/β,α*γ=βnuy=n'u'y',1/l+1/l'=2/r ,l i+1=l i'—d i二、每个物点对应于唯一的一个像点,称作“共轭”。
物方主平面和像方主平面是一对共轭面。
牛顿公式(以焦点为坐标原点):xx'=ff′,β=—f/x=—x'/f'高斯公式(以主点为坐标原点):f'/l'+f/l=1 ,β=—f l'/f'l物像空间介质相同时,f'=—f ,有1/l'—1/l=1/f',β=l'/l多光组系统:l i=l i-1'—d i-1,x i=x i-1—△i-1,△i=d i—f i'+f i+1理想光学系统两焦距之间关系f'/f=—n'/n理想光学系统的放大率α=—x'/x=(—f'/f)*β2=(n'/n)*β 2 ,γ=(n'/n)/β理想光学系统的组合焦距f'=—(f1'f2')/△,f=(f1f2)/△。
△为第一个系统的像方焦点到第二个系统物方焦点的距离。
通常用Φ表示像方焦距的倒数,Φ=1/f',称为光焦度。
三、平面镜的旋转特性:平面镜转动α,反射光线转动θ,θ=2α。
y=f'tan2θ≈2f'θ,tanθ≈θ=x/a→y=(2f'/a)*x=K*x双平面镜成像:出射光线和入射光线夹角β=2α,α为双平面镜夹角。
平行平板近轴区内的轴向位移为△l'=d(1-1/l).平行平板不改变光线方向,平行平板不会使物体放大或缩小,对光束既不发散也不会聚,表明它是一个无焦元件,在光学系统中对光焦度无贡献,物体经平板成正立像,物像始终位于平板的同侧,且虚实相反。
⼯程光学实验复习提纲⼯程光学实验II 复习提纲题型:填空、名词解释、简答、综合闭卷 120分钟1. 旋光仪测定溶液的浓度及旋光度1. 光是电磁波,它的电场和磁场⽮量互相垂直,且⼜垂直于光的传播⽅向。
2. 在传播⽅向垂直的平⾯内,光⽮量可能有各种各样的振动状态,被称为光的偏振态。
3. 若光的⽮量⽅向是任意的,且各⽅向上光⽮量⼤⼩的时间平均值是相等的,这种光称为⾃然光。
4. 若光⽮量的⽅向始终不变,只是其振幅位相改变,光⽮量的末端轨迹是⼀条直线,则称为线偏振光。
5. 使线偏振光的振动⾯发⽣旋转的现象叫旋光现象。
6. 当线偏振光通过某些透明物质后,偏振光的振动⾯将以光的传播⽅向为轴线旋转⼀定⾓度,这种现象称为。
旋光现象7. 旋光度:平⾯偏振光通过含有某些光学活性的化合物液体或溶液时,能引起旋光现象,使偏振光的平⾯向左或向右旋转,旋转的度数,称为旋光度(⽤α表⽰)。
8. ⽐旋度:平⾯偏振光透过长1dm 并每1ml 中含有旋光性物质1g 的溶液,在⼀定波长与温度下测得的旋光度称为⽐旋度(⽤表⽰)。
9. 旋光仪的基本部件:单⾊光源、起偏镜、测定管、检偏镜、检测器等五个部分。
10.原理:在起偏镜与检偏镜之间未放⼊旋光物质之间,如与检偏镜允许通过的偏振光⽅向相同,则在检起偏镜偏镜后⾯观察的视野是明亮的;如在起偏镜与检偏镜之间放⼊旋光物质,则由于物质旋光作⽤,使原来由起偏镜出来的偏振光⽅向旋转了⼀个⾓度α,结果在检偏镜后⾯观察时,视野就变得暗⼀些。
若把检偏镜旋转某个⾓度,使恢复原来的亮度,这时检偏镜旋转的解度及⽅向即是被测供试品的旋光度。
11.若⾯对光源,使振动⾯顺时针旋转的物质称为,使振动⾯逆时针旋转的物质称为。
右旋物质、左旋物质12.旋光度与哪些因素有关?什么是⽐旋光率?为什么要选择亮度相等的暗视场进⾏读数?(本题8分)答:(1)由旋光度:cl α?=得,旋光度的⼤⼩与该溶液⽐旋光率,溶液浓度和溶液的长度有关。
光学期末重点总结光学是研究光的性质、产生、传播、探测与应用的科学。
光学是物理学、化学、材料科学、电子技术等学科的重要基础。
光学已经广泛应用于现代科技和工业生产中,如激光、光纤通信、光学仪器等领域。
本文将对光学的基本概念和重要内容进行总结,以帮助读者复习光学课程。
一、光的本质和光的传播光既可以被看作是粒子也可以被看作是波动。
这种波粒二象性是光学中最基本的概念之一。
光速的恒定性和和普朗克常数与速度的乘积为常数的平行存在被称为光的量子理论和特殊相对论的基础。
光的传播可以通过几何光线法和波动理论来描述。
几何光线法主要使用光线和光线在界面上的反射和折射的规律,可以解决大部分与光路、光线夹角、光斑位置和大小有关的问题。
波动理论是一种更广泛适用的方法,可以描述光的干涉、衍射、散射等现象。
二、光的相干性和干涉相干性是指光波在时间和空间上的一致性。
光的相干性与干涉现象密切相关。
光的干涉是指两束或多束光波相互作用产生的干涉图样。
干涉可以分为同向干涉和反向干涉。
同向干涉中,两束光波以同一方向传播,可产生等厚干涉、等倾干涉、等交干涉等现象。
其中最典型的是杨氏双缝实验,它揭示了光的波动性和波粒二象性。
反向干涉中,两束光波以相反的方向传播,产生的典型现象是牛顿环和利萨茹图案。
牛顿环的原理是通过透镜和平板之间的干涉现象来实现精确测量,被广泛应用于实验室和工业生产中。
三、光的衍射和衍射光栅光的衍射是指光通过孔径或者物体的边缘时发生弯曲和扩散的现象。
波动理论可以有效描述光的衍射现象。
衍射会导致光斑的扩散、衍射图样的产生以及物体的像的模糊。
光的衍射也被广泛应用于光学仪器中,如显微镜、望远镜、光栅等。
光栅是一种具有规则周期性结构的光学元件,通过光栅的衍射原理,可以实现光的分光分析和频谱仪的构建。
光栅也是光学仪器中重要的元件之一。
四、光的散射和激光光的散射是指光通过物质时,发生方向的改变和强度的变化的现象。
散射可以分为弹性散射和非弹性散射。
工程光学复习要点第一章1.可见光波长范围:380-760nm.2.几何光学的基本定律:光的直线传播定律;光的独立传播定律;光的折射定律和反射定律.3.光的全反射现象;入射角大于临界角, sin I m = n’/n .4.费马原理:光线从一点传播到另一点,无论经过多少次折射和反射,其光程为极值(极大、极小、常量),也就是说光是沿着光程为极值的路径传播。
(又称极端光程定理)5.马吕斯定律:光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射对应点之间的光程均为定值。
6. 完善成像条件的表述:表述一:入射波面是球面波时,出射波面也是球面波。
表述二:入射是同心光束时,出射光也是同心光束。
表述三:物点及其像点之间任意两条光路的光程相等。
7.球面光学系统垂轴放大率β、轴向放大率α和角放大率γ间的关系式为:βαγ=8.折射系统垂轴放大率与成像性质(P10)9.作业:8第二章1.理想光学系统(没有像差的光学系统是理想光学系统吗?)2.共轭概念(理想光学系统物方焦点和像方焦点不是共轭点?物方主平面和像方主平面之间的关系?)3.图解法求像InIn sin'sin'=4.解析法求像牛顿公式高斯公式5.理想光学系统两焦距之间的关系6.组合焦距7.作业:1,2 ,4第三章:1.平面镜成像特性:平面镜是唯一能够完善成像的最简单光学元件2. 一个右手坐标系经平面镜成像为一个左手坐标系. 3.当入射光方向不变,旋转平面镜α角,则出射光方向改变2α 。
4.双面镜:在双平面镜系统中,出射光线和入射光线的夹角与入射角无关,只取决于双面镜的夹角α。
公式: β=2α只要双面镜夹角不变,双面镜转动时,连续一次像不动。
5. 反射棱镜奇次反射成镜像,偶次反射成一致像。
6. 棱镜系统的成像方向判断原则 P48''f f x x ⋅=⋅1,'=-=βl l7.作业7第四章1.孔径光阑的定义:限制轴上物点孔径角u 大小的光阑。
工程光学实验I复习提纲考试形式:闭卷考试时间: 120 分钟题型大致分布:填空24分简答20分综合56分要求:必须在答题纸上作答,否则无效;作图题必须使用铅笔直尺作图,否则零分。
椭偏仪:1.椭圆偏振测量(椭偏术)是研究光在两媒质界面发生的现象及介质特性的一种光学方法,其原理是利用偏振光在界面反射或透射时发生的偏振态的改变。
2.椭偏仪实验中检偏器读数头位置的调整与固定时,使激光束按布儒斯特角(约57) 入射到黑色反光镜表面并反射入望远镜到达半反目镜上成为一个圆点。
3.椭偏仪实验中,圆偏振光的获得使入射光的振动平面和四分之一波片的光轴成45度角。
4.椭偏仪实验中,将被测样品,放在载物台的中央,旋转载物台使望远镜和平行光管夹角为 45度。
5.测量薄膜厚度和折射率实验中,椭偏参数为Ψ和Δ。
(写字母),6.椭偏术。
椭偏术是研究光在两媒质界面发生的现象及介质特性的一种光学方法。
7.下图为椭偏仪结构,请写出1-10仪器名称。
1 半导体激光器 2平行光管 3起偏器读数头(与6可换用)4 1/4波片读数头 5氧化锆标准样 6检偏器读数头 7望远镜筒8 半反目镜 9光电探头 10信号线 11分光计12 数字式检流计平行光管:1.凸透镜的鉴别率角值表达式。
" 206256 '2fa=θ2.根据衍射理论和瑞利准则,仪器的最小分辨角。
Dλθ22.1=3.平行光管有4种分划板。
4.简述什么是光学系统的鉴别率。
答:光学系统能够把这种靠得很近的两个衍射花样分辨出来的能力,称为光学系统的鉴别率。
5.画出平行光管测量凸透镜焦距的原理图,并写出焦距表达式。
答:(分)''yyff⋅式中f为被测透镜焦距,'f为平行光管焦距实测值,'y为玻罗板上所选用线距实测值('''YBA=),y为测微目镜上玻罗板低频线的距离(YAB=,即测量测微目镜焦距被测凸透镜焦距平行光管物镜玻罗板 .4)(.3)'(.2.1ffABfα'α'f'B1234α值)。
工程光学知识点工程光学是光学技术在工程领域中的应用,涵盖了光学原理、光学器件、光学系统设计等方面的知识。
在工程光学中,有许多重要的知识点值得我们深入学习和了解,下面将介绍几个常见的工程光学知识点。
一、光学原理1. 光的传播方式:工程光学中,常见的光的传播方式有直线传播和弯曲传播。
直线传播即光沿着直线路径传播,弯曲传播即光在介质之间发生折射和反射而改变传播方向。
2. 光的干涉与衍射:当光通过两个或多个光学器件时,会发生干涉和衍射现象。
干涉是指两束或多束光相互叠加而形成明暗相间的条纹,衍射是指光通过孔径或障碍物后发生的弯曲现象。
3. 光的色散:光的色散是指光在通过介质时,由于介质的折射率与波长有关而引起的不同波长光的折射角度不同的现象。
常见的光的色散包括色差和色散角。
二、光学器件1. 透镜:透镜是一种常见的光学器件,用于调整光线的传播方向和聚焦。
根据透镜的形状和功能,可以分为凸透镜和凹透镜。
透镜广泛应用于相机、显微镜、望远镜等光学设备中。
2. 棱镜:棱镜是一种光学器件,能够将光分解成不同颜色的光谱,或将光合成成白光。
棱镜广泛应用于光谱仪、激光器等仪器和设备中。
3. 光学纤维:光学纤维是一种用于光信号传输的光学器件,由高折射率的纤维芯和低折射率的包层构成。
光学纤维在通信、医疗等领域具有广泛的应用。
三、光学系统设计1. 光路设计:光路设计是指根据具体应用需求,设计出适合的光学系统结构和光路布局。
在光路设计中,需要考虑光的传播特性、光学器件的选取和配置、光的聚焦和收集等因素。
2. 光学系统的成像性能:光学系统的成像性能是评价一个光学系统好坏的重要指标。
常见的成像性能指标包括像差、分辨率、畸变等。
3. 光学系统的光线追迹:光线追迹是通过模拟光线在光学系统中的传播轨迹来分析和优化光学系统的性能。
光线追迹可以通过光线追迹软件进行,以实现对光学系统的有针对性的设计和改进。
四、应用领域工程光学广泛应用于许多领域,包括通信、医疗、机器视觉、激光加工等。
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (5)第二章共轴球面光学系统 (6)第一节符号规则 (6)第二节物体经过单个折射球面的成像 (7)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (11)第二章理想光学系统 (13)第一节理想光学系统的共线理论 (13)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1,作图法求像 (17)第四节理想光学系统的多光组成像 (21)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (30)第四节习题 (31)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (36)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (40)第四节望远镜系统 (44)第五节目镜 (46)第六节摄影系统 (47)第七节投影系统 (49)第八节光学系统外形尺寸计算 (49)第九节光学测微原理 (52)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics),可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年,欧几里得论述了光的直线传播和反射定律。
2,公元前130年,托勒密列出了几种介质的入射角和反射角。
3,1100年,阿拉伯人发明了玻璃透镜。
4,13世纪,眼镜开始流行。
5,1595年,荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
简答题、填空题:1、光线的含义是什么?波面的含义是什么?二者的关系是什么?光线:发光点发出光抽象为许许多多携带能量并带有方向的几何线。
波面:发光点发出的光波向四周传播时,某一时刻起振动位相相同的点所构成的等相位面。
二者关系:波面法线即为光线。
2、什么是实像?什么是虚像?如何获得虚像?实像:实际光线相交所会聚成的点的所组成的像。
虚像:光线的延长线相交所形成的点所组成的像。
如何获得虚像:光线延长线所形成的同心光束。
3、理想光学系统几对基点?分别是什么?2对。
像方焦点(F’),像方主点(H’),物方焦点(F),物方主点(H)。
4、什么是孔径光阑?什么是入瞳?什么是出瞳?孔径光阑与入瞳、出瞳之间有什么系?孔径光阑:限制进入光学系统的成像光束口径的光阑称为孔径光阑。
入瞳:孔径光阑在透镜后,经前面光学系统所成的像,称为入瞳。
出瞳:孔径光阑在透镜前,经后面光学系统所成的像,称为出瞳。
关系:入瞳、出瞳和孔径光阑对整个系统是共轭的,经过入瞳的光线必经过孔径光阑、也经过出瞳。
5、光学系统的景深是什么含义?能够在像面上获得清晰像的物空间深度,就是系统的景深。
6、发生干涉的条件是什么?发生干涉的最佳光源是什么类型的光源?两列光波的频率相同,相位差恒定,振动方向一致的相干光源。
7、近场衍射和远场衍射的区别是什么?近场衍射:光源和衍射场或二者之一到衍射屏的距离比较小时的衍射。
远场衍射:光源和衍射场都在衍射屏无限远处的衍射。
8、什么是光学系统的分辨率?人眼的极限分辨率是多少?极限分辨角为60``(=1`)9、完善像和理想光学系统的含义分别是什么?完善像:每一个物点对应唯一的一个像点。
或者,物点发出的同心光束经过光学系统后仍为同心光束。
或者,入射波面为球面波时,出射波面也为球面波。
理想光学系统:任何一个物点发出的光线在系统的作用下所有的出射光线仍然相交于一点的系统。
10、近轴光线的条件是什么?近轴光线所成像是什么像?条件:当孔径角U很小时,I、I’和U’很小。
工程光学Ι复习要点--基本概念汇总工程光学Ι复习要点基本概念汇总一、四大定律;光路可逆;全反射;二、光轴;符号规则;如射角;孔径角;视场角;物距;像距;物高;像高;近轴光线;近轴区域;共轭关系;垂轴放大率;轴向方法率;角放大率;拉赫不变量;三、基点基面(焦点、主点、节点、焦面、主面);焦距;光焦度;牛顿公式;高斯公式;焦物距;焦像距;等效光组(组合光组);四、平面镜;双面镜;反射棱镜;折射棱镜;光楔;主截面;屋脊棱镜;等效空气层;偏向角;色散;五、孔径光阑;入瞳;出瞳;视场光阑;入窗;出窗;孔径角;孔径高度;视场角;视场高度(物高、像高);渐晕;渐晕系数(线渐晕);渐晕光阑;场镜;景深;焦深;理想像;清晰像;六、像差;球差;彗差;像散场曲;畸变;位置色差;倍率色差;二级光谱;色球差;像差曲线;子午面;弧矢面;七、近视;远视;近点;远点;屈光度;分辨力;视放大率;有效放大率;数值孔径;相对孔径;光圈数(F数);出瞳距;系统工作原理汇总远摄系统;反远距系统;望远系统;焦距测量系统;物方远心光路;像方远心光路;景深产生的原理;焦深产生的原理;人眼成像系统(正常、近视、远视);近视眼校正系统;远视眼校正系统;放大镜工作原理;显微镜工作原理;望远镜工作原理;目镜视度调节原理;临界照明;克拉照明;照相系统的调焦原理方法汇总全反射;单球面成像;共轴球面成像;反射球面成像(反射镜成像);理想光组成像;薄透镜成像;组合光组、厚透镜成像及焦距主面计算;透镜组成像;平行平板成像;光楔的偏向角计算;孔径光阑的判断;入瞳、出瞳的计算;入窗、出窗的计算;视场大小的判断和计算;渐晕光阑的计算;棱镜大小的计算;景深、焦深的计算;视放大率的计算(放大镜、显微镜、望远镜);有效放大率的计算;出瞳距的计算;通光口径的计算(物镜、目镜、分划板、棱镜、场镜)作图汇总作图求像;棱镜展开;棱镜坐标的判断;各种系统工作原理的光路图;。
工程光学实验I期末复习重点工程光学实验I复习提纲考试形式:闭卷考试时间: 120 分钟题型大致分布:填空24分简答20分综合56分要求:必须在答题纸上作答,否则无效;作图题必须使用铅笔直尺作图,否则零分。
椭偏仪:1.椭圆偏振测量(椭偏术)是研究光在两媒质界面发生的现象及介质特性的一种光学方法,其原理是利用偏振光在界面反射或透射时发生的偏振态的改变。
2.椭偏仪实验中检偏器读数头位置的调整与固定时,使激光束按布儒斯特角(约57) 入射到黑色反光镜表面并反射入望远镜到达半反目镜上成为一个圆点。
3.椭偏仪实验中,圆偏振光的获得使入射光的振动平面和四分之一波片的光轴成45度角。
4.椭偏仪实验中,将被测样品,放在载物台的中央,旋转载物台使望远镜和平行光管夹角为 45度。
5.测量薄膜厚度和折射率实验中,椭偏参数为Ψ和Δ。
(写字母),6.椭偏术。
椭偏术是研究光在两媒质界面发生的现象及介质特性的一种光学方法。
7.下图为椭偏仪结构,请写出1-10仪器名称。
1 半导体激光器 2平行光管 3起偏器读数头(与6可换用)4 1/4波片读数头 5氧化锆标准样 6检偏器读数头 7望远镜筒8 半反目镜 9光电探头 10信号线 11分光计12 数字式检流计平行光管:1.凸透镜的鉴别率角值表达式。
"206256'2f a =θ2.根据衍射理论和瑞利准则,仪器的最小分辨角。
D λθ22.1=3.平行光管有4种分划板。
4.简述什么是光学系统的鉴别率。
答:光学系统能够把这种靠得很近的两个衍射花样分辨出来的能力,称为光学系统的鉴别率。
5.画出平行光管测量凸透镜焦距的原理图,并写出焦距表达式。
答:分)''y y f ? 式中f 为被测透镜焦距,'f 为平行光管焦距实测值,'y 为玻罗板上所选用线距实测值('''Y B A =),y 为测微目镜上玻罗板低频线的距离(Y AB =,即测量测微目镜焦距被测凸透镜焦距平行光管物镜玻罗板 .4)(.3)'(.2.1f f A Bf 'α'f B 234α值)。
一、题型1.选择;2.填空;3.作图题4.计算题;二、复习大纲上篇几何光学第一章几何光学的基本原理1.几何光学的四大基本定律光的直线传播定律、独立传播定律、光的折反射定律、光的全反射定律2.两大推论:费马原理、马吕斯定律3.物像的基本概念和完善成像条件4.虚像与实像5.光路计算基本概念与符号规则子午面、截距、倾斜角6.近轴光路(高斯光学)计算公式阿贝不变量、光焦度7.单个折射球面的物像特点、横向放大率、轴向放大率和角度放大率8.单个反射球面的物像特点、横向放大率、轴向放大率和角度放大率第二章理想光学系统1.共线成像理论2.基点与基面焦点与焦面;主点与主面;节点与节面的定义与特点如何利用主点的性质确定出射光线3.理想光学系统的物像关系利用作图法求像点;(单折射面、单反射面、单薄透镜,已知二光组基点,求组合光组的基点)利用解析法求像点(高斯公式与牛顿公式)第三章平面与平面光学系统1.平面镜---成像特点2.双平面镜---二次反射像的特点、出射光线夹角3.平行平板---成像特点、像的位移、成非完善像、等效空气层4.反射棱镜---坐标的确定(包括屋脊棱镜、怎样展开成平行平板)5.折射棱镜---最小偏角、光楔、双光楔6.光的色散和材料---平均折射率、阿贝常数、部分色散和相对色散第四章光学系统中的光阑与光束限制1.光阑光阑的分类孔径光阑----怎样确定一个系统中的孔径光阑的位置(作图或计算),孔径光阑的作用,孔径光阑与入瞳、出瞳的关系主光线的定义视场光阑----作用,孔径光阑与入窗、出窗的关系,视场角、线视场渐晕光阑----作用照相系统、显微系统、望远系统中的光阑,由渐晕系数要求计算视场远心光路2.光学系统的景深对准平面、弥散斑、景深与焦距、光圈的关系第七章典型光学系统1. 眼睛远点、近点、调节能力,屈光度人眼的屈光度误差及其校正(近视、远视)2. 放大镜视放大率、光束限制3.显微系统成像原理、视放大率、分辨力、物镜数值孔径、有效放大率光束限制3.望远系统成像原理、视放大率、有效放大率、光束限制第八章现代光学系统1.高斯光束复振幅表达式2.高斯光束的传播高斯光束的截面半径、波面曲率半径和位相因子的特点束腰半径、瑞利长度、远场发散角、高斯光束传播的复参数表示3.高斯光束的透镜变换高斯光束的透镜变换公式、高斯光束的聚焦、准直方法第十一章光的电磁理论基础1.光波的波动性波长、速度、频率的计算2. 平面电磁波波动表达式(判断振动方向、频率、波长等)光程的概念3.光在电介质分界面上的反射和折射S光波、P光波的定义,在电介质界面的反射和折射特点垂直入射时的菲涅耳公式布鲁斯特角反射比和透射比4倏逝波的概念和特点5.光波的叠加波的叠加原理两个频率相同、振动方向相同的单色光波叠加驻波(频率同、振动方向同、传播方向相反)两个频率相同、振动方向垂直的单色光波叠加光学拍(小频率差、振动方向同、传播方向同、振幅同)相速度和群速度第十二章光的干涉和干涉系统1.干涉现象和干涉条件双光束干涉条纹强度光程差D的计算干涉条纹的间隔:2、干涉条纹的可见度可见度定义振幅比与可见度的关系光源宽度与可见度的关系(空间相干性)光源单色性与可见度的关系(时间相干性)。
光学实验知识点总结一、光学实验的基础知识1.1 光的性质光是一种电磁波,在真空中传播的光速为c,独立于光源和观察者的运动状态。
光可以发生反射、折射、散射、吸收、干涉和衍射等现象。
1.2 光的波动性和粒子性光既具有波动性,又具有粒子性。
在一些实验中,光表现出波的相互干涉和衍射现象;在一些实验中,又表现出粒子的光电效应和康普顿散射现象。
1.3 光的色散和偏振光在经过介质的时候会发生色散现象,也会产生偏振现象。
色散是指不同波长的光在介质中传播速度不同,因而折射角度不同;偏振是指光波在特定方向上的振动方向。
1.4 光的干涉和衍射干涉是指两束或多束光波相遇后产生明暗相间的条纹,干涉现象通常发生在单色光发射的光波上;而衍射是摆动光波经过狭缝或障碍物后,发生波的扩散、弯曲和干涉的现象。
二、常见的光学实验2.1 反射实验反射实验是通过平面镜或曲面镜,观察光线的反射规律。
镜子的反射规律包括入射光线、反射光线和法线共面、入射角等于反射角、入射光线、反射光线和法线共面。
2.2 折射实验折射实验是通过介质的相对折射率和斯涅尔定律,观察光线在折射介质中的偏折现象。
斯涅尔定律是指光线经过折射介质时,入射角、折射角和折射介质的相对折射率之间满足一定的关系。
2.3 几何光学实验几何光学实验是通过定焦距的透镜,观察光线的偏折、成像和放大现象。
透镜的成像规律包括物距、像距、焦距、物方倍率、像方倍率等。
2.4 干涉实验干涉实验是通过干涉条纹,观察光波的干涉现象。
杨氏双缝干涉实验是经典的干涉实验,通过双缝产生的光波干涉,产生明暗相间的条纹。
2.5 衍射实验衍射实验是通过狭缝或障碍物,观察光波的衍射现象。
费涅尔衍射实验和夫琅禾费衍射实验是经典的衍射实验,通过狭缝或障碍物产生的衍射波纹,展现出光波的波动性。
2.6 偏振实验偏振实验是通过偏振片、波片和偏光器,观察光波的偏振现象。
偏振片可以过滤掉特定方向上的光波,使得出射光波具有特定的偏振状态。
光学教程期末知识点总结光学是研究光的传播、反射、折射以及与物质相互作用的科学。
光学知识在现代科技和工程领域有着广泛的应用,如光纤通信、激光技术、光学显微镜等。
在光学学习中,我们需要了解光的性质、光的传播规律、光的折射和反射规律以及光的成像规律。
下面就对光学教程期末知识点进行总结。
一、光的性质1. 光的波动性光是一种电磁波,具有波长、频率和振幅等特性。
光的波动性表现为光的干涉和衍射现象,根据不同波长的光线,我们可以通过干涉仪和衍射光栅来观察光的波动特性。
2. 光的能量光具有能量,能够力量物体。
光的能量和光强、光强度和面积有关,我们可以通过光能量的计算来了解光对物体的作用。
二、光的传播规律1. 光的直线传播在均匀介质中,光沿着直线传播,这是光的基本传播规律。
2. 光的反射光线在与介质表面发生反射时,入射角等于反射角,根据菲涅尔公式我们可以计算反射光的反射率。
3. 光的折射光线从一种介质传播到另一种介质时,会发生折射现象,入射角、折射角和介质的折射率之间存在一定的关系,这是根据折射定律可以得到。
三、光的成像规律1. 几何光学成像根据物体和成像点的关系,我们可以通过几何光学原理来进行成像点的计算,常见的成像方式有实像和虚像,我们可以根据物体和成像点的位置来进行实际成像情况的判断。
2. 透镜成像透镜是一种常见的光学器件,通过透镜的焦距、物的位置和成像点的位置,我们可以计算透镜成像的位置,了解透镜的成像规律。
3. 光的色散不同波长的光线通过透镜或棱镜会呈现出不同的色散现象,这是光的波动特性和折射规律共同表现出来的现象。
以上就是光学教程期末知识点的总结,通过对光的性质、光的传播规律和光的成像规律的了解,我们可以加深对光学原理的理解,为进一步的学习和应用打下基础。
光学知识在现代科技和工程领域有着广泛的应用,希望大家在学习中能够认真对待,加强理论知识的理解,提高实践能力,为光学领域的发展做出贡献。
1.名词解释:主点、主面、节点、节面、物距、焦距、像距、光焦度、垂轴放大率、角放大率、轴向放大率
2.名词解释:主光线、孔径光阑、入瞳(窗)、出瞳(窗)、子午光线、弧矢光线、子午面、弧矢面
3.名词解释:光学间隔、共轭距、高斯公式;什么是反射定律?什么是折射定律?二次成像法测量凸透镜焦距的原理及公式?
4.掌握球差、彗差、像散、场曲、畸变产生的原因是什么?能够简单画出各种像差的表现形式。
掌握单透镜球差的特点以及产生的影响?全反射光学系统有无色差,为什么?
5.名词解释:调制传递函数、分辨率、空间频率
6.知道什么是显微镜的视放大率?能够画出显微镜的基本光学系统的光路图,说明显微镜的成像原理?知道光学显微物镜铭牌上各个数值表示什么意思?7.平行光管是如何产生平行光束的?画出平行光管光路结构图?利用反射镜可以做平行光管吗?如果可以,对反射镜有什么要求?如果不可以,请说明原因。
8.简要叙述刀口阴影法测量光学系统像差的原理。
9.知道什么是望远系统的视放大率,能够画出开普勒望远镜和伽利略望远镜的成像光路图,并说明开普勒望远镜和伽利略的特点?能够根据望远镜的成像特点和特性参数,简单计算望远镜的结构参数(跟实验密切相关的数据)。
工程光学要点总结1. 引言工程光学是光学在工程应用中的一门学科,主要研究光学器件的设计、制造和应用。
在各个不同领域的工程应用中,光学起到了至关重要的作用,如光学通信、光学显示、激光加工等。
本文将对工程光学的一些重要要点进行总结和介绍。
2. 光学器件设计2.1 透镜设计透镜是光学系统中最常用的器件之一,其设计目的是使得平行光线汇聚于焦点处。
透镜的主要参数包括焦距、孔径和透镜曲率半径等。
在透镜设计中,需要考虑的因素包括光线的折射、色散、像差等问题。
2.2 光学薄膜设计光学薄膜广泛应用于反射镜、透镜等光学器件中,其设计目的是改变光的反射和透射特性。
光学薄膜设计中需要考虑的因素包括薄膜材料的选择、薄膜层厚度的设计以及波长选择和入射角等因素。
2.3 光学系统设计光学系统包括多个光学器件的组合,其设计目的是实现特定的光学功能。
在光学系统设计中,需要考虑的因素包括光路设计、光学元件的排布、光学系统的稳定性等。
3. 光学器件制造3.1 光学元件加工光学元件加工是指根据设计要求对光学元件进行加工和制造。
光学元件加工包括研磨、抛光、切割、上光等工艺,以及表面质量的检测和评估。
3.2 光学薄膜制备光学薄膜制备是指在光学元件表面上涂覆光学薄膜。
常见的制备方法包括物理气相沉积(PVD)、化学气相沉积(CVD)等。
3.3 光学器件组装光学器件组装是将加工好的光学元件按照设计要求进行组装。
光学器件组装需要考虑光学元件的位置精度、光学接口的对准等因素。
4. 光学器件应用4.1 光学通信光学通信是利用光波传输信息的一种通信方式,具有高带宽、低损耗等优点。
在光学通信系统中,需要使用到光纤、光放大器、光调制器等光学器件。
4.2 光学显示光学显示技术是指利用光的特性来显示图像和信息的技术。
光学显示技术包括液晶显示、有机发光二极管(OLED)显示等,广泛应用于平板电视、手机等消费电子产品中。
4.3 激光加工激光加工是利用激光束对材料进行加工和切割的一种技术。
工程光学重点整理第一章第一节 ●几何光学基本定律(直线传播定律,独立传播定律,反射折射定律,全反射,光的可逆原理)1.反射折射定律:入射光线、反射光线和分界面上入射点的法线三者在同一平面内。
入射角和反射角的绝对值相等而符号相反,即入射光线和反射光线位于法线的两侧,即II -=''nn I I '='sin sin2.全反射及其应用注意:光密介质、光疏介质、临界角 光密介质:分界面两边折射率较高的介质。
光疏介质:分界面两边折射率较低的介质。
临界角:折射角等于90°时的入射角。
全反射条件:①光线从光密介质进入光疏介质; ②入射角大于临界角。
● 费马原理:光是沿着光程为极植(极大、极小或常数)的路径传播的。
也可已表述为:光从一点传播到另一点,期间无论多少次折射或反射,其光程为极值。
利用费马原理可以证明:光的直线传播、折射及反射定律。
马吕斯定律:光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。
折、反射,费马原理及马吕斯定律可互推。
第二节a)光学系统与成像概念b)1、光学系统的作用:c)对物体成像,扩展人眼的功能。
d)2、完善像点与完善像:e)若一个物点对应的一束同心光束,经光学系统后仍为同心光束,该光束的中心即为该物点的完善像点。
完善像是完善像点的集合。
f)3、物空间、像空间:g)物所在的空间、像所在的空间。
h)4、共轴光学系统:i)j)图1-13共轴球面光学系统n '()n n 'n n 'n 若光学系统中各个光学元件表面的曲率中心在一条直线上,则该光学系统是共轴光学系统。
k) 5、各光学元件表面的曲率中心的连线,称光轴。
l) 完善成像条件:入射光出射光均为同心光束。
C A O n O O n O O n OO n O A n A E n E E n E E n EE n E A n k k k kk k k k='''+''++++=''+''++++ 21211112121111m) 物像的虚实判断:实像真实存在且可以记录,虚像则不可以。
工程光学知识点总结一、光学基础知识1. 光的特性光是一种电磁波,具有波粒二象性。
光的波长和频率决定了它的颜色和能量。
光在介质中传播时会发生折射和反射现象,这些现象是光学设计和应用的基础。
2. 光的干涉和衍射干涉和衍射是光学中重要的现象,它们是光波相互作用的结果。
干涉是两个或多个光波叠加产生的明暗条纹,衍射是光波在通过孔隙或障碍物时发生弯曲和扩散。
这些现象在光学测量和成像中有重要应用。
3. 光的偏振偏振是光振动方向的限定,通常的光是未偏振的。
偏振光在一些光学应用中有特殊用途,比如偏振片、液晶显示器等。
4. 光的传播光的传播受其波长和介质的影响,光在不同介质中传播时会有折射和反射。
此外,介质散射、吸收等也会对光的传播产生影响。
5. 光学材料光学材料是指在光学器件中用于传播、调制或控制光的材料,包括透明材料、半透明材料、非线性光学材料等。
光学材料的性能对光学器件的设计和性能有重要影响。
二、光学元件的设计和应用1. 透镜透镜是用于聚焦和成像的光学元件。
透镜分为凸透镜和凹透镜,它们分别用于成像、矫正等不同的应用。
常见的透镜设计包括单透镜、复合透镜、非球面透镜等。
2. 棱镜棱镜是由两个或多个平面或曲面构成的光学元件,用于折射和分离光线。
棱镜广泛应用于光谱分析、成像和激光技术中。
3. 波片波片是一种具有特定光学性能的光学元件,用于调节光的偏振和相位。
波片广泛应用于激光器、光学通信、显微镜等领域。
4. 光栅光栅是一种具有周期性结构的光学元件,用于光的衍射和色散。
光栅可以用于光谱分析、光学测量、激光调制等应用。
5. 光纤光纤是一种用于传输光信号的光学元件,具有良好的光学性能和传输性能。
光纤广泛应用于通信、传感、医疗等领域。
6. 光学薄膜光学薄膜是一种具有特定光学性能的薄膜材料,用于增强、减弱或调节光的透射、反射、吸收等特性。
光学薄膜广泛应用于激光器、光学镜头、太阳能电池等领域。
三、光学成像1. 光学成像原理光学成像是利用透镜、镜片等光学元件将物体投射成像到感光介质上的技术。
工程光学复习提纲(复习时结合课本、课件及相应习题。
)第一章1、光学三大定律,折射定律公式2、什么是马吕斯定律和费马定理?光程公式3、什么是光路可逆4、什么是全反射及临界角求法5、发生全反射条件6、什么叫共轭第二章1、了解光线的孔径角和截距2、熟悉符号规则3、近轴区物像位置关系式及物像大小关系式4、基面和基点:主面的放大率,物方焦点和像方焦点是一对共轭点吗?p335、焦面的性质;焦距、光焦度、光焦度单位6、作图法(物求像、像求物、轴上物点求像点):见课件及图2.15,图2.16,p54 T66、正焦距系统虚物一定成实像吗?负焦距系统实物都成虚像吗?7、牛顿公式及高斯公式的运用8、无限远物(像)求像(物)公式p419、三种放大率的关系9、球面镜焦距p4610、双光组求主面和焦点公式第三章1、平行平板各种放大率,轴向位移公式:(3.4)式2、光楔偏向角公式3、平面反射镜成像性质4、奇数个反射镜(奇数次反射)成镜像p655、掌握右(左)手定则使用6、两面角镜成像特性:公式,推论p667、二次反射棱镜特点(相当于两面镜,两反射面夹角)和画法p687、二次反射棱镜和两面角镜一样,绕垂直主截面轴转动,不影响出射光线方向7、五角棱镜使光路转90度,半五角棱镜使光路转45度。
8、屋脊棱镜屋脊面作用。
凡是有屋脊面,反射次数要加1.9、棱镜展开长度10、成像方向判断;图3.27及课后第8题11、无限远物经正透镜成像,坐标系不变,但会绕光轴转180度。
因为成倒像。
12、p79:T8, 9第四章1、什么是孔径光阑?2、孔径光阑、入瞳、出瞳的关系3、什么是主光线4、什么是物(像)方远心光路5、什么是场镜,场镜的作用,场镜的垂轴放大率多少?16、场镜会改变系统的成像特性吗?7、场镜焦距的求法:主光线在场镜前后与光轴交点是一对共轭点8、什么是视场光阑9、视场光阑、入窗、出窗关系10、什么是渐晕p8811、不出现渐晕现象的条件第六章1、人眼视角分辩率(弧度值和角秒值分别是多少?60角秒或0.0003rad)2、视放大率定义3、物在焦点处的放大镜视放大率(式6.2)3、放大镜视场与放大镜口径及人眼距放大镜的距离有何关系(式6.2)?4、显微镜成像原理图5、显微镜的视放大率、分辨率(式6.7,6.8,6.9)、有效放大率(6.11)6、望远镜的原理图(图6.12)7、望远镜的视放大率、分辨率。