二次根式集体备课
- 格式:doc
- 大小:228.00 KB
- 文档页数:8
第十六章二次根式集体备课教案班级课题二次根式课型新授备课人杨映铭 ,杨云海 ,姚惠 ,吴峰 ,刘祖才知识1. 理解二次根式的定义,会用算术平方根的概念解释二次根式的意义.教 2. 会确定二次根式有意义的条件,知道 a ( a ≥0)是非负数,并会运用.技能3. 会进行二次根式的平方运算,会对被开方数为平方数的二次根式进行化简.学 1. 经历观察、比较、概括二次根式的定义.过程 2. 通过探究二次根式的条件和结果,达成知识目标 2.目方法3.2a2所含运算、运算顺序、运算结果分析,归纳并掌握性质. 通过探究 a 和标情感培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.态度a 有意义的条件. 2. a≥0 时a ≥0 2a2的运算、化简教学重点 1. 的应用 . 3. a和教学难点 a <0时a2 的化简 .教学过程设计教学程序及教学内容二次修案一、复习引入复习平方根 ,算术平方根二、探究新知(一 )定义及非负性活动 1、填空,完成课本思考1:65 ,S , 2 ,h5活动 2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义 .活动 3、给出二次根式的定义,介绍二次根式的读法.活动 4、思考下列问题:①9的运算结果是 3,9是不是二次根式 3 是不是②定义中为什么要加 a ≥0若a<0,a表示什么有无意义③当 a=0 时, a 表示什么结果是什么当a>0 时,a表示什么可不可能为负数 a (a≥0)是什么样的数呢例 1、当 x 是怎样的实数时,下列二次根式有意义在下列二次根式有意义的情况下,其运算结果是怎样的实数x 2 , 1 ,x 2 3x 1练习: 1、课本思考2:当 x 是怎样的实数时,x2, x3有意义1、若x 2 m ,则x和m的取值范围是x_____; m______.2、已知x 3y 5 0,求x, y的值各是多少(二 )两个运算性质活动 5、完成课本探究 1活动 6、对a2中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变 .练习:课本例 2活动 7、完成课本探究 2活动8、对a2中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例 3补充练习: 1、化简:( 4)2,(2 3)2;三、课堂训练完成课本中两个练习 .有时间可补充: 1、m 1 m 成立的条件是_______.2、m 1 m 成立的条件是_______.四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计必做: P5:1、 2、 3、 4、5、 6选做: P6:7、 8板书设计教学反思班级课题二次根式的乘除(第 1 课时)课型新授备课人杨映铭 ,杨云海 ,姚惠 ,吴峰 ,刘祖才知识 1.会运用二次根式乘法法则进行二次根式的乘法运算.教技能 2.会利用积的算术平方根性质化简二次根式.学 1.经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质 .过程2.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第目方法一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的标方法 .情感培养学生观察、猜想的习惯和能力,勇于探索知识之间内在联系.态度教学重点双向运用 ab ab (a≥0,b≥0)进行二次根式乘法运算.教学难点被开方数的最优分解因数或因式的方法.教学过程设计教学程序及教学内容二次修案一、复习引入导语设计:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算。
二次根式的定义集体备课的活动记录一、集体备课目标解读1、理解并掌握二次根式的定义,掌握二次根式中被开方数的取值范围和二次根式的取值范围。
2、理解并掌握二次根式的性质和最简二次根式的概念,并灵活运用它们进行二次根式的运算。
通过学习和练习,体验由特殊到一般再到特殊的数学推理思想,培养严谨的思维和一丝不苟的学习习惯。
二、集体备课重点与难点的确定1、重点二次根式的化简和运算。
2、教学难点正确理解二次根式的定义和运算法则的合理性。
三、学情分析1、教学内容分析二次根式的定义是《数学课程标准》中“数与代数”领域的重要内容,它与已学内容“实数”“整式”紧密联系,同时也是以后学习“勾股定理”“一元二次方程”和“二次函数”等内容的重要基础。
本章通过对二次根式的定义、概念、性质和运算法则、运算规律等内容的学习探究,培养和提高学生的运算能力,促进学生的思维能力,发展学生认识事物一般规律的能力。
2、教学对象分析针对学生学习热情高,有一定观察、分析、认识问题能力的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习打下坚实的基础。
四、教学方法建议1、教学中要注意加强知识间的纵向联系,要对“二次根式的定义”有所体验,逐步体会运算法则和运算律在数的扩充过程中的一致性。
2、教学中注意应用类比的方法展开学习,要与时对整式的加减与乘除进行必要的复习。
同时要加强有关二次根式的练习,为后续学习打好基础。
五、教学重难点和解决的策略本章的重点是二次根式的定义、化简和运算,难点是正确理解二次根式的性质和运算法则的合理性.学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据.二次根式的性质和运算法则较多,在学习中要充分地发挥学生自主学习的作用,通过经历、观察、思考、讨论等探究活动得出结论,感受数学再发现的过程,突出它们的数学本质。
第十六章二次根式集体备课教案班级课题二次根式课型新授备课人杨映铭 ,杨云海 ,姚惠 ,吴峰 ,刘祖才知识1. 理解二次根式的定义,会用算术平方根的概念解释二次根式的意义.教 2. 会确定二次根式有意义的条件,知道 a ( a ≥0)是非负数,并会运用.技能3. 会进行二次根式的平方运算,会对被开方数为平方数的二次根式进行化简.学 1. 经历观察、比较、概括二次根式的定义.过程 2. 通过探究二次根式的条件和结果,达成知识目标 2.目方法3.2a2所含运算、运算顺序、运算结果分析,归纳并掌握性质. 通过探究 a 和标情感培养学生观察、猜想、探究、归纳的习惯和能力,体验数学发现的乐趣.态度a 有意义的条件. 2. a≥0 时a ≥0 2a2的运算、化简教学重点 1. 的应用 . 3. a和教学难点 a <0时a2 的化简 .教学过程设计教学程序及教学内容二次修案一、复习引入复习平方根 ,算术平方根二、探究新知(一 )定义及非负性活动 1、填空,完成课本思考1:65 ,S , 2 ,h5活动 2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义 .活动 3、给出二次根式的定义,介绍二次根式的读法.活动 4、思考下列问题:①9的运算结果是 3,9是不是二次根式 3 是不是②定义中为什么要加 a ≥0若a<0,a表示什么有无意义③当 a=0 时, a 表示什么结果是什么当a>0 时,a表示什么可不可能为负数 a (a≥0)是什么样的数呢例 1、当 x 是怎样的实数时,下列二次根式有意义在下列二次根式有意义的情况下,其运算结果是怎样的实数x 2 , 1 ,x 2 3x 1练习: 1、课本思考2:当 x 是怎样的实数时,x2, x3有意义1、若x 2 m ,则x和m的取值范围是x_____; m______.2、已知x 3y 5 0,求x, y的值各是多少(二 )两个运算性质活动 5、完成课本探究 1活动 6、对a2中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变 .练习:课本例 2活动 7、完成课本探究 2活动8、对a2中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例 3补充练习: 1、化简:( 4)2,(2 3)2;三、课堂训练完成课本中两个练习 .有时间可补充: 1、m 1 m 成立的条件是_______.2、m 1 m 成立的条件是_______.四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计必做: P5:1、 2、 3、 4、5、 6选做: P6:7、 8板书设计教学反思班级课题二次根式的乘除(第 1 课时)课型新授备课人杨映铭 ,杨云海 ,姚惠 ,吴峰 ,刘祖才知识 1.会运用二次根式乘法法则进行二次根式的乘法运算.教技能 2.会利用积的算术平方根性质化简二次根式.学 1.经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质 .过程2.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第目方法一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的标方法 .情感培养学生观察、猜想的习惯和能力,勇于探索知识之间内在联系.态度教学重点双向运用 ab ab (a≥0,b≥0)进行二次根式乘法运算.教学难点被开方数的最优分解因数或因式的方法.教学过程设计教学程序及教学内容二次修案一、复习引入导语设计:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算。
二次根式教案四篇二次根式教案篇11、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
课本第2— 3页一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、课堂教学(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。
组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。
教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。
(15分钟左右)1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇2一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的'根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。
二次根式教案二次根式教案(精选12篇)作为一名教职工,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
我们应该怎么写教案呢?以下是本店铺为大家整理的二次根式教案,欢迎阅读,希望大家能够喜欢。
二次根式教案 1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点最简二次根式的定义。
教学难点一个二次根式化成最简二次根式的方法。
教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的.内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。
第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1把下列各式化成最简二次根式:例2把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
第1篇一、活动背景随着新课程改革的深入推进,数学教学逐渐重视对学生数学思维的培养。
二次根式作为高中数学中的重要内容,对于培养学生的逻辑思维和数学运算能力具有重要意义。
为了提高教师对二次根式的教学水平,促进教师专业成长,我校于2021年10月15日开展了二次根式教研活动。
本次活动以“二次根式的教学策略与方法”为主题,旨在通过集体备课、课堂教学展示、评课研讨等形式,提升教师对二次根式教学的理解和教学能力。
二、活动内容1. 集体备课活动伊始,各备课组针对二次根式的教学目标、重难点进行了深入研讨。
首先,各备课组长带领组内教师共同分析了二次根式的概念、性质以及运算方法,明确了教学目标。
接着,针对二次根式的教学重难点,各备课组提出了相应的教学策略,如:(1)通过实际问题引入,激发学生学习兴趣;(2)运用图形直观,帮助学生理解二次根式的概念;(3)强化基础知识,提高学生运算能力;(4)注重类比,培养学生逻辑思维能力。
2. 课堂教学展示本次活动邀请了两位教师进行二次根式的课堂教学展示。
第一位教师以“二次根式的概念与性质”为主题,通过实际问题引入,引导学生自主探究二次根式的概念,并运用图形直观,帮助学生理解二次根式的性质。
第二位教师以“二次根式的运算”为主题,结合实例,引导学生掌握二次根式的运算方法,并强调运算过程中的注意事项。
3. 评课研讨课堂教学展示结束后,全体教师进行了评课研讨。
首先,各备课组长对本组教师的教学进行了简要评价,肯定了优点,指出了不足。
接着,其他教师针对两位展示教师的教学进行了深入点评,从教学设计、教学方法、课堂组织、学生互动等方面进行了交流。
(1)教学设计方面:两位教师的教学设计合理,教学目标明确,重难点突出,能够有效引导学生掌握二次根式的相关知识。
(2)教学方法方面:两位教师运用了多种教学方法,如问题引导、小组合作、探究学习等,激发了学生的学习兴趣,提高了课堂效果。
(3)课堂组织方面:两位教师能够灵活运用课堂时间,关注学生个体差异,确保了课堂教学的顺利进行。
二次根式单元备课(推荐)第一篇:二次根式单元备课(推荐)第一章二次根式单元备课一、教材分析本章是在学习了平方根、算术平方根以及实数概念的基础上安排的。
主要内容是二次根式的概念、性质和运算。
二次根式是最基本、最常用的无理式。
学习本章后,就把式的范围由有理式扩展到代数式。
因此,二次根式的运算既与实数及二次根式的概念、性质有关,又与前面的整式、分式的运算有紧密联系。
整式、分式的计算是二次根式运算的基础,它们的运算法则、性质对二次根式也成立,学习本章也为以后学习打基础。
二、教学目标1、记住二次根式、最简二次根式、同类二次根式的概念,会识别二次根式、最简二次根式、同类二次根式;2、能说出二次根式的性质,并会用它们进行化简;3、能说出二次根式的运算法则,并会进行计算。
三、重难点、关键二次根式的化简和计算是重难点;二次根式的概念和性质是关键。
四、学情分析上学期我从事八年级一班的数学教学,从上学期期末考试成绩来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕,分析其原因,主要是练习的量太少,所以这学期的主要突破口是加大学生的练习力度。
在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。
在教学方面,平时对学生的练习抓的不够紧,以至有少数同学一学期基本没做几次作业,作业的数量也不够。
五、教学措施1、注重在复习旧知识的基础上使学生的学习形成正迁移;如学习二次根式的概念,先复习算术平方根;学习同类二次根式,先复习同类项等;2、注意对学生基本技能的培养,特别是运算能力。
因本章的重点是二次根式的运算,所以在进行二次根式的运算教学时,要让学生记住运算法则,在运算过程中,要让学生能说出每步计算的根据。
3、为大面积提高学生成绩,注重平时的辅导及作业的面批;课堂上设计有层次性的练习题组,进行强化训练。
二次根式集体备课中心发言稿引言尊敬的各位老师、同事们:大家好!我很荣幸能够在这个二次根式集体备课中心的会议上发表演讲。
今天,我想与大家分享一些关于二次根式的教学经验和思考,希望能够给我们的备课工作带来一些启发和帮助。
二次根式的概念和性质首先,我们来回顾一下二次根式的概念和性质。
二次根式是指形如√a的表达式,其中a为非负实数。
它是数学中一个重要的概念,也是中学数学教学中的重点内容之一。
二次根式的性质有很多,其中包括: 1. 二次根式的值是非负的; 2. 二次根式可以进行加、减、乘、除运算; 3. 二次根式的化简和合并。
在教学过程中,我们需要通过生动的例子和实际问题,引导学生理解二次根式的概念和性质,培养学生的抽象思维能力和解决问题的能力。
二次根式的教学策略为了提高二次根式的教学效果,我总结了一些教学策略,希望能够与大家分享。
1. 创设情境,激发学生兴趣在教学过程中,我们可以创设一些情境,如通过测量、建模等方式,让学生感受到二次根式的实际应用和意义。
例如,可以通过测量正方形的边长和对角线长度,引导学生发现二次根式的出现,并与实际问题联系起来。
2. 引导学生发现规律,培养抽象思维在学习二次根式的化简和合并过程中,我们可以引导学生通过观察、探索,发现其中的规律和特点。
例如,可以通过多个例子的比较,让学生发现二次根式的合并过程中,根号下的数相乘,系数相加的规律。
3. 多种形式的练习,提高运算能力为了帮助学生掌握二次根式的运算技巧,我们可以设计多种形式的练习,如填空题、选择题、应用题等。
通过不同形式的练习,可以让学生在运算中灵活运用二次根式的性质,提高他们的运算能力。
4. 引导学生解决问题,培养应用能力在教学过程中,我们应该注重培养学生的问题解决能力和应用能力。
可以通过一些实际问题,引导学生将二次根式与其他数学知识相结合,解决实际问题。
例如,可以通过建模和求解的方式,让学生计算某个图形的面积或体积。
二次根式的教学资源和工具在备课过程中,我们可以利用一些教学资源和工具,提高教学效果。
第16章 二次根式第1课时 16.1.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程 (一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________; 正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么? 5、如何确定一个二次根式有无意义? (三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a,12+x 2、计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?①43-x 223x +③2、(133a a --a 的值为___________. (2)若 在实数范围内有意义,则x 为( )。
A .正数 B .负数 C .非负数 D .非正数2)3(________)(2=a x--21x -4(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
16.1二次根式(第二课时)主备人:王志红一、内容和内容解析1.内容二次根式(第二课时)2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.难点为:灵活应用二次根式的性质。
二、目标和目标解析1.目标(1)理解二次根式的性质并能熟练应用(2)在熟练掌握二次根式性质基础之上,进一步探索分类讨论思想。
(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用及会用分类讨论的方法。
四、教学过程设计1.创设情境,提出问题问题 1. 5 ,a 有意义吗?为什么?问题 2.5表示的意义是什么?a 表示的意义是什么?学生活动预设:(1)5有意义,因为5>0;a 当a ≥0时有意义,当a <0时无意义;(2)5表示的是5的算术平方根.a 表示的是当a ≥0时a 的算术平方根.【设计意图】:利用这两个式子复习被开方式的取值范围.并且复习算术平方根的基本形式.为后续探究二次根式的性质做铺垫。
二次根式集体备课
————————————————————————————————作者: ————————————————————————————————日期:
ﻩ
初二数学 集体备课资料(八年级下册)
第十六章 二次根式
一、 本部分知识结构
二、教学目标解读
1.理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围。
2.理解并掌握二次根式的性质和最简二次根式的概念,并灵活运用它们进行二次根式的运算。
通过学习和练习,体验由特殊到一般再到特殊的数学推理思想,培养严谨的思维和一丝不苟的学习习惯。
三、教材重点与难点的确定
1. 重点
二次根式的化简和运算。
二次根式
二次根式的概念
二次根式的性质 二次根式的运算 最简二次根式
二次根式的乘除
二次根式的加减
2. 教学难点
正确理解二次根式的性质和运算法则的合理性。
四、学情分析
1. 教学内容分析
二次根式是《数学课程标准》中“数与代数”领域的重要内容,它与已学内容“实数”“整式”紧密联系,同时也是以后学习“勾股定理”“一元二次方程”和“二次函数”等内容的重要基础。
本章通过对二次根式的概念、性质和运算法则、运算规律等内容的学习探究,培养和提高学生的运算能力,促进学生的思维能力,发展学生认识事物一般规律的能力。
2. 教学对象分析
针对八年级学生学习热情高,有一定观察、分析、认识问题能力的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习打下坚实的基础。
五、教学方法建议
(1)教学中要注意加强知识间的纵向联系,要对“有理数的运算律和运算法则在实数范围内仍然成立”有所体验,逐步体会运算法则和运算律在数的扩充过程中的一致性。
(2)教学中注意应用类比的方法展开学习,要及时对整式的加减及乘除进行必要的复习。
同时要加强有关二次根式的练习,为后续学习打好基础。
六、教学重难点和解决的策略
本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据。
二次根式的性质和运算法则较多,在学习中要充分的发挥学生自主学习的作用,通过经历、观察、思考、讨论等探究活动得出结论,感受数学再发现的过程,突出它们的数学本质。
七、教学建议
1.课时规划意见
二次根式………………………………………………………………2课时
二次根式乘除……………………………………………………………2课时二次根式加减……………………………………………………………2课时本章复习…………………………………………………………………1课时2.作业布置建议
测试卷
3.配套题
ﻬ【测试卷】
二次根式练习题
一、选择题
1. 下列式子一定是二次根式的是( )
A .2--x B.x C.22+x D.22-x
2.若b b -=-3)3(2,则( )
A.b>3
B.b<3 C .b ≥3 D .b ≤3
3.若13-m 有意义,则m能取的最小整数值是( )
A.m =0 B.m=1 C.m =2 D .m=3
4.若x<0,则x
x x 2
-的结果是( ) A.0 B .—2 C.0或—2 D.2
5.(2005·岳阳)下列二次根式中属于最简二次根式的是( ) A.14 B .48 C .b
a D .44+a 6.如果)6(6-=-•x x x x ,那么( )
A .x ≥0
B .x ≥6 C.0≤x ≤6 D.x 为一切实数
7.(2005·湖南长沙)小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a
a a a =•=112;④a a a =-23。
做错的题是( )
A .① B.② C .③ D.④
8.化简6
151+的结果为( ) A.30
11 B.33030 C.30330 D.1130 9.(2005·青海)若最简二次根式a a 241-+与的被开方数相同,则a的值为( )
A .43-=a B.3
4=a C.a=1 D.a= —1 10.(2005·江西)化简)22(28+-
得( ) A.—2 B.22- C .2 D. 224-
二、填空题
11.①=-2)3.0( ;②=-2)52( 。
12.二次根式31
-x 有意义的条件是 。
13.若m<0,则332||m m m ++= 。
14.1112-=-•+x x x 成立的条件是 。
15.比较大小:32
13。
16.=•y xy 82 ,=•2712 。
17.计算3
393a a a a -+= 。
18.232
31
+-与的关系是 。
19.若35-=x ,则562++x x 的值为 。
20.化简⎪⎪⎭
⎫ ⎝⎛--+1083114515的结果是 。
三、解答题
21.求使下列各式有意义的字母的取值范围:
(1)43-x (2)
a 831- (3)42+m (4)x 1-
22.化简:
(1))169()144(-⨯- (2)2253
1-
23.计算:
(1)21437⎪⎪⎭⎫ ⎝
⎛- (2) )459(43332-⨯
(3)2484554+-+ (4)2
332326--
四、综合题
24.若代数式||112x x -+有意义,则x 的取值范围是什么?
25.若x,y是实数,且2
111+-+-<x x y ,求1|1|--y y 的值。