变速器换挡机构结构
- 格式:doc
- 大小:181.58 KB
- 文档页数:5
自动变速器换挡机构的建模和结构参数优化自动变速器是现代汽车中常见的传动装置之一,它通过将发动机的动力传递到车轮上,实现车辆的换挡和变速。
而自动变速器的核心部件就是换挡机构,它的设计和结构参数优化对于变速器的性能和可靠性有着重要影响。
换挡机构是自动变速器中负责实现不同挡位的切换的部件,它由一系列的齿轮、离合器、制动器和液压控制系统组成。
在车辆行驶过程中,换挡机构通过控制不同的离合器和制动器的工作来实现挡位的切换,从而使车辆在不同速度和负载下保持最佳的动力输出和燃油经济性。
换挡机构的建模是指利用数学和物理原理来描述和分析换挡机构的工作原理和性能。
建模的过程中,需要考虑到换挡机构的结构、工作原理、动力学特性等因素,以及与其它部件的耦合和协调。
通过建立准确的数学模型,可以对换挡机构的性能进行仿真和优化,为实际应用提供指导。
换挡机构的结构参数优化是指通过对换挡机构的结构和参数进行优化设计,以提高其性能和可靠性。
在优化设计中,需要考虑到换挡机构的传动比、齿轮模数、齿轮啮合角、离合器和制动器的切换时间等参数。
通过合理选择这些参数,可以使换挡机构在不同工况下实现平稳、快速和可靠的换挡操作,提高驾驶舒适性和操控性能。
换挡机构的优化设计是一个复杂的工程问题,需要综合考虑多个因素。
首先,需要考虑到换挡机构的工作可靠性和寿命,确保其在长期使用过程中不会出现故障和损坏。
其次,需要考虑到换挡机构的换挡速度和换挡平顺性,以提高车辆的加速性能和行驶舒适性。
此外,还需要考虑到换挡机构的制造成本和装配难度,以降低生产成本和提高生产效率。
为了实现换挡机构的优化设计,可以采用多种方法和技术。
例如,可以利用计算机辅助设计和仿真软件进行模拟和优化分析,以快速评估不同设计方案的性能和可行性。
同时,还可以借鉴先进的制造工艺和材料技术,以提高换挡机构的精度和耐久性。
自动变速器的换挡机构是其核心部件之一,其建模和结构参数优化对于变速器的性能和可靠性有着重要影响。
CVT 型图库
CVT 型 自动无级变速器总成示意图
CVT 型 自动无级变速器总成示意图
CVT型自动无级变速器总成示意图
CVT型自动无级变速器总成示意图
总成分解示意图
总成分解图示
1 液力变矩器总成
2 前壳体总成
3 差速器总成
4 油泵总成
5 中壳体总成
6 换挡机构总成
总成分解图示
总成分解图示
总成分解图示
3 差速器总成4油泵总成 5 中壳体总成7 中间轴总成8 滤清器9 档位开关10 转速传感器11 输入轴总成12 后端盖13 阀块总成1
4 滤油器1
5 油底
壳总成
16 压力传感器17 后端盖纸垫18 加油管合件19 拉线支架20管夹支架
22 带轮转动机构23 线束24 换挡机构总成
部件总成分解
液力变矩器总成
1 液力变矩器外壳
2 导轮1
3 涡轮
4 导轮隔圈
5 涡轮底座
6 导论2
7 止簧卡圈8 单向锁止弹簧9 单向离合器座
差速器总成
①轴6208 ②半轴齿轮③垫片④差速器壳⑤行星轮⑥行星齿轮垫片⑦螺栓M10×25 ⑧差速器齿圈⑨轴承6008。
换挡机构的组成和作用
一、组成
换挡机构是汽车变速器的重要组成部分,主要由以下几个部分组成:
1. 档位选择器:也称为换挡手柄或档把,用于选择前进档、倒档或者空挡。
2. 换挡轴:连接档位选择器和变速器,用于传递驾驶员的换挡动作。
3. 换挡拨叉:位于变速器内部,用于将档位从一个位置切换到另一个位置。
4. 同步器:用于在换挡过程中同步齿轮的速度,以减少换挡冲击。
5. 排挡杆:位于变速器外部,用于控制变速器的排挡。
二、作用
换挡机构的作用是将驾驶员的换挡动作传递到变速器,实现汽车档位的切换。
具体来说,换挡机构的作用包括以下几个方面:
1. 切换档位:驾驶员通过操作档位选择器和排挡杆,可以选择前进档、倒
档或者空挡等不同的档位。
2. 传动动力:换挡机构将发动机的动力传递给变速器,并通过变速器的变
速和变向功能,将动力输出到车轮,驱动汽车行驶。
3. 便于维修:换挡机构方便驾驶员对汽车进行维修和保养,如更换机油、
轮胎等操作。
4. 优化性能:通过不同的换挡策略,驾驶员可以根据不同的行驶需求和路
况选择合适的档位,以优化汽车的行驶性能和燃油经济性。
以上是换挡机构的组成和作用的信息。
安徽工业大学2013-2014学年第一学期《汽车设计》课程作业题目:桑塔纳轿车5挡手动变速器换挡机构结构分析改进姓名:学号:班级:车辆工程指导老师:***桑塔纳轿车5挡手动变速器换挡机构结构分析改进目前驾校用车一般就是桑塔纳轿车,本人在学车的时候发现桑塔纳轿车5挡手动变速器挡换的平顺性和舒适性有待改进,变速器的换挡舒适性一般是用户对于汽车性能最初步也是最直观的评价。
目前,桑塔纳轿车变速器的换挡性能以无法满足用户日益提高的对舒适性的要求,期望着桑塔纳变速器的操作舒适性不断提高。
概述:研究桑塔纳轿车5 挡手动变速器换挡机构结构,通过对换挡机构相关零件的力学分析和模拟整车状态下的换挡力测试数据材料,发现变速器定排销的定排力和同步器弹簧的弹力对桑塔纳变速器的换挡力有着明显的影响,为此对定排销定排力和同步器弹簧的弹力对变速器换挡力的影响进行了测试,验证在静态换档阶段同步器弹簧的弹力和定排销的定排力对整个换挡力有直接影响,进而提出了一种变速器同步器弹簧直径改进方案来降低变速器选换挡轴处的换挡力。
桑塔纳变速器是手动“二轴五速”变速器,其换挡结构和大部分手动变速器的换挡结构类似,即通过选换挡轴进行选挡,由拨叉轴、拨叉、同步器总成、挡位齿轮结合齿实现挂挡。
在桑塔纳变速器换挡机构中,1/2 挡拨叉轴控制1挡和2挡,3/4挡拨叉轴控制3挡和4挡,5倒挡拨叉轴控制5挡和倒挡。
本文通过对桑塔纳变速器3/4 挡换挡机构的结构剖析,进一步了解变速器的换挡过程。
桑塔纳手动变速器换挡过程经过如下几个步骤(图1 和图2):操作者通过操纵杆和外部连杆机构作用选换挡轴一选换挡轴推动拨叉轴一拨叉轴带动拨叉一拨叉推动同步器齿套一同步器齿套推动同步器滑块,同时压缩同步器弹簧一同步器滑块推动同步器齿环一同步器齿环受滑块的推力在齿轮的锥面上形成摩擦力矩,使得齿轮转速与同步器齿套转速等同(同步过程)一同步器齿套通过同步器齿环梅角和挡位齿轮梅角l的引导,滑人挡位齿轮结合齿实现挂档。
自动变速器换挡原理自动变速器是现代汽车上的一种重要装置,它能够自动调整车辆的传动比,使发动机在各种工况下都能够保持在最佳工作状态。
而自动变速器的核心就是换挡原理,下面我们就来详细了解一下自动变速器的换挡原理。
首先,我们需要了解自动变速器的结构。
自动变速器主要由液力变矩器、齿轮组、行星齿轮组、离合器和制动器等部件组成。
其中,液力变矩器是自动变速器的核心部件之一,它通过液体的动能传递来实现发动机与变速器的连接。
齿轮组和行星齿轮组则负责传递动力并实现不同档位的换挡操作,而离合器和制动器则用于控制齿轮组和行星齿轮组的运动状态。
在车辆行驶过程中,自动变速器会根据车速、油门开度、发动机转速等参数自动进行换挡操作,以确保车辆能够在不同工况下保持最佳的动力输出和燃油经济性。
换挡原理主要包括以下几个方面:首先,液力变矩器的工作原理。
液力变矩器通过液体的动能传递来实现发动机与变速器的连接,其内部包含泵轮和涡轮两个部件,液体在泵轮的作用下传递动能到涡轮,从而实现发动机与变速器的连接。
在换挡时,液力变矩器会通过控制液体的流动来实现动力的传递或中断,从而实现换挡操作。
其次,齿轮组和行星齿轮组的工作原理。
自动变速器内部包含多个齿轮组和行星齿轮组,它们通过不同的组合来实现不同档位的换挡操作。
在换挡时,自动变速器会通过控制离合器和制动器来锁定或释放特定的齿轮组或行星齿轮组,从而实现换挡操作。
最后,控制系统的工作原理。
自动变速器的换挡操作是由控制系统来实现的,控制系统会根据车速、油门开度、发动机转速等参数来自动调整换挡时机和方式。
在换挡时,控制系统会通过控制液压或电磁阀来控制离合器和制动器的动作,从而实现换挡操作。
总的来说,自动变速器的换挡原理是一个复杂而精密的系统工作,它通过液力变矩器、齿轮组和行星齿轮组、离合器和制动器以及控制系统等部件的协同作用来实现车辆在不同工况下的换挡操作,从而保证车辆能够保持最佳的动力输出和燃油经济性。
变速器换挡机构的原理与设计要点一、引言在现代汽车中,变速器扮演着重要的角色,它能够在车辆行驶中改变驱动力的传递比,使得驾驶者能够根据行驶条件和需求选择合适的档位。
而变速器的换挡机构则是实现档位切换的核心部件。
本文将介绍变速器换挡机构的原理与设计要点。
二、换挡机构的原理1. 换挡原理换挡机构的核心原理是通过控制齿轮的相对位置和连接状态来实现档位的切换。
在变速器中,通常会采用齿轮对齿轮的咬合方式来传递驱动力。
当需要进行换挡时,换挡机构会采用不同的方式来切换齿轮的连接状态,从而实现不同的传递比。
2. 换挡方式根据不同的变速器结构和设计,换挡机构的方式也会有所不同。
常见的换挡方式包括手动换挡和自动换挡。
手动换挡通常通过操纵换挡杆或拨片来实现,驾驶者可以根据需求手动选择合适的档位。
而自动换挡则通过电子系统和液压控制来实现,系统会根据车速和发动机负荷等参数智能选择合适的档位。
三、换挡机构的设计要点1. 结构设计换挡机构的结构设计应考虑紧凑、坚固和易于操控。
在设计过程中需要充分了解齿轮传递的力学特性,并选择合适的轴承和连接件。
同时,在设计中应注意杠杆原理,通过合理的杠杆比例来减小操纵力。
2. 换挡力矩控制换挡时需要克服一定的换挡力矩,而过大或过小的力矩都会影响换挡的舒适性和可靠性。
因此,在设计中需要准确计算换挡力矩,并选择合适的换挡机构传递力矩的方式,如使用弹簧、摩擦片等。
3. 换挡路径设计换挡路径设计要考虑换挡的顺畅性和快速性。
合理设计换挡机构的路径和动作,可以减少换挡时间和换挡过程中的冲击和噪音。
同时,注意相邻档位之间的间隔,使得换挡过程中能够准确地进入目标档位。
4. 换挡机构的可靠性换挡机构的可靠性是设计的一个重要指标。
在设计过程中,需要使用合适的材料和加工工艺,确保换挡机构能够承受长时间和高强度的工作。
同时,需进行可靠性验证和测试,以确保换挡机构的正常工作和寿命。
四、总结变速器换挡机构是实现档位切换的重要部件,其原理和设计要点直接影响着变速器的性能和可靠性。
手动变速器换挡原理
手动变速器是一种由驾驶员手动操作的装置,用于改变车辆传动系统中的齿轮比,以调整发动机的输出转速和车辆的速度。
手动变速器的工作原理是通过操作离合器和齿轮机构实现换挡。
换挡的第一步是操作离合器。
离合器是变速器输入轴和发动机之间的连接机构,它可以将发动机的动力传输到变速器中。
在换挡之前,驾驶员需要踩下离合器踏板,将离合器分离,断开发动机和变速器的连接。
接下来是操作齿轮机构。
手动变速器通常由一根或多根齿轮组成,每个齿轮都有不同的齿数。
换挡的过程就是通过操作换挡杆,将不同齿轮的齿轮副咬合,实现不同的传动比。
一般而言,变速器的一侧是输入轴,另一侧是输出轴,而换挡杆的操作可以选择将输入轴与不同齿轮副相连,从而实现不同的速度输出。
换挡时,驾驶员需按照车辆速度和转速的要求,将换挡杆从一个齿轮位置移动到另一个齿轮位置。
在换挡的瞬间,驾驶员需要释放离合器踏板,使得离合器重新连接,将发动机的动力传输到新的齿轮上。
在换挡过程中,需要注意避免过度提速或过度降速,以免对车辆和传动系统造成损伤。
此外,换挡时需要根据不同档位的齿轮比调整涡轮增压器的工作,以保持发动机的效率和输出动力。
总之,手动变速器的换挡原理是通过操作离合器和齿轮机构,将发动机的动力传输到不同齿轮上,从而实现车辆速度的调整。
驾驶员需要准确操作换挡杆,配合离合器的运行,以确保平稳的换挡和高效的动力输出。
五档手动变速器的结构原理
首先,离合器是五档手动变速器的第一个重要部件。
当换档时,离合
器会将发动机和齿轮组之间的连接断开,允许齿轮组自由运动。
离合器由
两个离合器板和压盘组成,通过离合器操作杆或脚踏板来控制。
其次,齿轮组是五档手动变速器的核心部件。
它由一系列齿轮组成,
每个齿轮都有不同的大小和齿数。
这些齿轮通过齿轮轴连接在一起,当换
挡时,特定的齿轮会与发动机曲轴和车轮传动装置相连。
第三,换挡杆是用于选择不同齿轮的手柄或杆。
它位于车辆驾驶室内
的座位旁边,通常通过连杆与齿轮组相连。
当换挡杆移动到不同的位置时,齿轮组中的齿轮也会相应地移动,从而改变车辆的转速比。
最后,连杆是将换挡杆的运动传递给齿轮组的部件。
它通常由金属材
料制成,具有一定的强度和刚性,以承受换挡时的冲击和压力。
连杆通常
与换挡杆和齿轮轴相连,传递外力和运动。
总的来说,五档手动变速器的工作原理是通过离合器、齿轮组、换挡
杆和连杆等部件的协同运作,实现发动机转速与车轮转速之间的转速比变化。
当换挡时,离合器会断开发动机和齿轮组之间的连接,然后通过换挡
杆的移动和连杆的传递,选择不同的齿轮来改变转速比。
这样,驾驶员可
以根据实际情况选择适合的档位,以提供更好的动力和效率。
图解变速箱,一篇看懂全部结构汽车变速器,是一套用于来协调发动机的转速和车轮的实际行驶速度的变速装置,用于发挥发动机的最佳性能。
变速器可以在汽车行驶过程中,在发动机和车轮之间产生不同的变速比。
手动变速器手动变速器就是必须用手拨动变速器杆,才能改变传动比的变速器。
手动变速器主要由壳体、传动组件(输入输出轴、齿轮、同步器等)、操纵组件(换挡拉杆、拨叉等)。
手动变速器构造变速器原理变速器为什么可以调整发动机输出的转矩和转速呢?其实这里蕴含了齿轮和杠杆的原理。
变速器内有多个不同的齿轮,通过不同大小的齿轮组合在一起,就能实现对发动机转矩和转速的调整。
用低转矩可以换来高转速,用低转速则可以换来高转矩。
变速器原理变速器的作用主要表现在三方面:第一,改变传动比,扩大驱动轮的转矩和转速的变化范围;第二,在发动机转向不变的情况下,实现汽车倒退行驶;第三,利用空挡,可以中断发动机动力传递,使得发动机可以启动、怠速。
手动变速器原理手动变速器的工作原理,就是通过拨动变速杆,切换中间轴上的主动齿轮,通过大小不同的齿轮组合与动力输出轴结合,从而改变驱动轮的转矩和转速。
发动机的动力输入轴是通过一根中间轴,间接与动力输出轴连接的。
中间轴的两个齿轮(红色)与动力输出轴上的两个齿轮(蓝色)是随着发动机输出一起转动的。
但是如果没有同步器(紫色)的接合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。
图中同步器位于中间状态,相当于变速器挂了空挡。
简单变速器结构5挡手动变速器5挡手动变速器原理5挡手动变速器剖面图5挡手动变速器组成换挡机构不仅增强驾驶员换挡感觉,而且可以防止同时挂入两个挡位。
换挡机构同步器变速器在进行换挡操作时,尤其是从高挡向低挡的换挡很容易产生轮齿或花键齿间的冲击。
为了避免齿间冲击,在换挡装置中都设置同步器。
同步器有常压式和惯性式两种,目前大部分同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,主要是依靠摩擦作用实现同步。
自动变速器换挡执行机构自动变速器换挡执行机构是汽车自动变速器的重要组成部分,它的作用是在车辆行驶过程中将发动机输出的扭矩转化为合适的齿轮比,以便调整车速和提高汽车的行驶稳定性和燃油经济性。
本文将详细介绍自动变速器换挡执行机构的构成和工作原理。
首先是压电阀体。
压电阀体是自动变速器换挡执行机构的关键部件之一、它通过利用压电晶体的特殊物理性质来实现对换挡电压的精确控制,从而完成换挡操作。
当换挡电压施加在压电阀体上时,会使晶体产生形变,进而改变压电阀体的通道形状,从而实现换挡操作。
接下来是离合器和制动装置。
离合器和制动装置是自动变速器换挡执行机构的关键组成部分,它们通过控制离合器和制动的扭矩转换来实现换挡操作。
当需要换挡时,通过控制离合器的接合和分离,将发动机的动力传递到变速器的输入轴,实现换挡操作。
而制动装置则通过施加制动力瞬间减速转动的部件,以实现变速器的换挡操作。
其次是挂档电磁阀。
挂档电磁阀是自动变速器换挡执行机构的关键控制元件之一,它通过控制油液的通断来实现换挡操作。
当需要换挡时,电控单元向挂档电磁阀发送信号,控制挂档电磁阀的通断,使油液通过或者截断,从而控制离合器和制动装置的工作状态,实现换挡操作。
最后是变速器油泵。
变速器油泵是自动变速器换挡执行机构的关键部分之一,它通过产生足够的压力和流量,将润滑油送到自动变速器的各个部件,以确保自动变速器正常工作。
当发动机运转时,变速器油泵随之转动,通过吸入和压入油液来维持自动变速器的润滑和散热,确保换挡过程的平稳进行。
总结起来,自动变速器换挡执行机构是汽车自动变速器的重要组成部分,它由压电阀体、离合器和制动装置、挂档电磁阀、换挡电磁阀、变速器油泵等组成。
它们相互配合,通过控制和调整油液的通断、离合器和制动的工作状态来实现换挡操作。
在汽车行驶过程中,自动变速器换挡执行机构起到了至关重要的作用,它能够提高汽车的行驶稳定性和燃油经济性,给驾驶员带来更好的驾驶体验。
安徽工业大学2013-2014学年
第一学期《汽车设计》课程作业
题目:桑塔纳轿车5挡手动变速器换挡机构结构分析改进姓名:
学号:
班级:车辆工程
指导老师:***
桑塔纳轿车5挡手动变速器换挡机构结构分析改进
目前驾校用车一般就是桑塔纳轿车,本人在学车的时候发现桑塔纳轿车5挡手动变速器挡换的平顺性和舒适性有待改进,变速器的换挡舒适性一般是用户对于汽车性能最初步也是最直观的评价。
目前,桑塔纳轿车变速器的换挡性能以无法满足用户日益提高的对舒适性的要求,期望着桑塔纳变速器的操作舒适性不断提高。
概述:研究桑塔纳轿车5 挡手动变速器换挡机构结构,通过对换挡机构相关零件的力学分析和模拟整车状态下的换挡力测试数据材料,发现变速器定排销的定排力和同步器弹簧的弹力对桑塔纳变速器的换挡力有着明显的影响,为此对定排销定排力和同步器弹簧的弹力对变速器换挡力的影响进行了测试,验证在静态换档阶段同步器弹簧的弹力和定排销的定排力对整个换挡力有直接影响,进而提出了一种变速器同步器弹簧直径改进方案来降低变速器选换挡轴处的换挡力。
桑塔纳变速器是手动“二轴五速”变速器,其换挡结构和大部分手动变速器的换挡结构类似,即通过选换挡轴进行选挡,由拨叉轴、拨叉、同步器总成、挡位齿轮结合齿实现挂挡。
在桑塔纳变速器换挡机构中,1/2 挡拨叉轴控制1挡和2挡,3/4挡拨叉轴控制3挡和4挡,5倒挡拨叉轴控制5挡和倒挡。
本文通过对桑塔纳变速器3/4 挡换挡机构的结构剖析,进一步了解变速器的换挡过程。
桑塔纳手动变速器换挡过程经过如下几个步骤(图1 和图2):操作者通过操纵杆和外部连杆机构作用选换挡轴一选换挡轴推动拨叉轴一拨叉轴带动拨叉一拨叉推动同步器齿套一同步器齿套推动同步器滑块,同时压缩同步器弹簧一同步器滑块推动同步器齿环一同步器齿环受滑块的推力在齿轮的锥面上形成摩擦力矩,使得齿轮转速与同步器齿套转速等同(同步过程)一同步器齿套通过同步器齿环梅角和挡位齿轮梅角l的引导,滑人挡位齿轮结合齿实现挂档。
图1变速器换挡机构结构示意
1.选换挡轴
2.输入轴
3.挡主动齿轮
4. 3/4 挡同步器总成
5.4挡主动齿轮
6拨叉7拨叉轴8定排销
整个换挡过程中主要经历了两个阶段:第一阶段是从“选换挡轴受外部连杆机构作用”到“同步器齿套推动同步器滑块”,这一过程的作用力与输入轴转速无关,称它为静态换挡阶段;第二阶段是从“同步器齿环受滑块的推力在齿轮的锥面上形成摩擦力矩”到“同步器齿套滑人齿轮结合齿”,这一过程的作用力与输入轴的转速有关,称它为动态同步阶段。
图2同步器总成剖面示意
1.3 挡主动齿 2 .4.同步器齿环3.同步器齿套5.4 挡主动齿
6.输入轴
7.同步器齿毂
8.同步器滑块
9.同步器弹簧
静态换挡阶段换挡力力学分析
拨叉轴受力分析(将拨叉轴视为质点,未计人重力)如图3所示。
图中,为拨又轴的移动方向,F为外部连杆机构的作用力 (选换挡产生的摩擦力所占比例较小,在此未计人);P 为定排销的定排力f p为拨叉轴和定排销间的摩擦力;N 1为壳体对拨叉轴为拨叉轴和定排销间的摩擦力;N 1为壳体对拨叉轴的支持力为拨叉轴和壳体间的摩擦力;N 2 f N1 为轴承箱对拨又轴的支持力,f N2为拨又轴和轴承箱间的摩擦力,T 为同步器产生的阻力。
T 、f p 、f N1 、f N2、是静态换挡阶段换挡力的重要组成部分,其关系式如下:
F p = μp*P (1) f N1=μ*N1(2 )
f N2=μ*N 2 (3 ) P=N I+N 2 (4 )
式中,u 、u 为摩擦系数。
图3拔叉轴受力分析
综上所述,影响静态换挡阶段换挡力的主要因素是定排销的定排力 P 、同步器弹簧的弹力、同步器滑块斜面角度。
静态换挡阶段同步器齿套和同步器齿毂的相对摩擦力可忽略不计。
静态换挡阶段换挡力台架测试同步器弹簧直径改进方案
试验在换挡性能临时试验台架上进行试验设备包括拉压传感器(型号:JLBS ;规格:0~100 kg)波形分析仪等。
针对同一台桑塔纳变速器总成.采用 2种状态连续换挡 ,采集20组数据,去掉 2个最大值和2个最小值所得平均值见表1所列。
表中,状态1为静态、桑塔纳变速器中装入 3/4 挡同步器但去除了 3挡、4挡齿轮和3挡、4 挡同步器齿环的梅角 (排除静态换挡时梅角切人时产生的附加力),状态2为静态、桑塔纳变速器中未装入3/4 挡同步器条件下所进行的测试。
表中数据由换挡力曲线图谱的电压值换算得到。
表1静态阶段变速器换挡力台架测试结果数据
从表 1中
可看出静态换挡阶段同步器产生的作用力占整个静态换挡阶段换挡力 (进挡力 )的 45%。
依据表中数据可以从下面环节进行改进。
同步器弹簧直径改进方案,同步器产生的作用力来自于同步器弹簧的弹力 。
查阅相关资料可知 ,PO LO 和赛欧等车辆的手动 5 挡变速器同步器弹簧均采用直径为 1.5m m 的钢丝。
考虑此种情况,本文分别对1.5 m m 的钢丝和1.6 m m 的钢丝所制成的同步器弹簧的换挡力进行了台架测试。
测试结果如下表2
对试验数据进行分析可知,钢丝直径为 1.5 m m 的同步器弹簧比钢丝直径为 1.6 m m 的同步器弹簧动态同步阶段的同步力提高近 l0 N 左右。
综上所述,使用钢丝直径为 1.5 m m 的同步器弹簧相比钢丝直径为 1.6 m m 的同步器弹簧可降低进挡力21 N 左右,并对整个换挡性能无附加影响。
通过上述改进后,提高了变速器的换挡舒适性。
参考文献
1.余志生.汽车理论.北京 :机械工业出版社。
2.《汽车技术》杂志。