高中数学全套讲义 选修1-1 椭圆初步基础学生版
- 格式:docx
- 大小:285.84 KB
- 文档页数:4
§2.1椭圆2.1.1椭圆及其标准方程(一)学习目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.知识点一椭圆的定义思考给你两个图钉,一根无弹性的细绳,一张纸板,一支铅笔,如何画出一个椭圆?答案在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.梳理(1)定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹.(2)焦点:两个定点F1,F2.(3)焦距:两焦点间的距离|F1F2|.(4)几何表示:|MF1|+|MF2|=2a(常数)且2a>|F1F2|.知识点二椭圆的标准方程思考在椭圆的标准方程中a>b>c一定成立吗?答案不一定,只需a>b,a>c即可,b,c的大小关系不确定.梳理焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) a,b,c的关系c2=a2-b21.到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.(×)2.椭圆标准方程只与椭圆的形状、大小有关,与位置无关.(×)3.椭圆的两种标准形式中,虽然焦点位置不同,但都具备a2=b2+c2.(√)类型一椭圆的标准方程命题角度1求椭圆的标准方程例1求适合下列条件的椭圆的标准方程:(1)以坐标轴为对称轴,并且经过两点A(0,2),B⎝⎛⎭⎫12,3;(2)经过点(3,15),且与椭圆x225+y29=1有共同的焦点.考点椭圆标准方程的求法题点待定系数法求椭圆的标准方程解(1)方法一当焦点在x轴上时,可设椭圆的标准方程为x2a2+y2b2=1(a>b>0),∵点A(0,2),B⎝⎛⎭⎫12,3在椭圆上,∴⎩⎪⎨⎪⎧4b2=1,⎝⎛⎭⎫122a2+(3)2b2=1,解得⎩⎪⎨⎪⎧a2=1,b2=4,这与a>b相矛盾,故应舍去.当焦点在y轴上时,可设椭圆的标准方程为a 2b 2∵点A (0,2),B ⎝⎛⎭⎫12,3在椭圆上, ∴⎩⎪⎨⎪⎧4a 2=1,(3)2a 2+⎝⎛⎭⎫122b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴椭圆的标准方程为x 2+y 24=1, 综上可知,椭圆的标准方程为x 2+y 24=1. 方法二 设椭圆的标准方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵点A (0,2),B ⎝⎛⎭⎫12,3在椭圆上, ∴⎩⎪⎨⎪⎧ 4n =1,14m +3n =1,∴⎩⎪⎨⎪⎧m =1,n =14,故椭圆的标准方程为x 2+y 24=1. (2)方法一 椭圆x 225+y 29=1的焦点为(-4,0)和(4,0),可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义可得 2a =(3+4)2+(15-0)2+(3-4)2+(15-0)2,∴2a =12,即a =6.∵c =4,∴b 2=a 2-c 2=62-42=20, ∴椭圆的标准方程为x 236+y 220=1.方法二 由题意可设椭圆的标准方程为 x 225+λ+y 29+λ=1(λ>-9), 将x =3,y =15代入上面的椭圆方程,得25+λ9+λ解得λ=11或λ=-21(舍去), ∴椭圆的标准方程为x 236+y 220=1.反思与感悟 求椭圆标准方程的方法(1)定义法,即根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程. (2)待定系数法①先确定焦点位置;②设出方程;③寻求a ,b ,c 的等量关系;④求a ,b 的值,代入所设方程.特别提醒:若椭圆的焦点位置不确定,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0). 跟踪训练1 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52; (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点P (-23,1),Q (3,-2). 考点 椭圆标准方程的求法 题点 待定系数法求椭圆的标准方程 解 (1)∵椭圆的焦点在y 轴上,∴设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知, 2a =⎝⎛⎭⎫-322+⎝⎛⎭⎫52+22+ ⎝⎛⎭⎫-322+⎝⎛⎭⎫52-22 =210,即a =10.又c =2, ∴b 2=a 2-c 2=6.∴所求椭圆的标准方程为y 210+x 26=1.(2)∵椭圆的焦点在y 轴上,∴设其标准方程为y 2a 2+x 2b 2=1(a >b >0).又椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1.∴所求椭圆的标准方程为y 24+x 2=1.(3)设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ), ∵点P (-23,1),Q (3,-2)在椭圆上,∴代入得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,∴⎩⎨⎧m =115,n =15.∴所求椭圆的标准方程为x 215+y 25=1.命题角度2 由标准方程求参数(或其取值范围)例2 若方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是________.考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围) 答案 (0,1)解析 ∵方程x 2m -y 2m 2-2=1表示焦点在y 轴上的椭圆,将方程改写为y 22-m 2+x 2m=1,∴有⎩⎪⎨⎪⎧2-m 2>m ,m >0,解得0<m <1.反思与感悟 (1)利用椭圆方程解题时,一般首先要化成标准形式; (2)x 2m +y2n=1表示椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m ≠n ;表示焦点在x 轴上的椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m >n ;表示焦点在y 轴上的椭圆的条件是⎩⎨⎧m >0,n >0,n >m .跟踪训练2 (1)已知方程x 2k -4-y 2k -10=1表示焦点在x 轴上的椭圆,则实数k 的取值范围为________.考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围) 答案 (7,10)解析 化成椭圆标准形式得x 2k -4+y 210-k =1,根据其表示焦点在x 轴上的椭圆, 得⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,解得7<k <10.(2)已知椭圆x 210-m +y 2m -2=1的焦距为4,则m =_______________.考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围) 答案 4或8解析 ①当焦点在x 轴上时,10-m -(m -2)=4, 解得m =4.②当焦点在y 轴上时,m -2-(10-m )=4, 解得m =8. ∴m =4或8.类型二 椭圆定义的应用例3 已知P 为椭圆x 212+y 23=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.考点 椭圆的定义 题点 焦点三角形中的问题 解 在△PF 1F 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即36=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.① 由椭圆的定义,得|PF 1|+|PF 2|=43, 即48=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.② 由①②得|PF 1|·|PF 2|=4 所以12F PF S=12|PF 1|·|PF 2|·sin 60°= 3. 引申探究若将本例中“∠F 1PF 2=60°”变为“∠F 1PF 2=90°”,求△F 1PF 2的面积. 解 由椭圆x 212+y 23=1,知|PF 1|+|PF 2|=43,|F 1F 2|=6,因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=|F 1F 2|2=36, 所以|PF 1|·|PF 2|=6, 所以12F PF S=12|PF 1|·|PF 2|=3. 反思与感悟 (1)对于求焦点三角形的面积,结合椭圆定义,建立关于|PF 1|(或|PF 2|)的方程求得|PF 1|(或|PF 2|);有时把|PF 1|·|PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|及余弦定理求出|PF 1|·|PF 2|,而无需单独求出,这样可以减少运算量. (2)焦点三角形的周长等于2a +2c .设∠F 1PF 2=θ,则焦点三角形的面积为b 2tan θ2.跟踪训练3 已知AB 是过椭圆49x 2+y 2=1的左焦点F 1的弦,且|AF 2|+|BF 2|=4,其中F 2为椭圆的右焦点,则|AB |=________. 考点 椭圆的定义 题点 焦点三角形中的问题 答案 2解析 由椭圆定义,知|AF 1|+|AF 2|=2a , |BF 1|+|BF 2|=2a ,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =6. 所以|AF 1|+|BF 1|=6-4=2,即|AB |=2.1.“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件考点 椭圆的定义 题点 由椭圆定义确定轨迹 答案 A解析 若动点的轨迹为椭圆,则根据椭圆的定义,得平面内一动点到两定点的距离之和为一定值.平面内一动点到两定点的距离之和为一定值时,动点轨迹的情况有三种.所以“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的必要不充分条件. 2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .8考点 椭圆的定义 题点 椭圆定义的应用 答案 D解析 设椭圆的左、右焦点分别为F 1,F 2,|PF 1|=2. 结合椭圆定义|PF 2|+|PF 1|=10,故|PF 2|=8.3.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 考点 椭圆标准方程的求法 题点 定义法求椭圆的标准方程 答案 A解析 c =1,a =12×((2+1)2+0+(2-1)2+0)=2,∴b 2=a 2-c 2=3,∴椭圆的方程为x 24+y 23=1.4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于________. 考点 椭圆的定义 题点 焦点三角形中的问题 答案 4解析 由椭圆方程,得a =3,b =2,c = 5. ∵|PF 1|+|PF 2|=2a =6且|PF 1|∶|PF 2|=2∶1, ∴|PF 1|=4,|PF 2|=2, ∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2是直角三角形,且PF 1⊥PF 2, ∴△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4.5.若方程x 2m +y 22m -1=1表示椭圆,则m 满足的条件是________.考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围)答案 ⎩⎨⎧⎭⎬⎫m ⎪⎪m >12且m ≠1 解析 由方程x 2m +y 22m -1=1表示椭圆,知⎩⎪⎨⎪⎧m >0,2m -1>0,m ≠2m -1,解得m >12且m ≠1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.对于求解椭圆的标准方程一般有两种方法:可以通过待定系数法求解,也可以通过椭圆的定义进行求解.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax2+By2=1(A>0,B>0,A≠B)求解,避免了分类讨论,达到了简化运算的目的.一、选择题1.设椭圆x2m2+y2m2-1=1(m>1)上一点P到其左、右焦点的距离分别为3和1,则m等于()A.6 B.3 C.2 D.4考点椭圆的标准方程题点给条件确定椭圆方程中的参数(或其范围) 答案 C解析∵m2>m2-1,∴椭圆焦点在x轴上,∴a=m,则2m=3+1=4,∴m=2.2.设P是椭圆x216+y212=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形考点椭圆的定义题点焦点三角形中的问题答案 B解析由椭圆定义知|PF1|+|PF2|=2a=8,不妨设|PF1|>|PF2|,∵|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3,又∵|F1F2|=2c=4,∴△PF1F2为直角三角形.3.已知椭圆5x2+ky2=5的一个焦点坐标是(0,2),那么k的值为() A.1 B.-1C. 5 D .- 5 考点 椭圆的标准方程 题点 给条件确定椭圆方程中的参数(或其范围) 答案 A 解析 原方程可化简为x 2+y 25k =1, 由c 2=5k-1=4,得k =1. 4.椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( ) A .2B .8C .4D.32考点 椭圆的定义题点 椭圆定义的应用答案 C解析 如图,F 2为椭圆右焦点,连接MF 2,则ON 是△F 1MF 2的中位线,∴|ON |=12|MF 2|,又|MF 1|=2,|MF 1|+|MF 2|=2a =10,∴|MF 2|=8, ∴|ON |=4.5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A.x 212+y 29=1 B.x 212+y 29=1或x 29+y 212=1 C.x 29+y 212=1 D.x 248+y 245=1或x 245+y 248=1 考点 椭圆标准方程的求法题点 定义法求椭圆的标准方程答案 B解析 由已知2c =|F 1F 2|=23,所以c = 3.因为2a =|PF 1|+|PF 2|=2|F 1F 2|=43,所以a =23,所以b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1. 6.曲线x 225+y 29=1与x 29-k +y 225-k=1(0<k <9)的关系是( ) A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不等的焦距,不同的焦点D .以上都不对考点 椭圆的标准方程题点 由椭圆的标准方程求焦点、焦距答案 B解析 曲线x 225+y 29=1焦点在x 轴上.对于曲线x 29-k +y 225-k =1,∵0<k <9,∴25-k >9-k >0,∴焦点在y 轴上,故两者的焦点不同.∵25-9=(25-k )-(9-k )=16=c 2,∴2c =8,故两者焦距相等.故选B.7.方程x 24+m +y 22-m =1表示椭圆的必要不充分条件是() A .m ∈(-1,2)B .m ∈(-4,2)C .m ∈(-4,-1)∪(-1,2)D .m ∈(-1,+∞)考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围)答案 B解析 方程x 24+m +y 22-m =1表示椭圆的充要条件是⎩⎪⎨⎪⎧ 4+m >0,2-m >0,4+m ≠2-m ,即m ∈(-4,-1)∪(-1,2).由题意可得, 所求m 的取值范围包含集合(-4,-1)∪(-1,2).观察选项,故选B.8.已知椭圆x 24+y 2=1的焦点为F 1,F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到x 轴的距离为( ) A.233B.263C.33D. 3考点 椭圆的定义题点 焦点三角形中的问题答案 C解析 ∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→,由|MF 1|+|MF 2|=4,①又|MF 1|2+|MF 2|2=(23)2=12,②由①与②可得,|MF 1|·|MF 2|=2,设M 到x 轴的距离为h ,则|MF 1|·|MF 2|=|F 1F 2|·h ,h =223=33. 9.已知椭圆x 2100+y 264=1的左焦点为F ,一动直线与椭圆交于M ,N 两点,则△FMN 的周长的最大值为( )A .16B .20C .32D .40考点 椭圆的定义题点 焦点三角形中的问题答案 D解析 设右焦点为A ,一动直线与椭圆交于M ,N 两点,则△FMN 的周长l =|MN |+|MF |+|NF |=|MN |+2a -|MA |+2a -|NA |=4a +(|MN |-|MA |-|NA |),由于|MA |+|NA |≥|MN |,所以当M ,A ,N 三点共线时,△FMN 的周长取得最大值4a =40.二、填空题10.椭圆x 2m +y 24=1的焦距是2,则m 的值是________. 考点 椭圆的标准方程题点 给条件确定椭圆方程中的参数(或其范围)答案 3或5解析 当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1.∴m -4=1,m =5.当椭圆的焦点在y 轴上时,a 2=4,b 2=m ,∴c 2=4-m =1,∴m =3,∴m =3或5.11.已知椭圆C 经过点A (2,3),且点F (2,0)为其右焦点,则椭圆C 的标准方程为________. 考点 椭圆标准方程的求法题点 待定系数法求椭圆的标准方程答案 x 216+y 212=1 解析 方法一 依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知左焦点为F ′(-2,0). 从而有⎩⎪⎨⎪⎧c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的标准方程为x 216+y 212=1. 方法二 依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则⎩⎪⎨⎪⎧ 4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1. 12.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.考点 椭圆的定义题点 焦点三角形中的问题答案 3解析 由椭圆定义,得|PF 1|+|PF 2|=2a ,∴|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2.又∵PF 1→⊥PF 2→,∴|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,即4c 2+2|PF 1|·|PF 2|=4a 2,∴|PF 1|·|PF 2|=2b 2,∴12PF F S =12·|PF 1|·|PF 2|=12×2b 2=b 2=9,又∵b >0,∴b =3.三、解答题13.求过点(0,4)且与椭圆9x 2+4y 2=36有相同焦点的椭圆的方程.考点 椭圆标准方程的求法题点 待定系数法求椭圆的标准方程解 由9x 2+4y 2=36,得x 24+y 29=1,则c =9-4=5,焦点在y 轴上,设所求椭圆方程为y 2a 2+x 2b 2=1,则a =4,∴b 2=a 2-c 2=11,∴所求椭圆方程为x 211+y 216=1.四、探究与拓展14.已知点P 在椭圆上,且P 到椭圆的两个焦点的距离分别为5,3.过P 且与椭圆的长轴垂直的直线恰好经过椭圆的一个焦点,求椭圆的标准方程.考点 椭圆标准方程的求法题点 待定系数法求椭圆的标准方程解 方法一 设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0), 由已知条件得⎩⎪⎨⎪⎧ 2a =5+3,(2c )2=52-32, 解得⎩⎪⎨⎪⎧a =4,c =2,所以b 2=a 2-c 2=12. 于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1. 方法二 设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),两个焦点分别为F 1,F 2. 由题意知2a =|PF 1|+|PF 2|=3+5=8,所以a =4.在方程x 2a 2+y 2b 2=1中,令x =±c ,得|y |=b 2a; 在方程y 2a 2+x 2b 2=1中,令y =±c ,得|x |=b 2a. 依题意有b 2a=3,得b 2=12. 于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.15.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的焦点分别为F 1(0,-1),F 2(0,1),且3a 2=4b 2. (1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.考点 椭圆的定义题点 焦点三角形中的问题解 (1)由题意得椭圆焦点在y 轴上,且c =1.又∵3a 2=4b 2,∴a 2-b 2=14a 2=c 2=1,∴a 2=4,b 2=3,∴椭圆的标准方程为y 24+x 23=1. (2)如图所示,|PF 1|-|PF 2|=1.又由椭圆定义知,|PF 1|+|PF 2|=4,∴|PF 1|=52,|PF 2|=32,|F 1F 2|=2, ∴cos ∠F 1PF 2=⎝⎛⎭⎫522+⎝⎛⎭⎫322-222×52×32=35.。
目录
第三讲:椭圆初步................................................................................................. 错误!未定义书签。
考点一:椭圆的定义及其应用 (2)
题型一:利用定义判断轨迹 (2)
考点二:椭圆的标准方程及其几何性质 (2)
题型二:椭圆的标准方程相应问题 (3)
题型三:椭圆简单性质问题 (3)
课后综合巩固练习 (4)
考点一:椭圆的定义及其应用
椭圆的定义:平面内与两个定点12F F ,
的距离之和等于常数(大于12||F F )的点的轨迹(或集合)叫做椭圆.
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
依椭圆的定义,设P 是椭圆上一点,则有122PF PF a +=,(a 为常数且22)a c >
题型一:利用定义判断轨迹
1.(2017•天心区校级学业考试)设1F ,2F 为定点,12||6F F =,动点M 满足12||||6MF MF +=,则动点M 的轨迹是( ) A .椭圆
B .直线
C .圆
D .线段
2.(2016秋•兴庆区校级期末)点(,)M x y 与定点(4,0)F 的距离和它到直线25
:4
l x =的距离的比是常数
4
5
,求M 的轨迹. 考点二:椭圆的标准方程及其几何性质
椭圆的标准方程:
①22
221(0)x y a b a b +=>>,焦点是1(0)F c -,
,2(0)F c ,,且222c a b =-. ②22
221(0)y x a b a b +=>>,焦点是1(0)F c -,
,2(0)F c ,,且222c a b =-. 椭圆的几何性质
1.范围:a x a -≤≤,b y b -≤≤;
2.对称性:以x 轴、y 轴为对称轴,以坐标原点为对称中心,椭圆的对称中心又叫做椭圆的中心;
3.椭圆的顶点:椭圆与它的对称轴的四个交点,如图中的1212A A B B ,
,,; 4.长轴与短轴:焦点所在的对称轴上,两个顶点间的线段称为椭圆的长轴,如图中线段的12A A ;另一对顶点间的线段叫做椭圆的短轴,如图中的线段12B B . 5.椭圆的离心率:c
e a
=
,焦距与长轴长之比,01e <<,e 越趋近于1,椭圆越扁; 反之,e 越趋近于0,椭圆越趋近于圆.
题型二:椭圆的标准方程相应问题
1.(2018秋•娄底期末)设椭圆2
2
221(0,0)x y m n m n +=>>的一个焦点为(0,2)-,离心率为1
2
,
则(m n -= ) A
.8-B
.4
C
.8
D
2
2.(2017秋•龙岗区期末)已知ABC ∆的周长为20,且顶点B (0,4)-,C (0,4),则顶点
A 的轨迹方程是( )
A .22
1(0)3620x y x +=≠
B .22
1(0)2036x y x +=≠
C .22
1(0)620
x y x +=≠
D .22
1(0)206
x y x +=≠
3.(2018秋•未央区校级期末)若曲线22
111x y k k +=-+表示椭圆,则k 的取值范围是( )
A .1k >
B .1k <-
C .11k -<<
D .10k -<<或01k <<
题型三:椭圆简单性质问题
1.(2019•北京)已知椭圆22221(0)x y a b a b +=>>的离心率为1
2,则( )
A .222a b =
B .2234a b =
C .2a b =
D .34a b =
2.(2019•昆明模拟)己知椭圆2222:1(0)x y E a b a b +=>>,直线l 过焦点且倾斜角为4π
,以椭
圆的长轴为直径的圆截l 所得的弦长等于椭圆的焦距,则椭圆的离心率为( )
A B C D 课后综合巩固练习
1.(2018秋•南关区校级期末)椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为( )
A .22
110084x y +=
B .22
1259
x y +=
C .22110084x y +=或22
184100
x y +=
D .221259x y +=或22
1259
y x +=
2.(2019•聊城三模)若方程2244x ky k +=表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A .4k >
B .4k =
C .4k <
D .04k <<
3.(2019春•湖州期中)经过点P 且与椭圆2214x y +=相切的直线方程是( )
A .40x +-=
B .40x --=
C .20x +-=
D .20x -+=
4.(2019春•惠城区校级月考)设1F 是椭圆2
219x y +=的一个焦点,AB 是经过另一个焦点
2F 的弦,则△1AF B 的周长是( )
A .12
B .6
C .4
D .8
5.(2019春•厦门期末)已知椭圆22
2:1(0)25x y C m m +=>的左、右焦点分别为1F ,2F ,点P
在C 上,且△12PF F 的周长为16,则m 的值是( )
A .2
B .3
C .
D .4
6.(2019春•雅安期末)椭圆22
221(0)x y a b a b +=>>的左右焦点分别是1F 、2F ,以2F 为圆心
的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )
A 1
B
C .
2
D。