《医学统计学》辅导:样本含量的估计
- 格式:pdf
- 大小:143.15 KB
- 文档页数:4
样本含量的估计的名词解释引言在统计学中,样本含量是指研究中使用的样本数量。
它是进行统计推断时非常重要的因素之一。
样本含量的估计是对样本数量进行确定的过程,可以基于多种方法和考虑多个因素。
本文将对样本含量的估计进行详细解释,并探讨其在实践中的意义。
一、样本含量的定义样本含量是指在统计研究中用于进行实验或调查的样本的规模或数量。
它反映了研究的广度和取样的代表性。
样本含量越大,通常可以提供更可靠和准确的结果。
因此,对于一个研究来说,选择适当的样本含量非常重要。
二、样本含量的估计方法1. 样本容量计算样本容量计算是一种常用的样本含量估计方法。
它基于统计推断的准确性需求和研究设计的特点来确定样本大小。
通过进行实验设计先验计算,可以确定具体的样本数量。
通常,样本容量计算会考虑到总体方差、效应大小、置信水平和统计功效等因素。
2. 经验公式除了样本容量计算,还存在一些经验公式来估计样本大小。
这些公式是根据以往实验和研究的经验总结而来,提供了一些初步的参考。
例如,某些领域常用的经验公式包括基于总体比例和总体均值的样本选择公式。
三、样本含量估计的意义1. 精确性和可信度样本含量的估计直接影响着研究结果的精确性和可信度。
如果样本含量过小,可能导致样本的代表性不足,结果的可靠性有限。
而样本含量足够大,则可以提供更可靠和准确的研究结果。
2. 资源利用样本含量的估计还能帮助研究者合理利用资源。
过大的样本含量会浪费不必要的资源,而过小的样本含量可能无法得出可靠的结论。
通过合理估计样本含量,研究者可以在保证结果准确的前提下,尽量节约研究经费和时间。
3. 研究推广性样本含量的估计也与研究结果的推广性相关。
如果研究中的样本含量足够大,那么结果可以更广泛地推广到总体中。
这有助于研究者得出更有意义和具有普遍性的结论。
结论样本含量的估计是进行统计研究中非常重要的步骤。
选择合适的样本含量可以确保研究结果的精确性和可信度,合理利用研究资源,以及增强研究结果的推广性。
无论是调查研究还是实验性研究,医学研究大都是抽样研究,最终目的在于利用实际观测得到的样本信息推断未知的总体特征,即统计推断。
抽样研究设计时需要回答一个非常关键的问题:样本中包含多少个研究对象(人、动物、生物学材料等)才能既满足统计学要求,完成有效的统计推断,又照顾研究的可行性、伦理学等实际问题,从而最大限度控制研究成本和研究风险,提高研究效率。
这就是样本含量估计(estimation of sample size)。
本章将从统计推断的目的出发,介绍样本含量估计意义及常用的计算公式,并在此基础上介绍检验效能的估计(power analysis)。
第一节样本含量估计的意义及方法一、样本含量估计的意义由于抽样研究中抽样误差不可避免,样本统计量与其所对应的总体参数间总是存在一定差异。
因此,尽量减小抽样误差是提高统计推断精度的必然要求。
在总体变异性确定的条件下,样本中所含的研究对象数越多,抽样误差必然越小,样本统计量的稳定性肯定越高,总体参数的估计精度越好,假设检验中的检验效能(power=1- )亦会越高,从而避免出现假阴性的结论。
同时在实验性研究中,只有在研究对象数量足够大时才能使随机分组更加有效,从而保证组间均衡性。
但在实际研究中,除了要考虑抽样误差外,还需考虑研究的可行性、结论的时效性、医学伦理以及非随机误差的影响等实际问题,并非研究对象数越多越好。
比如在改良肩周炎贴膏临床试验中,如果片面地追求大样本,研究中所需的人力、物力、财力等物质支持必然增大,研究的可行性下降。
由于需纳入更多病例,可能会延长产品研发周期,影响新药投产上市;若增加医院或临床实验中心参与该研究,又增加了组织协调的工作量和工作难度。
同时增加各种混杂、偏倚发生的机会,比如由于肩周炎发病、预后与季节、气候密切相关,临床病例接收时间太长,组内病例同质性差;测量仪器增多导致测量误差增大,观察疗效的医院、医生增多,研究结果的一致性降低等现实问题,使得试验结果难于分析或者难以合理解释,影响研究结论的科学性。
估计样本含量样本含量估计是指为确保研究结论在一定检验效能基础上的最少观察单位数。
样本含量的大小应根据研究目的、研究设计的类型、研究资料的性质、接受的处理因素、研究对象的种类、研究阶段等因素而决定。
样本含量的估计方法有公式计算法和查表法。
(一)样本含量估计的主要参数1.检验水准αα是第Ⅰ类错误的概率;是指研究希望α取值为0.05时还是0.01时的检验水准上发现组间差别。
α越小,所需样本例数越多,一般α取值为0.05。
同时,应根据专业知识确定用单侧检验还是双侧检验,在α相同的条件下,双侧检验要比单侧检验所需要的样本例数要多些。
2.检验效能1-ββ是第Ⅱ类错误的概率;1-β也称把握度,是指为真时,则在每100次实验中平均能发现出差别来的概率。
1-β越大,所需样本例数越多。
通常取1-β为0.90、0.85或0.80。
3.容许误差δ由于抽样误差的影响,用样本指标估计总体指标常有一定的误差,因而要确定一个样本和总体间或两个样本间某统计量相差所容许的限度,如δ=μ1−μ2,或δ=π1−π2。
δ越小,所需样本含量越多。
通常根据预实验、查阅文献和专业知识估计有意义的差值。
4.总体变异度σσ越大,所需样本含量越多。
通常根据预实验、查阅文献和专业知识判断σ值。
(二)常用统计设计的样本含量估计1.完全随机设计样本均数与总体均数比较的样本含量估计样本均数与总体均数的比较,在确定和后,令,为实验结果的总体标准差,样本含量的计算公式为:式中:有单双侧之分,只取单侧,和为相应的正态分位数。
2. 完全随机设计两样本均数比较的样本含量估计当要求两样本例数相等时,先要求出两个总体参数间的差值,即。
若μ1及μ2未知时,可分别以及估计之;σ未知时,可以合并标准差s估计;α、β分别是对应于α和β的u值,或可由t界值表(附表2)自由度由υ=∞查出,α常取0.05,有单双侧之分;β常取0.20或0.10,只取单侧值。
可按下列公式估算每组需观察的例数n。
公卫执业医师《医学统计学》辅导:样本含量的估计
一、估计样本含量的意义及条件
我们在第一节里曾提到重复的原则。
所谓重复,是指各处理组(对照在实验研究中也被看作是一种处理,而且是必不可少的)的受试对象都应有一定的数 量,例数不能太少,所以在抽样调查、临床观察或实验研究中,首先总要考虑样本含量(或叫样本大小)问题。
样本太小,使应有的差别不能显示出来,难以获得正 确的研究结果,结论也缺乏充分的依据;但样本太大,会增加实际工作中的困难,对实验条件的严格控制也不易做到,并且造成不必要的浪费。
所以这里所说的样本 含量估计,系指在保证研究结论具有一定可靠性的条件下,确定最少的观察或实验例数。
但是,样本含量又是个比较复杂的问题。
要讲清在各种情况下估计样本含量的方法和原理,那是很繁杂的。
而且,不同的参考书上介绍的计算公式和工具表往往不一样,以致同一问题所得的结果也可能有出入。
所以,不论按哪种公式或工具表求得的结果,也只能是个近似的估计数。
估计样本含量,必须事先明确一些条件与要求:
(一)根据研究目的与资料性质,要先知道一些数据。
例如要比较几组计数资料,先要知道百分数或率;要比较几组计量资料,先要知道平均数及标准差。
这些数据可从以往的实践,预备试验的结果、兄弟单位的经验或文献资料里得来。
(二)确定容许误差。
由于抽样误差的影响,用样本指标估计总体指标常有一定的误差,因而要确定一个样本指标与总体指标相差所容许的限度。
此值要求越小,所需例数就越多。
(三)确定把握度(1—β)。
β是第二型错误的概率;而1—β的意思是:如果两组确有差别,则在每100次实验中平均能发现出差别来的概率。
把握度可用小数(或百分数)表示,一般取0.99、0.95、0.90、0.80、0.50.要求把握度越高,则所需例数直多。
(四)确定显著性水平,即第一型错误的概率(α)。
这就是希望在α=0.05的水准上发现差别,还是希望在α=0.01的水准上发现差别。
α越少,所需例数越多。
此外,估计样本含量时还应当根据专业知识确定用单侧检验或双侧检验。
同一实验,若既可用单侧检验又可用双侧检验,则前者所需例数要少些。
二、用计算法估计样本含量
我们运用前面学过的某些假设检验公式,就可以进行样本含量的计算。
下面仅举两例略作介绍。
这里的公式仅适用于α=0.05,1—β=0.50.而且都是双侧检验。
(一)两个率比较时样本含量的计算 令n为每组所需例数,P
1、P
2
为已知
的两个率(用小数表示),P为合并的率,当设两组例数相等时,即P=(P1+P
2
)/2.q=1=p,则
性气管炎患者,近控率甲药为45%,乙药为25%.现拟进一步试验,问每组需观察多少例,才可能在α=0.05的水准上发现两种疗法近控率有显著相差?
本例P
1=0.45,P
2
=0.25,P=(0.45+0.25)÷2=0.25,q=1-0.35=0.65,代入
式11.1
每组需观察46人,两组共观察92人,注意:例数问题不同于一般数学计算中的四舍五入,凡是有小数的值,应一律取稍大于它的正整数,如本例45.5取46,若为45.1也应取46.
(二)个别比较t检验样本含量的计算 令n为所需样本数,S为差数的标准差,X为差数的均数,t
0.050
为t值表上相当于P=0.05的t值,4为n足够大时
t
20.05
=1.962的数,则
例11.6 用某药治疗胃及十二指肠溃疡病人,服药四周后胃镜复查时,患者溃疡面平均缩小0.2cm2,标准差为0.4cm2,假定该药确能使溃疡面缩小或愈合,问需多少病人作疗效观察才能在α=0.05的水准上发出用药前后相差显著?
本例X=0.2,S=0.4,先代入式(11.2)
由于n<30,故用式(11.3)重算。
当n=16,ν=16-1=15,t
0.05
=2.131,
当n=19(略大于18.16),ν=19-1=18,t
0.05
=2.101
故至少需用18人作疗效观察。
三、用查表法估计样本含量
当要求平均有80%、90%以上的机会能发出相差显著或非常显著时,计算公式比较复杂,数理统计上已编制成工具表,一查便得,附表19只是其中的一部分。
我们仍以前面的例题来介绍这些表的用法。
(一)两个率比较时所需样本含量 对于两个率的比较,单侧检验可查附表19(1),双侧检验查附表19(2)
仍用例11.5来说明。
本例 P
1=45%,P
2
=25%,δ=45%-25%=20%, 设α=0.05,
把握度为0.80. 如果已知甲药疗效不可能低于乙药,可用单侧检验,查附表19(1)。
我们从“较小率”栏中找到25横行,再从上方找到δ=20直行,基相交处,读上行数字 得69,即每组最少需要69例,两组共需138例。
如果两个率(或百分数)都超过50%,怎样使用这个表呢?假定甲组阳性率是80%,乙组阳性率是65%,两组阳性率 相差15%.这时先求两组的阴性率,于是甲组阴性率为20%,乙组阴性率为35%,两组阴性率相差仍为15%.若用双侧检验,我们查附表19(2),从 “较小率”栏找到20横行,再从上方找到δ=15直行,其相交处上行数字为135,即每组需检查135例(两组共270例)将有80%的机会在 α=0.05的水准上发现两组阳性率相差显著。
若表中查不到题中的“较小率”及δ,可用最接近的值或内插法求n,但宁可使n偏大,以免估计的样本含量偏少。
(二)个别比较t检验所需的样本含量 这是配对比较,应查附表20.使用该表时,先要求出差数的总体均数μ与总体标准差σ之比,即δ=μ/σ,当μ与σ未知时,可分别用X与S作为估计值。
仍用例11.6来说明,本例X=0.2,S=0.40,故δ=μ/σ=0.2/0.4=0.5.若设α=0.05,1—β=0.90,用双侧检验,查附表得20,得n=44,即需观察44例病人。
若设α=0.05,1—β=0.50,则n=18,同计算法结果一致。
(三)两个均数比较所需样本含量 应查附表21.先要求出两总体均数之差与总体标准差这比,即δ=(μ1-μ2)/σ。
若μ1及μ2未知时,可分别以X1及X2估计之;σ未知时,可以合并标准差S估计之。
例11.7 某职业病防治所用两种疗法治疗矽肺患者,一个疗程后,患者血清粘蛋白下降值甲疗法平均为2.6(mg%),乙疗法平均为2.0(mg%,)两种疗法下降值之合并标准差为1.3(mg%)。
若发现两组疗效相差显著,每组至少应观察多少病人?
本例X
1=2.6,X
2
=2.0,S=1.3,故 δ=(μ
1
-μ
2
)/σ= (2.6-2.0)/1.3=0.46.
若设α=0.05,1—β=0.50,用双侧检验,查附表21,δ=0.46查不到。
在这种情况下,可用邻近而略 小的δ值代替,或用内插法估计。
本例若查δ=0.45,得n=39,即每组需要39例,两组共需78例。
若用内插法计算,当δ=0.45时所需例数是 39,δ=0.50时所需例数是32,所以δ=0.46时所需例数是:
答案是:每组需要至少观察38例,两组共需观察76例。