常用样本含量估计
- 格式:ppt
- 大小:117.00 KB
- 文档页数:40
样本含量的估计在统计学中,样本含量是指用于研究的数据集合的大小。
估计合适的样本含量对于研究的准确性和实用性来说至关重要。
样本含量的估计是一项复杂的任务,需要考虑多个因素,包括研究目的、数据类型、样本分布以及研究假设等。
本文将讨论样本含量的估计方法以及在研究中的应用。
一、估计样本大小的方法确定适当的样本大小可以确保对研究问题的回答具有良好的准确性和统计意义。
下面是一些常用的方法:1. 经验公式法这是一种简单的估计方法,通常用于初步设计和计划阶段。
公式的一般形式如下:n = (Z^2 * σ^2) / e^2其中,n是样本大小,Z是置信水平(通常取1.96),σ是总体标准差,e是误差的允许程度。
这个公式假设样本是从正态分布中随机抽取的,而且总体标准差是已知的。
当总体标准差未知时,可以使用样本标准差作为替代品。
2. 功效分析法功效分析是指确定所需的样本大小,以便在某个置信水平下检测到特定的效应大小或显著水平。
这种方法可以确保研究具有充分的统计功效,从而提高了研究的可靠性。
为进行功效分析,需要首先假定研究设计、所需的显著水平和效应大小,然后使用统计软件进行计算。
3. 模拟方法这种方法是一种计算复杂的方法,通常用于验证功效分析的结果。
这种方法涉及到用计算机程序生成各种可能的数据分布以及样本数量,以确定最佳的样本数量。
通过模拟不同的样本数量,可以确定最佳的样本大小,从而提高实验或研究的有效性和准确性。
二、何时估计样本量估计样本量的最佳时间是在研究设计和计划阶段。
在这个阶段,研究人员需要考虑多个因素,包括研究目的、研究假设、类型和数量的数据,以及可得到的资源和时间。
在确定研究设计,数据采集和分析计划以及时间表之前,应该优先考虑估计样本量的方法和结果。
估计样本量也可以在研究过程中进行。
如果样本量太小,那么结果可能不可靠;如果样本量太大,那么资源和时间将被浪费。
因此,需要及时评估样本大小,并进行必要的调整以确保研究的准确性和实用性。
样本含量的估计的名词解释引言在统计学中,样本含量是指研究中使用的样本数量。
它是进行统计推断时非常重要的因素之一。
样本含量的估计是对样本数量进行确定的过程,可以基于多种方法和考虑多个因素。
本文将对样本含量的估计进行详细解释,并探讨其在实践中的意义。
一、样本含量的定义样本含量是指在统计研究中用于进行实验或调查的样本的规模或数量。
它反映了研究的广度和取样的代表性。
样本含量越大,通常可以提供更可靠和准确的结果。
因此,对于一个研究来说,选择适当的样本含量非常重要。
二、样本含量的估计方法1. 样本容量计算样本容量计算是一种常用的样本含量估计方法。
它基于统计推断的准确性需求和研究设计的特点来确定样本大小。
通过进行实验设计先验计算,可以确定具体的样本数量。
通常,样本容量计算会考虑到总体方差、效应大小、置信水平和统计功效等因素。
2. 经验公式除了样本容量计算,还存在一些经验公式来估计样本大小。
这些公式是根据以往实验和研究的经验总结而来,提供了一些初步的参考。
例如,某些领域常用的经验公式包括基于总体比例和总体均值的样本选择公式。
三、样本含量估计的意义1. 精确性和可信度样本含量的估计直接影响着研究结果的精确性和可信度。
如果样本含量过小,可能导致样本的代表性不足,结果的可靠性有限。
而样本含量足够大,则可以提供更可靠和准确的研究结果。
2. 资源利用样本含量的估计还能帮助研究者合理利用资源。
过大的样本含量会浪费不必要的资源,而过小的样本含量可能无法得出可靠的结论。
通过合理估计样本含量,研究者可以在保证结果准确的前提下,尽量节约研究经费和时间。
3. 研究推广性样本含量的估计也与研究结果的推广性相关。
如果研究中的样本含量足够大,那么结果可以更广泛地推广到总体中。
这有助于研究者得出更有意义和具有普遍性的结论。
结论样本含量的估计是进行统计研究中非常重要的步骤。
选择合适的样本含量可以确保研究结果的精确性和可信度,合理利用研究资源,以及增强研究结果的推广性。
估计总体率的样本含量计算在统计学中,样本含量的估计是一个重要的概念,它用于确定在给定置信水平和置信区间下,需要多大样本才能对总体率进行可靠的估计。
本文将介绍估计总体率的样本含量计算方法,并以示例进行说明。
1. 前言估计总体率的样本含量计算是一种统计方法,用于确定需要多大样本才能对总体率进行准确的估计。
在进行样本含量计算时,需要考虑的因素包括置信水平、置信区间、总体大小以及预期总体率等。
2. 方法假设我们要估计某个总体的比例,例如某个产品的缺陷率。
首先,我们需要确定置信水平和置信区间。
常见的置信水平为95%或99%,置信区间通常选择在总体比例附近的一个范围。
然后,我们需要估计总体的预期比例。
这可以通过已有的数据、历史经验或者专业判断来确定。
预期比例将用于计算样本大小,因此需要尽可能准确地估计。
接下来,我们可以使用统计软件或者样本大小计算公式来计算样本大小。
常用的样本大小计算公式如下:n = (Z^2 * p * (1-p)) / (E^2)其中,n表示样本大小,Z表示分布的标准正态分位数,p表示预期比例,E表示允许的误差。
式中分母中 p(1-p) 表示二项分布的方差。
3. 示例假设我们要估计某公司员工的满意度,我们希望以95%的置信水平,置信区间为±3%,来估计员工满意度的比例。
根据历史数据,我们预计员工满意度的比例约为40%。
根据上述公式,我们可以计算出样本大小:n = (Z^2 * p * (1-p)) / (E^2)= (1.96^2 * 0.4 * 0.6) / (0.03^2)≈ 1043.11因此,我们需要1043个样本来对员工满意度进行可靠的估计。
4. 结论在估计总体率的样本含量计算中,我们需要考虑置信水平、置信区间、总体大小以及预期总体率等因素。
通过采用适当的样本大小,可以在给定的置信水平和置信区间下,对总体率进行准确的估计。
需要注意的是,样本含量的计算涉及到很多假设和背景信息,因此在实际应用中我们应该综合考虑多种因素来确定最合适的样本大小。
无论是调查研究还是实验性研究,医学研究大都是抽样研究,最终目的在于利用实际观测得到的样本信息推断未知的总体特征,即统计推断。
抽样研究设计时需要回答一个非常关键的问题:样本中包含多少个研究对象(人、动物、生物学材料等)才能既满足统计学要求,完成有效的统计推断,又照顾研究的可行性、伦理学等实际问题,从而最大限度控制研究成本和研究风险,提高研究效率。
这就是样本含量估计(estimation of sample size)。
本章将从统计推断的目的出发,介绍样本含量估计意义及常用的计算公式,并在此基础上介绍检验效能的估计(power analysis)。
第一节样本含量估计的意义及方法一、样本含量估计的意义由于抽样研究中抽样误差不可避免,样本统计量与其所对应的总体参数间总是存在一定差异。
因此,尽量减小抽样误差是提高统计推断精度的必然要求。
在总体变异性确定的条件下,样本中所含的研究对象数越多,抽样误差必然越小,样本统计量的稳定性肯定越高,总体参数的估计精度越好,假设检验中的检验效能(power=1- )亦会越高,从而避免出现假阴性的结论。
同时在实验性研究中,只有在研究对象数量足够大时才能使随机分组更加有效,从而保证组间均衡性。
但在实际研究中,除了要考虑抽样误差外,还需考虑研究的可行性、结论的时效性、医学伦理以及非随机误差的影响等实际问题,并非研究对象数越多越好。
比如在改良肩周炎贴膏临床试验中,如果片面地追求大样本,研究中所需的人力、物力、财力等物质支持必然增大,研究的可行性下降。
由于需纳入更多病例,可能会延长产品研发周期,影响新药投产上市;若增加医院或临床实验中心参与该研究,又增加了组织协调的工作量和工作难度。
同时增加各种混杂、偏倚发生的机会,比如由于肩周炎发病、预后与季节、气候密切相关,临床病例接收时间太长,组内病例同质性差;测量仪器增多导致测量误差增大,观察疗效的医院、医生增多,研究结果的一致性降低等现实问题,使得试验结果难于分析或者难以合理解释,影响研究结论的科学性。
临床试验样本量的估算样本量的估计涉及诸多参数的确定,最难得到的就是预期的或者已知的效应大小(计数资料的率差、计量资料的均数差值),方差(计量资料)或合并的率(计数资料各组的合并率),一般需通过预试验或者查阅历史资料和文献获得,不过很多时候很难得到或者可靠性较差。
因此样本量估计有些时候不是想做就能做的。
SFDA的规定主要是从安全性的角度出发,保证能发现多少的不良反应率;统计的计算主要是从power出发,保证有多少把握能做出显著来。
但是中国的国情?有多少厂家愿意多做?建议方案里这么写:从安全性角度出发,按照SFDA××规定,完成100对有效病例,再考虑到脱落原因,再扩大20%,即120对,240例。
或者:本研究为随机双盲、安慰剂平行对照试验,只有显示试验药优于安慰剂时才可认为试验药有效,根据预试验结果,试验组和对照组的有效率分别为65.0%和42.9%,则每个治疗组中能接受评价的病人样本数必须达到114例(总共228例),这样才能在单侧显著性水平为5%、检验功效为90%的情况下证明试验组疗效优于对照组。
假设因调整意向性治疗人群而丢失病例达10%,则需要纳入病人的总样本例数为250例。
非劣性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=12.365×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=12.365× (S/δ)2等效性试验(α=0.05,β=0.2)时:计数资料:平均有效率(P)等效标准(δ)N=公式:N=17.127×P(1-P)/δ2计量资料:共同标准差(S)等效标准(δ)N=公式:N=17.127× (S/δ)2上述公式的说明:1) 该公式源于郑青山教授发表的文献。
2) N 是每组的估算例数N1=N2,N1 和N2 分别为试验药和参比药的例数;3) P 是平均有效率,4) S 是估计的共同标准差,5) δ 是等效标准。
估计样本含量样本含量估计是指为确保研究结论在一定检验效能基础上的最少观察单位数。
样本含量的大小应根据研究目的、研究设计的类型、研究资料的性质、接受的处理因素、研究对象的种类、研究阶段等因素而决定。
样本含量的估计方法有公式计算法和查表法。
(一)样本含量估计的主要参数1.检验水准αα是第Ⅰ类错误的概率;是指研究希望α取值为0.05时还是0.01时的检验水准上发现组间差别。
α越小,所需样本例数越多,一般α取值为0.05。
同时,应根据专业知识确定用单侧检验还是双侧检验,在α相同的条件下,双侧检验要比单侧检验所需要的样本例数要多些。
2.检验效能1-ββ是第Ⅱ类错误的概率;1-β也称把握度,是指为真时,则在每100次实验中平均能发现出差别来的概率。
1-β越大,所需样本例数越多。
通常取1-β为0.90、0.85或0.80。
3.容许误差δ由于抽样误差的影响,用样本指标估计总体指标常有一定的误差,因而要确定一个样本和总体间或两个样本间某统计量相差所容许的限度,如δ=μ1−μ2,或δ=π1−π2。
δ越小,所需样本含量越多。
通常根据预实验、查阅文献和专业知识估计有意义的差值。
4.总体变异度σσ越大,所需样本含量越多。
通常根据预实验、查阅文献和专业知识判断σ值。
(二)常用统计设计的样本含量估计1.完全随机设计样本均数与总体均数比较的样本含量估计样本均数与总体均数的比较,在确定和后,令,为实验结果的总体标准差,样本含量的计算公式为:式中:有单双侧之分,只取单侧,和为相应的正态分位数。
2. 完全随机设计两样本均数比较的样本含量估计当要求两样本例数相等时,先要求出两个总体参数间的差值,即。
若μ1及μ2未知时,可分别以及估计之;σ未知时,可以合并标准差s估计;α、β分别是对应于α和β的u值,或可由t界值表(附表2)自由度由υ=∞查出,α常取0.05,有单双侧之分;β常取0.20或0.10,只取单侧值。
可按下列公式估算每组需观察的例数n。