核酸的酶促降解和
- 格式:ppt
- 大小:1.87 MB
- 文档页数:70
10核酸酶促降解和核苷酸代谢
核酸酶是一组分子量较大的蛋白质,是DNA和RNA的重要降解酶,可以促进DNA与RNA的合成、降解、改造等反应。
这些反应包括线粒体DNA 的重组和修复、DNA的合成与维护、RNA的转录、基因表达、以及核苷酸代谢等。
除此之外,核酸酶还可以促进核酸复制、转录和翻译等步骤,具有促进基因表达和改变基因组结构,修复和维护DNA和RNA的能力。
核酸酶分子通过承载一组众多的催化朙朙,可以与目标核酸分子特异性结合,从而促进其降解,从而获得活性核苷酸供后续合成、降解及修复反应中进行活性相互作用。
核苷酸代谢是基因表达和维护生物体内水平的重要过程。
它通过把位于染色体中的胞嘧啶转录成嘧啶碱型核苷酸,并通过不断转化的反应来修改基因表达水平,定期的转录修复等,从而维护细胞内的水平。
核苷酸代谢可以通过核酸酶来促进,核酸酶可以促进核苷酸复制、转录和翻译,从而促进核苷酸的代谢。
核苷酸代谢可以在一些特定的细胞有效地合成、降解、传播和重组信号,以改变基因表达组成如RNA和DNA的重组和修复,从而调节基因的水平。
第九章核酸的酶促降解和核苷酸代谢核酸在生物体内核酸酶、核苷酸酶、核苷酶等的作用下,分解为氨、尿素、尿囊素、尿囊酸、尿酸等终产物,排泄到体外。
在核酸的分解过程中,产生的核糖可以沿磷酸戊糖途径代谢,产生的核苷酸及其衍生物几乎参与细胞的所有生化过程。
如A TP是生物体内的通用能源;腺苷酸还是几种重要辅酶的组成成分;cAMP和cGMP作为激素作用的第二信使,是生物体内物质代谢的重要调节物质。
第一节核酸的分解代谢动物和异养型微生物可以分泌消化酶来分解食物中的核蛋白和核酸类物质,以获得各种核苷酸、核苷及嘌呤碱、嘧啶碱和戊糖。
植物一般不能消化体外的有机物质。
但所有生物细胞都含有与核酸代谢有关的酶类,能使细胞内的核酸分解,促使核酸更新。
在体内,核酸的分解过程如下:嘌呤碱和嘧啶碱+ 戊糖—1—磷酸。
一、核酸的降解(解聚)在生物体内能催化磷酸二酯键水解而使核酸解聚的酶,称为核酸酶。
其中专一作用于RNA的称为核糖核酸酶(RNase);专一水解DNA的称为脱氧核糖核酸酶(DNase)。
核糖核酸酶和脱氧核糖核酸酶中,能水解核酸分子内部磷酸二酯键的酶称为核酸内切酶(Endonuclease);而能从DNA或RNA以及低聚多核苷链的一端逐个水解下单核苷酸的酶称为核酸外切酶(Exonuclease)。
二、核苷酸的降解各种单核苷酸受细胞内磷酸单酯酶或核苷酸酶的作用水解为核苷和磷酸。
核苷在核苷酶的作用下进一步分解。
核苷酶的种类很多,可以分为两大类:一类是核苷磷酸化酶(Nucleoside Phosphorylase),一类是核酸水解酶(Nucleoside hydrolase)。
三、碱基的分解1.嘌呤的分解嘌呤碱的分解首先是在各种脱氨酶的作用下脱去氨基。
在许多动物体内广泛含有鸟嘌呤脱氨酶,可以催化鸟嘌呤水解脱氨生成黄嘌呤。
但腺嘌呤脱氨酶含量极少,而腺苷脱氨酶和腺苷酸脱氨酶活性很高。
因此,腺嘌呤的脱氨反应是在腺苷酸和腺苷的水平上进行的。
蛋白质、核酸的酶促降解和含氮化合物代谢学习要点蛋白质是生命物质的基础,是维持生命活动正常进行以及生长发育所必不可少的。
泛素系统和溶酶体系统是细胞内蛋白质两个最重要的降解系统。
氨基酸经过转氨基与氧化脱氨基和联合脱氨基作用,生成氨和相应的α-酮酸。
氨可通过多种途径安全地排出体外;α-酮酸可参入糖酵解、三羧酸循环、糖异生和酮体代谢途径。
氨基酸还可以转化成辅酶、激素、生物碱等重要物质。
自然界中的不同氮化物相互转化形成氮素循环。
固氮生物和工业固氮将N2转变成NH3,NH3被硝化细菌氧化成NO3-,植物吸收NO3-并还原成NH3,通过还原氨基化同化为Glu,再以Glu和Gln为氨基供体合成其它氨基酸和含氮有机物。
核酸酶催化核酸水解为核苷酸,可分为核酸内切酶、核酸外切酶和限制性内切酶。
核苷酸可进一步降解为戊糖、磷酸和含氮碱。
在人体内嘌呤碱的降解产物为尿酸、嘧啶碱彻底降解。
生物可利用氨基酸和其它代谢物从头合成核苷酸,还能通过补救途径利用核苷和碱基合成核苷酸。
9.1 蛋白质的酶促降解9.1.1 蛋白水解酶生物体内的蛋白质经常处于不断合成和降解的动态变化之中。
生物体内几乎到处都有水解肽键的酶,既包括消化道中消化食物蛋白的蛋白酶,血液中参与血液凝固和溶解血栓的酶以及补体系统,也包括种类繁多、结构和功能更复杂的细胞内蛋白酶。
这些酶可按其作用特点分为肽链内切酶和肽链外切酶。
肽链内切酶又称蛋白酶,水解肽链内部的肽键,对参与形成肽键的氨基酸残基有一定的专一性,常见的蛋白酶及其作用位点参看表9-1。
肽链外切酶包括氨肽酶和羧肽酶,分别降解肽链N端和C端的肽键。
如羧肽酶A优先作用于中性氨基酸为羧基端的肽键;羧肽酶B则水解以碱性氨基酸为羧基端的肽键(表9-1)。
表9-1 蛋白水解酶作用的专一性按其活性部位的结构特征可将蛋白酶分为四类:(1)丝氨酸蛋白酶类活性部位含有Ser残基,受二丙基氟磷酸(DIFP)的强烈抑制。
胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、枯草杆菌蛋白酶等均属此类。
核酸的酶促降解和核苷酸代谢核酸是构成生物体遗传物质的重要分子之一、它们在生物体内起着关键的功能,包括存储遗传信息、传递遗传信息和参与生物体的代谢过程。
然而,核酸分子并不是永久存在的,它们会经历酶促降解和核苷酸代谢过程。
酶促降解是一种通过酶催化反应将核酸分子分解为较小的碎片的过程。
这一过程在细胞中起着至关重要的作用,因为它能够控制细胞内的核酸浓度,并对细胞进行修复和调控。
具体而言,核酸的酶促降解主要通过核酸酶参与。
核酸酶可以识别特定的核酸分子,切割磷酸二酯键并将其分解成较小的碎片。
酶促降解的过程是高度调控的,这意味着细胞可以根据需要来降解核酸分子。
核酸酶的酶促降解反应可以发生在DNA和RNA分子上。
在DNA分子中,核酸酶可以通过识别特定的序列或结构来切割DNA链。
这些酶可以在DNA复制、修复和重组过程中发挥重要的作用。
在RNA分子中,核酸酶则可以通过识别特定的次级结构来切割RNA链。
这些酶在RNA降解和剪接等过程中起着关键作用。
核苷酸的合成通常发生在两个方向上。
一方面,细胞通过核苷酸合成途径将脱氧核苷酸和核苷酸合成为DNA和RNA的单体。
这些途径包括脱氧核苷酸合成途径和核苷酸合成途径。
另一方面,细胞还可以通过核苷酸分解途径将核苷酸分解为核苷和磷酸。
这些途径包括核苷酸降解途径和氨基酸代谢途径。
核酸酶和核苷酸代谢的失调会导致DNA和RNA的不稳定和降解,影响细胞的正常功能。
此外,核苷酸代谢紊乱还与多种人类疾病的发生和发展密切相关。
因此,研究核酸的酶促降解和核苷酸代谢机制对于理解生物体的正常功能和疾病的发生具有重要意义。
核酸的酶促降解和核苷酸代谢(客观题带答案)核酸的酶促降解和核苷酸代谢一、名词解释1.核苷磷酸化酶(nucleoside phosphorylase):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。
2.从头合成(de novo synthesis ):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。
3.补救途径(salvage pathway):与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。
4.限制性内切酶:二、单选题(在备选答案中只有一个是正确的)( 3 )1.嘌呤核苷酸从头合成时首先生成的是:①GMP; ②AMP; ③IMP; ④ATP( 2 )2.提供其分子中全部N和C原子合成嘌呤环的氨基酸是:①天冬氨酸; ②甘氨酸; ③丙氨酸; ④谷氨酸( 1 )3.嘌呤环中第4位和第5位碳原子来自下列哪种化合物?①甘氨酸②天冬氨酸③丙氨酸④谷氨酸( 3 )4.嘌呤核苷酸的嘌呤核上第1位N原子来自①Gly②Gln③ASP④甲酸三、多项选择题1.嘧啶分解的代谢产物有:(ABC)A.CO2; B.β-氨基酸C.NH3D.尿酸2.嘌呤环中的氮原子来自(ABC)A.甘氨酸; B.天冬氨酸; C.谷氨酰胺; D.谷氨酸四、填空题1.体内脱氧核苷酸是由____核糖核苷酸_____直接还原而生成,催化此反应的酶是____核糖核苷酸还原酶______酶。
2.人体内嘌呤核苷酸分解代谢的最终产物是______尿酸______,与其生成有关的重要酶是___黄嘌呤氧化酶_________。
3.在生命有机体内核酸常与蛋白质组成复合物,这种复合物叫做染色体。
4.基因表达在转录水平的调控是最经济的,也是最普遍的。
五、问答题:1.降解核酸的酶有哪几类?举例说明它们的作用方式和特异性。
2.什么是限制性内切酶?有何特点?它的发现有何特殊意义?3.简述蛋白质、脂肪和糖代谢的关系?蛋白质AA糖EMP 丙酮酸乙酰辅酶A TCA脂肪甘油脂肪酸六、判断对错:(对)人类和灵长类动物缺乏尿酸氧化酶,因此嘌呤降解的最终产物是尿酸。
第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。
二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。
食物中的核酸也需要在核酸酶的作用下被消化。
核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。
按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。
核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。
(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。
核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。
肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。
核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。
不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。
嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。
核苷酸的合成代谢受多种因素的调节。
(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。
嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。
核酸的酶促降解范文核酸的酶促降解是指通过酶的作用,将核酸分子降解成较小的碱基单元。
这个过程在生物体内起着至关重要的作用,可以调控基因的表达,修复DNA损伤以及保持细胞的健康状态。
本文将详细探讨核酸的酶促降解机制及其意义。
核酸是由若干个核苷酸单元组成的大分子。
核苷酸是由碱基、糖和磷酸基团构成的,包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)、胞嘧啶(Cytosine)和尿嘧啶(Uracil)等几种碱基,以及核糖或脱氧核糖。
在细胞内,核酸是遗传信息的载体,在DNA和RNA形式中存在。
核酸酶是一类特殊的酶,具有降解核酸的能力。
在细胞中,核酸酶通过切割核酸链的磷酸二酯键来发挥作用。
具体来说,核酸酶可以选择性地切割单链核酸或双链核酸。
对于单链核酸,核酸酶可在任意位置切割;而对于双链核酸,酶作用可以导致链的断裂或链的解旋,从而分离两个链。
核酸酶的酶促降解具有多种生物学功能。
首先,核酸酶在DNA修复中发挥着重要作用。
当DNA受到损伤时,核酸酶可以识别并切割受损的区域,为后续的修复提供便利。
其次,核酸酶可以参与基因的表达调控。
例如,转录因子可以结合到特定的DNA序列上,从而启动或抑制基因转录。
核酸酶可以切割这些DNA序列,从而干扰基因的表达。
此外,核酸酶还可以降解RNA分子,是RNA降解的重要因素。
RNA降解过程中,核酸酶通过切割RNA链的方式,分解RNA分子。
这是调节RNA稳定性和清除异常RNA的重要过程。
在细胞内,核酸酶的活性受到严格的调控。
细胞通过调节酶的表达量、活性以及酶-底物相互作用来控制核酸降解的过程。
例如,在DNA修复中,细胞可以调节特定的核酸酶表达量,以应对不同类型的DNA损伤。
此外,细胞还通过蛋白质修饰或辅因子的参与来调节核酸酶的活性。
因此,酶的高度调控保证了核酸降解的精确性和准确性。
总结起来,核酸的酶促降解是生物体中一个复杂的过程,通过核酸酶的作用,将核酸分子降解为较小的碱基单元。