蛋白质的酶促降解
- 格式:doc
- 大小:73.00 KB
- 文档页数:13
蛋白质的酶促降解及氨基酸代谢一、填空题1.完整的尿素循环仅存在于肝细胞,循环的一部分反应发生在该细胞的细胞液,另一部分发生在该细胞的线粒体基质,合成1分子尿素需要消耗4分子ATP,在形成的尿素分子中,一个N原子来自游离氨,另一个N原子来自天冬氨酸。
2.任何氨基酸的合成的前体都来自于EMP、TCA或PPP途径,其中N原子是通过Glu 或Gln 进入相关的合成途径的。
3.L-谷氨酸脱氢酶催化L-谷氨酸的氧化脱氨基作用,其辅酶为NAD(P)+。
4.转氨酶是一类催化氨基转移反应的酶,其辅酶是磷酸吡哆醛。
5.氨是有毒的,人体主要通过谷氨酰胺和丙氨酸的形式将氨转运至肝脏合成尿素排出体外。
6.多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是赖氨酸和精氨酸氨基酸残基。
7.胰凝乳蛋白酶专一性水解多肽链由芳香族氨基酸羧基端形成的肽键。
8.氨基酸脱下氨的主要去路有生成尿素、合成谷氨酰胺和再合成氨基酸。
9.按照合成前体的性质,氨基酸可分为:α-酮戊二酸家族、天冬氨酸家族、丙酮酸家族、甘油酸-3-磷酸家族、芳香族氨基酸家族。
10.哺乳动物的谷氨酸脱氢酶受到细胞能量状态的控制,ADP 或GDP 别构激活,相反,ATP 或GTP 别构抑制。
二、选择题1.人体必需氨基酸是指( C )A、在体内可由糖转变生成B、在体内能由其他氨基酸转变生成C、在体内不能合成,必需从食物获得D、在体内可由脂肪酸转变生成2.下列哪一种氨基酸是生酮而不是生糖氨基酸? (D)A、异亮氨酸B、酪氨酸C、苯丙氨酸D、亮氨酸3.组成氨基酸转氨酶的辅酶组分是 ( C)A、泛酸B、烟酸C、吡哆醛D、核黄素4.经脱氨基作用直接生成α-酮戊二酸的氨基酸是 ( A )A、谷氨酸B、甘氨酸C、丝氨酸D、天冬氨酸5.经转氨作用可生成草酰乙酸的氨基酸是 ( B )A、AlaB、AspC、GluD、Thr6.直接进行氧化脱氨基作用的氨基酸是(C)A、天冬氨酸B、缬氨酸C、谷氨酸D、丝氨酸7.联合脱氨基作用是指 ( C)A、氨基酸氧化酶与谷氨酸脱氢酶联合B、氨基酸氧化酶与谷氨酸脱羧酶联合C、转氨酶与谷氨酸脱氢酶联合D、腺苷酸脱氨酶与谷氨酸脱羧酶联合8.哺乳动物体内解除氨毒的主要方式是 ( B)A、生成谷氨酰胺B、生成尿素C、生成其他氨基酸D、生成尿酸9.鸟类和爬行动物体内解除氨毒的主要方式是 ( D)A、生成谷氨酰胺B、生成尿素C、生成其他氨基酸D、生成尿酸10.下列哪种氨基酸与尿素循环无关? ( A )A、赖氨酸B、天冬氨酸C、鸟氨酸D、精氨酸11.生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面那种作用完成的?(C)A、氧化脱氨基B、还原脱氨基C、联合脱氨基D、转氨基12.鸟氨酸循环中,尿素生成的氨基来源有:(C)A、鸟氨酸B、精氨酸C、天冬氨酸D、瓜氨酸13.苯丙酮尿症患者多一种必需氨基酸,它是(B)A、SerB、TyrC、GlnD、Arg14.在禁食24h以后,人体最重要的合成血糖的前体是(A)A、肌肉蛋白B、肝糖原C、肌糖原D、血液循环中的乳酸三、名词解释1.生酮氨基酸:在分解过程中能转变成乙酰辅酶A和乙酰乙酰辅酶A等酮体的氨基酸。
11章.蛋白质的降解和氨基酸的代谢1.蛋白质的酶促降解1.1.细胞内蛋白质的降解一般认为真核细胞对蛋白质的降解有两个体系.其一是溶酶体降解.其二是依赖ATP,在细胞溶胶中以泛素标记的选择性蛋白质的降解.1.2外源蛋白质的酶促降解外源蛋白质进入体内,必须先经过水解作用变为小分子的氨基酸,然后才能被吸收.就高等动物来说,外界食物蛋白质经消化吸收的氨基酸和体内合成及组织蛋白质经降解的氨基酸,共同组成体内氨基酸代谢库.所谓氨基酸代谢库即指体内氨基酸的总量.氨基酸代谢库中的氨基酸大部分用于合成蛋白质,一部分可以作为能源,体内有一些非蛋白质的含氮化合物也是以某些氨基酸作为合成的原料.2.氨基酸的分解代谢氨基酸的共同分解代谢途径包括脱氨基作用和脱羧基作用两个方面.氨基酸经脱氨基作用生成氨及α-酮酸.氨基酸经脱羧基作用产生二氧化碳及胺.胺可随尿直接排出,也可在酶的作用下,转化为可被排出的物质和合成体内有用的物质.氨基酸脱氨基的方式有氧化脱氨基作用、转氨基作用、联合脱氨基作用、非氧化脱氨基作用和脱酰胺基作用.3.氨的排泄方式水生动物排氨鸟类及爬行动物排尿酸哺乳动物排尿素尿素是哺乳动物蛋白质代谢的最终产物10章.脂质代谢1脂质的酶促水解1.1三酰甘油的酶促水解三酰甘油是重要的储能物质.在脂肪酶的作用下水解为甘油和脂肪酸.甘油可氧化供能也可糖酵解途径生成糖.脂肪酸可彻底氧化供能.1.2磷脂的酶促水解磷脂酶A1和A2分别专一的出去Sn-1位或sn-2位上的脂肪酸,生成的仅含有一个脂肪酸的产物称溶血磷脂.溶血磷脂是一种很强的表面活性剂,能使细胞膜和红细胞膜溶解.2.脂肪酸的β-氧化作用2.1脂肪酸的β-氧化作用是指:脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸的碳链的断裂方式是每次切除2个碳原子.细胞溶胶中的长链脂肪酸首先被活化为脂酰辅酶A,然后长链脂酰辅酶A在肉碱的携带下进入线粒体.需要肉碱脂酰转移酶脂肪酸的β-氧化作用四步:脱氢、加水、再脱氢、硫解.循环一次,产生少两个碳原子的脂酰辅酶A和一分子乙酰辅酶A.1mol软脂酸彻底氧化需要进行7次β-氧化,产生8mol乙酰辅酶A.每次β-氧化产生1mol FADH2 和1mol NADH+H+ ,则共产生7molFADH2和7molNADH+H+ .进入呼吸链氧化生成28mol ATP1.5×7+2.5×7=28;8mol 乙酰辅酶A进入TCA循环氧化可生成80molATP10×8;这样1mol软脂酸彻底氧化一共产生108molATP,因活化时消耗2molATP,故净得106molATP.不饱和脂肪酸的氧化与饱和脂肪酸基本相同,单不饱和脂肪酸氧化需要△3-顺,△2-反烯脂酰辅酶A异构酶;多不饱和脂肪酸氧化还需要△2-反,△4-顺二烯脂酰辅酶A还原酶和△3-反,△2-反烯脂酰辅酶A异构酶的共同作用.3.酮体乙酰乙酸、β-羟丁酸和丙酮,统称为酮体.酮体在肝中产生,可被肝外组织利用.酮体的生成:在肝中脂肪酸的氧化不是很完全,二分子的乙酰辅酶A可以缩合成乙酰乙酰辅酶A;乙酰乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A,后者裂解成乙酰乙酸;乙酰乙酸在肝线粒体中可以还原生成β-羟丁酸,乙酰乙酸可以脱羧生成丙酮.酮体的氧化:在肝中形成的乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,通过三羧酸循环循环氧化.β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸辅酶A,再与第二个辅酶A作用形成两分子一线辅酶A,乙酰辅酶A可进入三羧酸循环循环进行氧化.9.糖的分解代谢1.淀粉的酶促水解1.1 α-淀粉酶可以水解淀粉中任何部位的α-1,4糖苷键,β-淀粉酶只能从非还原端开始水解.,β-淀粉酶不能水解α-1,6糖苷键.水解淀粉中的α-1,6糖苷键的酶是α-1,6糖苷酶.2.糖的分解代谢途径包括糖酵解、三羧酸循环、戊糖磷酸途径、葡萄糖醛酸途径、乙醛酸途径.3.糖酵解无氧条件下,1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程称为糖酵解.丙酮酸的三条代谢去路:①在组织缺氧情况下丙酮酸还原为乳酸;②酵母菌可以使丙酮酸还原为乙醇;③有氧条件下,丙酮酸转化为乙酰辅酶A,进入三羧酸循环,彻底氧化为二氧化碳和水.糖酵解从葡萄糖开始,分为10步酶促反应,均在细胞液中进行.糖酵解的调控:从单细胞生物到高等动植物都存在糖酵解过程,其生理意义主要是释放能量,使机体在缺氧情况下仍能进行生命活动.糖酵解的中间产物可为机体提供碳骨架.糖酵解主要受3中酶的调控:①果糖磷酸激酶;①果糖磷酸激酶是最关键的限速酶.1.ATP/AMP比值对该酶活性的调节具有重要的生理意义.当ATP浓度较高时,果糖磷酸激酶几乎无活性,糖酵解作用减弱;当AMP积累,ATP减少时,酶活性恢复,糖酵解作用增强.2.氢离子H可抑制果糖磷酸激酶的活性,防止肌肉中形成过量乳酸而使血液酸中毒.3.柠檬酸可增加ATP对酶活性的抑制作用.果糖-2,6-二磷酸能消除ATP对酶的抑制效应,使酶活化.②己糖激酶活性的调节.果糖-6-磷酸是的别构抑制剂.③丙酮酸激酶活性的调节.果糖-1,6-二磷酸是丙酮酸激酶的激活剂;丙氨酸是该酶的别构抑制剂.ATP、乙酰CoA 也可以抑制该酶的活性.糖酵解中ATP的变化:糖酵解阶段中,由己糖激酶和果糖磷酸激酶催化的两步反应,各消耗1分子的ATP.在丙糖阶段,甘油酸—1,3—二磷酸和烯醇丙酮酸磷酸经底物水平磷酸化反应,个生成1分子ATP,由于果糖—1,6—二磷酸在醛缩酶催化下裂解,相当于生成2分子甘油醛—3—磷酸.因此,每分子葡萄糖在糖酵解阶段净生成2分子ATP.在糖酵解过程中有3步不可逆反应,分别由己糖激酶、果糖磷酸激酶和丙酮酸激酶.其中果糖磷酸激酶是最关键的限速酶,其活性被ATP、柠檬酸所抑制;被AMP和果糖-2,6-二磷酸变构激活.2.糖的有氧分解将糖的有氧分解分为3个阶段,第一是糖酵解阶段,第二是丙酮酸进入线粒体被氧化脱羧成乙酰辅酶A.第三阶段是乙酰辅酶A进入柠檬酸循环生成二氧化碳和水.三羧酸循环循环:乙酰CoA和草酰乙酸缩合为柠檬酸进入三羧酸循环循环.丙酮酸经三羧酸循环循环途径能形成12.5个ATP,每分子葡萄糖能产生2分子的丙酮酸,将产生25个ATP.柠檬酸合酶、异柠檬酸脱氢酶与α-酮戊二酸脱氢酶系是调控三羧酸循环循环的限速酶.其活性受ATP、NADH等物质的抑制.葡萄糖在有氧条件下氧化分解为二氧化碳和水净生成32分子ATP.乙醛酸途径两种关键酶是苹果酸合酶和异柠檬酸裂解酶.戊糖磷酸途径:两个5碳糖相加生成3碳和7碳糖,后二者相加在生成6碳和4碳糖,5碳与4碳糖相加生成3碳和6碳糖.糖原的分解与合成的关键酶是磷酸化酶与糖原合酶.糖异生:糖异生作用是指非糖物质如甘油,生糖氨基酸和乳酸等合成葡萄糖或糖原的过程.为什么糖异生并非完全是糖酵解的逆转反应8新陈代谢总论和生物氧化1ATP是生物细胞内能量代谢的偶联剂.从低等的单细胞生物到高等的人类,能量的释放、贮存和利用都是以ATP 为中心.ATP含有一个磷酯键和两个由磷酸基团形成的磷酸酐键.6 酶1酶的概念与特点:酶是具有高效性与专一性的生物催化剂.三层含义:一,酶是催化剂;二,酶是生物催化剂;三,酶在行使催化剂功能时,具有高效性与专一性的特点酶的催化效率可以用转换数来表示.2酶的化学本质与组成除核酶外,酶都是蛋白质.酶可以分为单纯蛋白质与缀合蛋白质.缀合蛋白质除了氨基酸残基外,还含有金属离子、有机小分子等化学成分,这类酶称为全酶.全酶中蛋白质部分称为辅酶.非蛋白质部分称为辅因子.酶的分类:1.氧化还原酶类;2.转移酶类;3.水解酶类;4裂合酶类;5异构酶类;6合成酶类.酶的专一性分类:①结构专一性分为绝对专一性与相对专一性;②立体异构专一性旋光异构专一性和几何异构专一性酶的作用机制:活化分子:反应物一种更高能量的状态.过渡态:活化分子所处的这种需要更多能量的状态.基态:与活化分子相对应的普通反应物分子所处的状态.活化能:处于过渡态的分子比处于基态的分子多出来的Gibbs 自由能.酶通过降低反应活化能使反应速率加快.酶活性部位的结构是酶作用机理的结构基础.酶具有高效催化效率的分子机制:酶分子的活性部位结合底物分子形成酶—底物复合物,在酶的帮助下,底物分子进入一种特定的状态,形成此类过渡态所需的活化能远小于非酶促反应所需的活化能,使反应能够顺利进行,形成产物释放出游离的酶,使其能够参与其余底物的反应.与该分子机理相关的因素:1.邻近效应:邻近效应指酶与底物结合以后,使原来游离的底物集中于酶的活性部位,从而减少底物之间或底物与酶的催化基团之间的距离,使反应更容易进行.2.定向效应:指底物的反应基团之间、酶的催化基团与底物的反应基团之间的正确定位与取向所产生的增进反应速率的效应.3.促进底物过渡态形成的非共价作用:当酶与底物结合后,酶与底物之间的非共价可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成.4.酸碱催化:5.共价催化:酶促反应动力学:酶底物中间复合物学说:即酶首先和底物结合生成中=v 间复合物,中间复合物再生成产物.米氏方程:m K S S v v +=][][max ;K m 物理意义:K m 值是反应速率为最大值的一半时的底物浓度.其单位是mol/l影响酶促反应速率的因素包括:抑制剂、温度、ph 值,激活剂.1,通过改变酶必需基团的化学性质从而引起酶活力的降低或丧失的作用称为抑制作用.酶的抑制剂包括不可逆抑制剂与可逆抑制剂.可逆抑制剂可分为:竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂.氯离子是唾液淀粉酶的激活剂.酶活性的调节酶活性的调节方式:1.通过改变酶的分布于数量来调节酶的活性.2.通过改变细胞内已有的酶分子的活性来调节酶的活性.酶的别构调控许多酶具有活性部位外,还具有调节部位.酶的调节部位可与某些化合物可逆的非共价结合,使酶的结构发生改变,进而改变酶的活性,这种酶活性的调节方式称为别构调节.对别构酶加热或用化学试剂处理,可以使别构酶解离并失去调节活性,称为脱敏作用.对酶分子具有别构调节作用的化合物称为效应物.效应物对别构酶的调节作用可分为同促效应与异促效应.同促效应中,酶的活性部位与调节部位是相同的,效应物是底物,底物与别构酶的某一活性部位相结合可促使剩余底物与其它剩余活性部位相结合,导致酶促反应速率增加,这称为正协同效应.如果底物与酶的某一活性部位结合导致剩余底物更难与其余剩余活性部位结合,则称为负协同效应.异促效应中,酶的活性部位与调节部位是不同的.效应物是非底物分子.酶原的激活酶原:指的是生活物体内合成的无活性的酶的前体.酶原激活:在特定蛋白水解酶的催化作用下,酶原的结构发生改变,形成酶的活性部位,变成有活性的酶.酶原的激活是一个不可逆的过程.5脂质与生物膜1.1.1动植物油的化学本质是脂酰甘油.1.1三酰甘油的理化性质:1.3磷脂分为甘油磷脂与鞘磷脂.最简单的甘油磷脂是磷脂酸.1.4生物膜主要由蛋白质与脂质.4糖类单糖一般是含有3--6个碳原子的多羟基醛或多羟基酮.最简单的单糖是甘油醛和二羟丙酮.单糖的构型以距离醛基最远端不对称碳原子为准,羟基在左边的为L构型,羟基在右边的为D构型.单糖分子中醛基和其他碳原子上羟基成环反应生成的产物为半缩醛.六元环是吡喃糖,五元环为呋喃糖.六元环更稳定.连接半缩醛羟基的碳称为异头碳.异头物的半缩醛羟基与决定构型的羟基在同侧着为α型,在相反者为β构型.单糖的构型:椅式构象更稳定.糖类衍生物甘露醇在临床上用来降低颅内压和治疗急性肾衰竭.葡糖醛酸是人体一种重要的解毒剂.寡糖寡糖是少数单糖2-10缩合的聚合物,低聚糖是指20个以下单糖缩合的聚合物.麦芽糖成键类型:α1-4糖苷键,多糖多糖是由多个单糖基以糖苷键相连而成的高聚物.多糖没有还原性和变旋性.淀粉天然淀粉一般由直链淀粉与支链淀粉组成.直链淀粉是D—葡萄糖基以α—1,4糖苷键连接的多糖链.直链淀粉分子的空间构象是卷曲成螺旋形的,每一回旋为6个葡萄糖基.显色螺旋构象是碘显色的必要条件,碘分子进入淀粉螺旋圈内,糖游离羟基称为电子供体,碘分子成为电子受体,形成淀粉碘络合物,呈现颜色.其颜色与糖链的长度有关.直链淀粉成蓝色,支链淀粉成紫红色.纤维素自然界中最丰富的有机化合物是纤维素.纤维素是一种线性的由D—吡喃葡糖基以β—1,4糖苷键3.核酸RNA:核糖核酸DNA:脱氧核糖核酸A 腺嘌呤T 胸腺嘧啶G 鸟嘌呤C胞嘧啶U 尿嘧啶核苷:是戊糖和含氮碱基生成的糖苷.核苷酸间的连接键是3,5—磷酸二酯键.碱基序列表示核酸的一级结构,DNA双链的螺旋形空间结构称DNA的二级结构.A与T配对形成2个氢键,G与C配对形成3个氢键.增色效应:核酸水解为核苷酸,紫外吸收值增加.核酸结构的稳定性因素:1 碱基对间的氢键.2 碱基堆积力.3 环境中的正离子核酸变性在核酸变性时,将紫外吸收的增加量达到最大增量的一半时的温度值称溶解温度,即Tm.影响Tm的因素:1.G—C对含量,G—C对含量越高,Tm也越高.2.溶液的离子强度离子强度较低的介质中,Tm较低.3.溶液的Ph4.变性剂复性:变性核酸的互补链在适当的条件下重新缔合成双螺旋的过程成为复性.变性核酸复性时需要缓慢冷却,故又称退火.变性核酸复性后,核酸的紫外吸收降低,这种现象称为减色效应.影响复性的因素:1 复性的温度 2单链片段的浓度 3 单链片段的长度 4 单链片段的复杂度 5 溶液的离子强度分子杂交:在退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA—RNA杂合双链的过程称为分子杂交.2蛋白质1.蛋白质的分类蛋白质的平均含氮量为16%.2.蛋白质的组成蛋白质的水解产物为氨基酸等电点:。
生物化学各章知识要点及复习参考题蛋白质的酶促降解、氨基酸代谢、核苷酸代谢知识要点蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。
在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。
(一)蛋白质和氨基酸的酶促降解在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。
氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。
(二)核酸的酶促降解核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。
戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。
其它哺乳动物可将尿酸进一步氧化生成尿囊酸。
植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。
嘧啶的降解过程比较复杂。
胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。
β-丙氨酸还参与辅酶A的合成。
(三)核苷酸的生物合成生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。
嘌呤核苷酸的合成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。
合成原料是二氧化碳、甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。
首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸。
嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合成尿苷酸,再转变成UDP、UTP和CTP。
在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。
蛋白质、核酸的酶促降解和含氮化合物代谢学习要点蛋白质是生命物质的基础,是维持生命活动正常进行以及生长发育所必不可少的。
泛素系统和溶酶体系统是细胞内蛋白质两个最重要的降解系统。
氨基酸经过转氨基与氧化脱氨基和联合脱氨基作用,生成氨和相应的α-酮酸。
氨可通过多种途径安全地排出体外;α-酮酸可参入糖酵解、三羧酸循环、糖异生和酮体代谢途径。
氨基酸还可以转化成辅酶、激素、生物碱等重要物质。
自然界中的不同氮化物相互转化形成氮素循环。
固氮生物和工业固氮将N2转变成NH3,NH3被硝化细菌氧化成NO3-,植物吸收NO3-并还原成NH3,通过还原氨基化同化为Glu,再以Glu和Gln为氨基供体合成其它氨基酸和含氮有机物。
核酸酶催化核酸水解为核苷酸,可分为核酸内切酶、核酸外切酶和限制性内切酶。
核苷酸可进一步降解为戊糖、磷酸和含氮碱。
在人体内嘌呤碱的降解产物为尿酸、嘧啶碱彻底降解。
生物可利用氨基酸和其它代谢物从头合成核苷酸,还能通过补救途径利用核苷和碱基合成核苷酸。
9.1 蛋白质的酶促降解9.1.1 蛋白水解酶生物体内的蛋白质经常处于不断合成和降解的动态变化之中。
生物体内几乎到处都有水解肽键的酶,既包括消化道中消化食物蛋白的蛋白酶,血液中参与血液凝固和溶解血栓的酶以及补体系统,也包括种类繁多、结构和功能更复杂的细胞内蛋白酶。
这些酶可按其作用特点分为肽链内切酶和肽链外切酶。
肽链内切酶又称蛋白酶,水解肽链内部的肽键,对参与形成肽键的氨基酸残基有一定的专一性,常见的蛋白酶及其作用位点参看表9-1。
肽链外切酶包括氨肽酶和羧肽酶,分别降解肽链N端和C端的肽键。
如羧肽酶A优先作用于中性氨基酸为羧基端的肽键;羧肽酶B则水解以碱性氨基酸为羧基端的肽键(表9-1)。
表9-1 蛋白水解酶作用的专一性按其活性部位的结构特征可将蛋白酶分为四类:(1)丝氨酸蛋白酶类活性部位含有Ser残基,受二丙基氟磷酸(DIFP)的强烈抑制。
胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、枯草杆菌蛋白酶等均属此类。
第十章蛋白质的酶促降解及氨基酸代谢一、名词解释1、氨基酸代谢库2、必需氨基酸、非必需氨基酸、半必需氨基酸3、氧化脱氨基作用4、转氨基作用5、联合脱氨基作用6、嘌呤核苷酸循环7、鸟氨酸循环8、生糖氨基酸、生酮氨基酸、生糖兼生酮氨基酸9、泛素10、S-腺苷甲硫氨酸11、一碳单位二、填空1、氨基酸代谢库中的内源氨基酸是由和组成。
2、多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是和氨基酸残基。
3、胰凝乳蛋白酶专一性水解多肽链由氨基酸端形成的肽键。
4、氨基酸的最主要脱氨基方式是。
5、转氨酶和脱羧酶的辅酶通常是。
6、谷氨酸经脱氨后产生和氨,前者进入进一步代谢。
7、尿素循环中产生的和两种氨基酸不是蛋白质氨基酸。
8、尿素分子中两个N原子,分别来自和。
9、在人体中氨在中通过循环生成经排泄。
10、体内最重要的转氨酶有和。
11、肝细胞线粒体中的氨基甲酰磷酸合成酶Ⅰ的催化作用需要______﹑_____,______参与。
12、精氨酸在的催化下,生成尿素和。
13、氨基酸脱下氨的主要去路有、和。
14、不同氨基酸与之间通过作用生成谷氨酸,这是氨基酸分解代谢反应,催化这一反应的酶叫酶,其辅酶是。
15、嘌呤核苷酸循环将氨基酸的和结合,生成,随后裂解为和延胡索酸。
16、人体内合成尿素的直接前体是,它水解后生成尿素和,后者又与反应,生成,这一产物再与反应,最终合成尿素,这就是尿素循环,尿素循环的后半部是在中进行的。
17、嘌呤核苷酸循环最终将氨释放出的化合物称,催化此反应的酶是。
18、氨甲酰磷酸合成酶Ⅰ定位于细胞内的,它催化和合成氨甲酰磷酸。
19、人体内不能合成而需要从食物供应的氨基酸称为。
20、是除氨的主要器官,它可通过将NH3和CO2合成无毒的,而禽类则合成的是。
21、合成一分子尿素需消耗分子的高能键。
22、生酮氨基酸经代谢后可产生,它是合成酮体的原料。
23、提供一碳单位的氨基酸有、、和等。
常见的一碳单位有、、、、和等。
24、生物体中活性蛋氨酸是,它是活泼的供应者。
第八章蛋白质的酶促降解生物体内的各种蛋白质经常处于动态更新之中,蛋白质的更新包括蛋白质的分解代谢和蛋白质的合成代谢;前者是指蛋白质分解为氨基酸及氨基酸继续分解为含氮的代谢产物、二氧化碳和水并释放出能量的过程。
构成蛋白质的氨基酸共有20种,其共同点是均含氨基和羧基,不同点是它们的碳骨架各不相同,因此,脱去氨基后各个氨基酸的碳骨架的分解途径有所不同,这就是个别氨基酸的代谢,也可称之为氨基酸的特殊代谢。
以上这些内容均属蛋白质分解代谢的范畴,并且由于这一过程是以氨基酸代谢为中心,故称为蛋白质分解和氨基酸代谢。
这是本章的中心内容。
此外,蛋白质的营养问题与饮食卫生和临床实践关系密切,亦在本章讨论。
第一节蛋白质的生理功能和营养作用一、蛋白质和氨基酸的主要生理功能维持组织的生长、更新和修补,此功能为蛋白质所特有,不能由糖或脂类代替。
产生一些生理活性物质,包括胺类、神经递质、激素、嘌呤、嘧啶等。
某些蛋白质具有特殊的生理功能,如血红蛋白运输氧,血浆中多种凝血因子参加血液凝固,肌肉中的肌动球蛋白与肌肉收缩有关。
此外,酶、抗体、受体都是蛋白质。
供给能量,每克蛋白质在体内氧化分解产生17.19kJ(4.1千卡)的能量,蛋白质的这种生理功能可由糖及脂类代替。
一般情况下,蛋白质供给的能量占食物总供热量的10%~15%。
二、氮平衡(nitrogen balance)和蛋白质的需要量体内蛋白质的代谢情况可以根据该实验来评价。
蛋白质中氮的平均含量为16%, 食物中的含氮物质主要是蛋白质。
故通过测定食物中氮的含量可以推算出其中的蛋白质含量。
蛋白质在体内代谢后产生的含氮物质主要经尿、粪、汗排出。
因此,测定每天从食物摄入的氮含量和每天排泄物(包括尿、粪、汗等)中的氮含量,可评价蛋白质在体内的代谢情况。
氮的总平衡:摄入氮 = 排出氮,见于正常成人。
氮的正平衡:摄入氮 > 排出氮,表示体内蛋白质的合成大于蛋白质的分解,见于儿童、孕妇及病后恢复期。
氮的负平衡:摄入氮 < 排出氮,常见于蛋白质摄入量不能满足需要时,如长期饥饿、消耗性疾病等。
我国营养学会推荐的蛋白质营养标准成年人为70g/d,相当于每天1~1.2g/kg 体重。
婴幼儿与儿童因生长发育需要,应增至每天2~4g/kg体重。
三、必需氨基酸(essential amino acids)与蛋白质的生理价值必需氨基酸是指体内需要,但人体本身不能合成或合成速度不足以满足需要,必须由食物蛋白质提供的氨基酸,共有8种:赖氨酸、色氨酸、苯丙氨酸、甲硫(蛋)氨酸、苏氨酸、亮氨酸、异亮氨酸、缬氨酸。
此外,组氨酸和精氨酸在婴幼儿和儿童时期因其体内合成量常不能满足生长发育的需要,也必须由食物提供,可称为半必需氨基酸。
非必需氨基酸(non-essential amino acids)是指体内需要,而人体本身可以合成,不必由食物供给的氨基酸,除上述8种必需氨基酸以外的其它组成蛋白质的氨基酸均为非必需氨基酸。
摄入细胞内的氨基酸不可能全部用于合成蛋白质,这是因为食物蛋白质中所含的各种氨基酸在其含量的比例方面与机体本身的蛋白质存在着差异。
因此,总有一部分氨基酸不被用来合成机体蛋白质,最后在体内分解。
这样,不同的食物蛋白质的利用率就存在差别。
利用率愈高的蛋白质对人体的营养价值愈高。
衡量某种蛋白质的营养价值的高低,或者说在体内的利用率的高低,最常用的一个指标是“生理价值”。
可用正在生长期的幼小动物做实验,测定其体内氮的保留量和吸收量以求得某食物蛋白质的生理价值。
(氮的吸收量 = 食入氮食入氮 - 粪中氮 - 尿中氮)从食物蛋白质的氨基酸组成来讲,若所含必需氨基酸的种类和数量与人体蛋白质相接近,则易于被机体利用,也就是说氮的保留量高,因此其生理价值亦高。
一般讲,动物蛋白质的生理价值较植物蛋白质高。
四、蛋白质的互补作用若将几种生理价值较低的蛋白质混合食用,可使其所含必需氨基酸成分相互补充,于是生理价值得以提高。
这对增进膳食中蛋白质的营养效果是一个很好的措施。
五、临床上静脉补液用的氨基酸制剂临床上在治疗因各种原因如烧伤、摄食困难、严重腹泻或外科手术等引起的低蛋白质血症时,常可经静脉补充氨基酸制剂。
例如14氨基酸-800,其含有8种必需氨基酸及组、精、甘、丙、丝、脯等共14种氨基酸,总量为8.0g/100ml,其中芳香族氨基酸含量极低,适用于肝硬化等;6氨基酸-520含较高浓度的支链氨基酸(亮、异亮、缬)和鸟氨酸循环(尿素合成)中的氨基酸包括鸟、谷、天冬等共6种,总量5.2g/100m1,适用于重症肝炎等。
第二节蛋白质的消化、吸收与腐败一、消化蛋白质的消化部位是胃和小肠(主要在小肠),受多种蛋白水解酶的催化而水解成氨基酸和少量小肽,然后再吸收。
胃蛋白酶、胰蛋白酶、糜蛋白酶和弹性蛋白酶都是内肽酶,亦即水解肽链内部的肽键;而羧基肽酶A、B和氨基肽酶是外肽酶,其作用是从肽链的最外端开始,前者从C端开始,后者从N端开始。
胃蛋白酶的最适pH在1.5~2.5,适于胃内环境,其活性中心含天冬氨酸,属天冬氨酸蛋白酶类。
胰蛋白酶、糜蛋白酶和弹性蛋白酶的最适pH在7.0左右,适于小肠环境,其活性中心含丝氨酸,属丝氨酸蛋白酶类。
二、吸收蛋白质消化的终产物为氨基酸和小肽(主要为二肽、三肽),可被小肠粘膜所吸收。
但小肽吸收进入小肠粘膜细胞后,即被胞质中的肽酶(二肽酶、三肽酶)水解成游离氨基酸,然后离开细胞进入血循环,因此门静脉血中几乎找不到小肽。
氨基酸的吸收机制:1、通过耗能需Na+的主动转运吸收肠黏膜上皮细胞的黏膜面的细胞膜上有若干种特殊的运载蛋白(载体),能与某些氨基酸和Na+在不同位置上同时结合,结合后可使运载蛋白的构象发生改变,从而把膜外(肠腔内)氨基酸和Na+都转运入肠黏膜上皮细胞内。
Na+则被钠泵打出至胞外,造成黏膜面内外的Na+梯度,有利于肠腔中的Na+继续通过运载蛋白进入细胞内,同时带动氨基酸进入。
因此肠黏膜上氨基酸的吸收是间接消耗ATP,而直接的推动力是肠腔和肠黏膜细胞内Na+梯度的电位势。
氨基酸的不断进入使得小肠黏膜上皮细胞内的氨基酸浓度高于毛细血管内,于是氨基酸通过浆膜面其相应的载体而转运至毛细血管血液内。
黏膜面的氨基酸载体是Na+依赖的,而浆膜面的氨基酸载体则不依赖Na+。
现已证实前者至少有6种,各对某些氨基酸起转运作用:①中性氨基酸,短侧链或极性侧链(丝、苏、丙) 载体。
②中性氨基酸,芳香族或疏水侧链(苯丙、酪、甲硫、缬、亮、异亮) 载体。
③亚氨基酸(脯、羟脯) 载体。
④β-氨基酸(β-丙氨酸、牛磺酸) 载体。
⑤碱性氨基酸和胱氨酸(赖、精、胱) 载体。
⑥酸性氨基酸(天、谷) 载体。
肾小管对氨基酸的重吸收也是通过上述机制进行的。
2、通过γ-谷氨酰基循环吸收1969年Meister发现;小肠黏膜和肾小管还可通过γ-谷氨酰基循环吸收氨基酸。
谷胱甘肽在这一循环中起着重要作用。
这也是一个主动运送氨基酸通过细胞膜的过程,氨基酸在进入细胞之前先在细胞膜上转肽酶的催化下,与细胞内的谷胱甘肽作用生成γ-谷氨酰氨基酸并进入细胞浆内,然后再经其它酶催化将氨基酸释放出来,同时使谷氨酸重新合成谷胱甘肽,进行下一次转运氨基酸的过程,因为氨基酸不能自由通透过细胞质膜。
三、腐败未被吸收的氨基酸和小肽及未被消化的蛋白质,在大肠下部受大肠杆菌的作用,发生一些化学变化的过程称腐败。
未被消化的蛋白质先被肠菌中的蛋白酶水解为氨基酸,然后再继续受肠菌中的其它酶类的催化。
腐败作用主要的化学反应有脱羧基作用和还原脱氨基作用。
(一) 脱羧基生成胺(二) 还原脱氨基及生成其它有毒物质肠道中氨的除上述腐败作用产生外,尚有另一个来源,即血液中的尿素约有25%可渗透进入肠道,受大肠杆菌的尿素酶的作用水解生成氨,被重吸收进入体内,再到达肝脏合成尿素,这就是尿素的肠肝循环。
平均每天约有7g尿素渗入肠道,而粪便中几乎不含尿素,这是由于渗入肠道的尿素全部被大肠杆菌分解成氨而吸收,这部分氨的量约为4g。
自肠道吸收入体内的氨,是体内血氨的重要来源之一,正常人可将氨在肝脏合成尿素后排出,食用普通膳食的正常人每天排尿素约20g。
严重肝脏疾病患者因其处理血氨的能力下降,常可引起肝昏迷,因此,临床上常给予肠道抑菌药物以减少肠道中氨的产生。
腐败作用产生的有毒物质除了胺和氨以外、还包括苯酚、吲哚、甲烷、CO、2有机酸和硫化氢等,这些物质大部分随粪便排出,小部分可被肠道吸收,进入肝脏予以处理。
第三节氨基酸的一般代谢食物蛋白质经消化吸收,以氨基酸形式进入血液循环及全身各组织,组织蛋白质又经常降解为氨基酸,这两种来源的氨基酸(外源性和内源性)混合在一起,存在于细胞内液、血液和其它体液中,总称为氨基酸代谢库。
血浆中氨基酸的浓度取决于内源性蛋白质的分解释放与各种组织利用之间的稳态平衡.人体每天更新机体总蛋白质的1%-2%,其中主要是肌肉蛋白质,其释放的游离氨基酸占体内氨基酸库中氨基酸总量的一半以上。
氨基酸的分解代谢过程主要在肝脏进行,肝脏在处理氨基酸代谢过程中生成的氨起着至关重要的作用,这是由于肝脏中存在合成尿素的酶,因此肌肉和肝脏对维持血液循环中氨基酸水平起重要的作用。
氨基酸的主要功能是构成体内各种蛋白质和其它某些生物分子,与糖或脂肪不同,氨基酸的供给量若超过所需时,过多部分并不能储存或排出体外,而是作为燃料或转变为糖或脂肪。
此时它的α-氨基必须先脱去(脱氨基作用),剩下的碳骨架则转变为代谢中间产物如乙酰辅酶A、乙酰乙酰辅酶A、丙酮酸或三羧酸循环中的某个中间产物。
人体每天更新机体总蛋白的1%-2%,一般讲,组织蛋白质分解生成的内源性氨基酸中约85%可被再利用以合成组织蛋白质。
一、氨基酸的脱氨基作用(deamination)(一)L-谷氨酸氧化脱氨基作用(oxidative deamination of L-glutamate) 线粒体基质中存在L-谷氨酸脱氢酶,该酶催化L-谷氨酸氧化脱氨生成α-酮戊二酸,反应可逆。
L-谷氨酸脱氢酶属不需氧脱氢酶,辅酶是NAD+或NADP+,特异性强,分布广泛,肝脏中含量最为丰富,其次是肾、脑,心、肺等,骨骼肌中最少。
L-谷氨酸脱氢酶是别构酶;由六个相同的亚基组成,分子质量为330,000。
ATP、GTP是其别构抑制剂,而ADP、GDP是别构激活剂。
一般情况下,反应偏向于谷氨酸的合成,但当谷氨酸浓度高,氨浓度低时,则有利于α-酮戊二酸的生成,即催化L-谷氨酸氧化脱氨。
(二)转氨基作用(transamination)转氨基作用是在转氨酶的催化下,α-氨基酸的氨基转移到α-酮酸的酮基上,生成相应的氨基酸,原来的氨基酸则转变为α-酮酸。
转氨酶分布广泛,除赖、苏、脯、羟脯氨酸外(例如,由于相应于赖氨酸的α-酮酸不稳定,所以赖氨酸不能通过转氨作用生成),体内大多数氨基酸都可以经转氨基作用生成。