直角三角形的判定
- 格式:ppt
- 大小:176.00 KB
- 文档页数:17
直角三角形的性质与判定性质:(1)直角三角形的两个锐角互余。
(2)直角三角形两条直角边的平方和等于斜边的平方。
(3)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
判定:(1)有两个锐角互余的三角形是直角三角形。
(2)如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
直角三角形全等判定定理:斜边和一条直角边对应相等的两个直角三角形全等。
(“斜边、直角边”或“HL”)基础题1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( ) A.120°B.90°C.60°D.30°2.已知a∥b,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为( )A.35°B.55°C.56°D.65°3.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.104.如图,数轴上点A表示的实数是.5.如图,在△ACB中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于点E,F,求证:∠CEF=∠CFE.6.由下列条件不能判定△ABC是直角三角形的是( )A.∠A=37°,∠C=53°B.∠A-∠C=∠BC.∠A∶∠B∶∠C=3∶4∶5 D.∠A∶∠B∶∠C=2∶3∶5 7.以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A.5,12,13 .B.3,5,27C.6,9,14 . D.4,10,138.如图所示,在△ABC中,CD⊥AB于点D,AC=4,BC=3,CD=12 5.(1)求AD的长;(2)求证:△ABC是直角三角形.9.已知CD是△ABC的边AB上的高.若CD=3,AD=1,AB=2AC,则BC的长为.10.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形11.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC =BC=3,则B′C的长为( )A.3 3 B.6 C.3 2 D.2112.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm.(杯壁厚度不计)13.观察下列勾股数组:3,4,5;5,12,13;7,24,25;9,40,41;…;a,b,c.根据你发现的规律,请写出:(1)当a=19时,b,c的值是多少?(2)当a=2n+1时,求b,c的值.你能证明所发现的规律吗?。
勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
直角三角形的性质与判定直角三角形是初中数学中常见的一个概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨直角三角形的性质以及如何判定一个三角形是否为直角三角形。
首先,让我们来了解直角三角形的定义。
直角三角形是指一个三角形中,其中一个角为90度的三角形。
这个角称为直角,通常用一个小方块来表示。
直角三角形有一个重要的性质,即勾股定理。
勾股定理是直角三角形的基本定理之一,它表明在一个直角三角形中,直角边的平方等于两个其他边的平方和。
这个定理可以用一个简单的公式来表示:c² = a²+ b²,其中c表示斜边的长度,a和b分别表示直角边的长度。
利用勾股定理,我们可以判定一个三角形是否为直角三角形。
如果一个三角形的三条边满足勾股定理,那么它就是一个直角三角形。
例如,如果一个三角形的边长分别为3、4和5,那么它就是一个直角三角形,因为3² + 4² = 5²。
除了勾股定理外,直角三角形还有一些其他的性质。
首先,直角三角形的两条直角边是相互垂直的。
这意味着,如果一个三角形的两条边互相垂直,那么它就是一个直角三角形。
这个性质可以用来判定一个三角形是否为直角三角形,而不需要使用勾股定理。
例如,如果一个三角形的两条边的斜率的乘积为-1,那么它就是一个直角三角形。
另外,直角三角形的两条直角边的长度也具有一定的关系。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
因此,如果我们已知一个直角三角形的斜边和其中一条直角边的长度,我们可以通过勾股定理计算出另一条直角边的长度。
在实际应用中,直角三角形的性质和判定方法经常被用于测量和计算。
例如,我们可以利用直角三角形的性质来测量一个高楼的高度。
通过在地面上测量一个直角三角形的一条直角边和斜边的长度,再利用勾股定理计算出高楼的高度。
此外,直角三角形的性质还被广泛应用于建筑、航海、导航等领域。
例如,在建筑设计中,我们可以利用直角三角形的性质来确定房屋的角度和尺寸。
直角三角形的五种判定方法三角形是几何中最常见的几何体,也是中学课本中最基础的几何形状之一,而普通的三角形有等边三角形、等腰三角形和直角三角形,其中直角三角形的判定尤为重要,我们来看看直角三角形的五种判定方法。
一、据直角三角形两条直边的关系根据直角三角形定义,可知一个直角三角形有两条直边,按以下情况判断:1.如果两条直边相等,则是等腰直角三角形;2.如果两条直边长度比都是整数,而且两个比例相等,则是等比直角三角形;3.如果两条直边都不相等,也不是整数比,则是普通直角三角形。
二、据勾股定理根据公式a2 + b2 = c2,可知,一个直角三角形的斜边是由它的两条直边的平方和组成的,如果一个三角形满足这个关系,则它就是一个直角三角形。
三、据余弦定理余弦定理是一个最基本的三角形定理,它定义为:A2 = b2 + c2 - 2bccosA,在直角三角形中,A角的余弦等于该直角的边的比,如果一个三角形满足余弦定理,则它就是一个直角三角形。
四、据正弦定理正弦定理是另一个重要的三角形定理,它定义为:a/sinA =b/sinB = c/sinC,如果一个三角形满足正弦定理,则它就是一个直角三角形。
五、据直角三角形的特殊性另外,由于直角三角形有两条直边,其它线段成角以90度来表示,如果通过以上四种测量方法得知某个三角形有一个角是90度,那么,就可以判断它是一个直角三角形。
总结:以上就是直角三角形的五种判定方法,它们分别以不同的方式来检查一个三角形是否是直角三角形。
裁判一个三角形是否是直角三角形,应根据以上五种判定方法,综合考虑余弦定理、正弦定理,以及对直角三角形的特殊性的了解,可以轻松判定一个三角形的边的比例关系,从而判定是否是直角三角形。