《直角三角形的判定》典型例题
- 格式:doc
- 大小:191.03 KB
- 文档页数:3
直角三角形的判定1.假设△ABC的三边长a,b,c满足a2+b2=c2,则△ABC是______三角形,_____=90°,这个定理叫做_______.2.一个命题成立,那么它的逆命题_______成立.◆课堂测控1.已知△ABC的三边长a,b,c分别为6,8,10,则△ABC______(•填“是”或“不是”)直角三角形.2.△ABC中,AB=7,AC=24,BC=25,则∠A=______.3.△ABC的三边分别为以下各组值,其中不是直角三角形三边的是()A.a=41,b=40,c=9 B.a=1.2,b=1.6,c=2C.a=12,b=13,c=14D.a=35,b=45,c=14.(分析判断题)在解答“判断由长为65,2,85的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:解:设a=65,b=2,c=85.因为a2+b2=(65)2+22=136642525=c2.所以由a,b,c组成的三角形不是直角三角形,你认为小明的解答准确吗?•请说明理由.测试点二逆命题与逆定理5.以下各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)内错角相等,两直线平行;(2)对顶角相等;(3)全等三角形的对应角相等;(4)假设两个实数相等,那么它们的绝对值相等.◆课后测控1.以以下数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有()A.4组B.3组C.2组D.1组2.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中准确的是()3.以下命题中,真命题是()A.假设三角形三个角的度数比是3:4:5,那么这个三角形是直角三角形B.假设直角三角形两直角边的长分别为a和b,那么斜边的长为a2+b2 C.若三角形三边长的比为1:2:3,则这个三角形是直角三角形D.假设直角三角形两直角边分别为a和b,斜边为c,那斜边上的高h的长为ab c4.以下命题的逆命题是真命题的是()A.若a=b,则a2=b2B.全等三角形的周长相等C.若a=0,则ab=0 D.有两边相等的三角形是等腰三角形5.△ABC中,BC=n2-1,AC=2n,AB=n2+1(n>1),则这个三角形是______.6.假设三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.7.A,B,C三地的位置及两两之间的距离如下列图,则点C•在点B•的方位是_____.8.如下列图,四边形ABCD中,BA⊥DA,AB=2,AD=23,CD=3,BC=5,求∠ADC的度数.9.写出以下命题的逆命题,并判断真假.(1)假设a=0,那么ab=0;(2)假设x=4,那么x2=16;(3)面积相等的三角形是全等三角形;(4)假设三角形有一个内角是钝角,则其余两个角是锐角;(5)在一个三角形中,等角对等边.10.如下列图,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,假设同时出发,问过3秒时,△BPQ的面积为多少?◆拓展创新11.能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,•观察以下表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论.(2)写出当a=17时,b,c的值.参考答案回顾归纳3,4,5 32+42=52 5,12,13 52+122=132 7,24,25 72+242=252 9,40,41 92+402=412……17,b,c 172+b2=c21.直角,∠C,勾股定理的逆定理2.不一定课堂测控1.是2.90°点拨:BC2=AB2+AC23.C 点拨:计算两短边的平方和与最长边的平方比较.4.不准确.因为65<2,85<2,且(65)2+(85)2=22,即a2+c2=b2,所以此三角形为直角三角形.5.(1)两直线平行,内错角相等.成立.(2)假设两个角相等,那么它们是对顶角,不成立.(3)假设两个三角形的对应角相等,则它们全等.不成立.(4)假设两个实数的绝对值相等,那么它们相等,不成立.课后测控1.B 点拨:有(1)(3)(4)三组.2.C 3.D 4.D5.直角三角形点拨:BC2+AC2=AB2.6.6 57.正南方向8.∵AB⊥AD,AB=2,∴,∴AB=12BD,∠ADB=30°,∵BD2+DC2=42+32=52,∴BD2+DC2=BC2.∴∠BDC=90°,∴∠ADC=120°.9.(1)的逆命题是:假设ab=0,那么a=0,它是一个假命题.(2)的逆命题是:假设x2=16,那么x=4,它是一个假命题.(3)的逆命题是:全等三角形的面积相等.它是一个真命题.(4)的逆命题是:假设三角形有两个内角是锐角,那么另一个内角是钝角,它是一个假命题.(5)的逆命题是:在一个三角形中,等边对等角,它是一个真命题.10.先求AB=9,BC=12,AC=15,由AB 2+BC 2=AC 2可得△ABC 是直角三角形.所以S △PBQ =12BP·BQ=12×(9-3)×6=18cm 2. 拓展创新11.(1)以上各组数的共同点能够从以下方面分析:①以上各组数均满足a 2+b 2=c 2;②最小的数(a )是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m 为大于1的奇数,将m 2拆分为两个连续的整数之和,即m 2=n+(n+1), 则m ,n ,n+1就构成一组简单的勾股数.证明:∵m 2=n+(n+1)(m 为大于1的奇数),∴m 2+n 2=2n+1+n 2=(n+1)2,∴m ,n ,(n+1)是一组勾股数.(2)使用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.。
1.3 直角三角形全等的判定一、选择题(本大题共8小题)1. 在以下条件中,不能判定两个直角三角形全等的是( )2. 如下图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中全等的三角形有( )第2题图第5题图第6题图3.以下说法中正确的选项是〔〕A.a,b,c是三角形的三边长,那么a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,假设∠C=90°,那么三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,假设∠A=90°,那么三角形对应的三边满足a2+b2=c24. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A,那么以下结论中正确的选项是〔〕A. AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′5. 如下图,△ABC中,AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点,那么图中全等三角形的对数是〔〕6. 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,那么△BCE的面积等于〔〕A.10 B.7 C.5 D. 47. 在△ABC和△DEF中,∠A=∠D=90°,那么以下条件中不能判定△ABC和△DEF全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF8. 如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,那么有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD第8题图第9题图二、填空题(本大题共4小题)9. :如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,那么△ABE≌△__________.10. 如图,BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.第10题图第11题图11. 如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,假设根据“HL〞判定,还需要加一个条件__________.12. :如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,那么∠A=__________.三、计算题(本大题共4小题)13. :如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE求证:OB=OC.14. :Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE15. 如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:〔1〕CF=EB.〔2〕AB=AF+2EB.16. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)假设CD=2,求AD的长.参考答案:一、选择题(本大题共8小题)1.A2. D3. C4. C5. D6. B7. B8. C二、填空题(本大题共6小题)9.分析:根据直角三角形全等的条件HL判定即可。
有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。
1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。
勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。
我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。
因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。
另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。
3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。
其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。
我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。
4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。
友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。
【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。
解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。
请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
专题12.2 三角形全等的判定全等三角形的判定定理(1)边边边(SSS):三边对应相等的两个三角形全等.(2)边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.(3)角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.(4)角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用两个直角三角形)【例题1】如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【答案】D.【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.∵AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.【点拨】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【例题2】如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.【答案】见解析。
【解析】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点拨】由SAS证明△ADF≌△BCE,即可得出AF=CE.【例题3】如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.【答案】见解析。
典型例题直角三角形全等的判定例1:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。
已知:如图1,在Rt△ABC、Rt△中,∠ACB=∠=Rt∠,BC=,CD⊥AB于D,⊥于,D=求证:Rt△ABC≌Rt△证明:在Rt△CDB和Rt△中∵∴Rt△CDB≌Rt△(HL)由此得∠B=∠在Rt△ABC与Rt△△中∵∴Rt△ABD≌△(ASA)说明:文字证明题的书写格式要标准。
例2 :如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.求证:BE=CF分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF证明:(略)说明:本题容易误认为AD⊥BC。
根据图形的直观“好象相等”或“好象垂直”要避免这种错误,要把“好象”变为确定。
例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:(1) BD=DE+CE(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明归纳(1)、(2)、(3),请用简捷的语言表述BD、DE、CE的关系。
分析:(1)由已知出发容易得到:BD=AE,再分析观察AE=AD+DE又易证AD=EC。
(2)猜想规律,再运用几何知识证明。
解:(1)略(2)BD=DE-CE(3)BD=DE-CE(4)结论:当B、C在异侧时,BD=DE+CE;当B、C在同侧时,BD=DE-CE说明:本题是阅读理解题,让学生在阅读的基础上,理解其中的内容、方法和思想。
2020学年浙教版第二章《特殊三角形》专题提升:直角三角形的判定与性质专题一:直角三角形的性质例1:如图,在△ABC中,∠ACB = 90°,D是AB上的一点,过点D作DE⊥AB,交BC于点F,交AC的延长线于点E,连结CD,∠DCA= ∠DAC.有下列结论:①∠DCB= ∠B;②CD= 12AB;③△ADC是等边三角形;④若∠E= 30°,则DE= EF+ CF.其中正确的是 _________ (填序号).变式1 - 1 如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1= 6,S3= 15,则S2 = _________ .变式1 - 2 在△ABC中,AB =8,BC = 1,∠ABC = 45°,以AB为一边作等腰直角三角形ABD,使∠ABD = 90°,连结CD,则线段CD的长为 _________ .专题二:直角三角形的判定例2:如图,AD,BF分别是△ABC的高线与角平分线,BF,AD相交于点E,∠1 = ∠2.求证:△ABC是直角三角形.变式2 - 1 有下列结论:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB,BC,AC,若BC2+ AC2= AB2,则∠A= 90°;③在△ABC中,若∠A:∠B:∠C= 1:5:6,则△ABC是直角三角形;④若三角形的三边之比为3:4:5,则该三角形是直角三角形.其中错误的有()A.0个B.1个C.2个D.3个变式2 - 2 在△ABC中,∠A:∠B:∠C = 2:1:1,则△ABC是 _________ 三角形.巩固练习1.(大连中考)如图,在△ABC中,∠ACB = 90°,CD⊥AB,垂足为D.若E是AB的中点,CD = DE = a,则AB的长为A.2aB.22aC.3aD.334a2.如图,在四边形ABCD中,∠B = 90°,AB = 4,BC = 3,CD = 13,AD = 12,则四边形ABCD 的面积为()A.12B.24C.36D.483.如图,一棵树在一次强台风中于离地面3 m处折断倒下,倒下部分与地面成30°角,则这棵树在折断前的高度为 _________ m.4.在△ABC中,∠A= 50°,∠B= 30°,点D在AB边上,连结CD.若△ACD为直角三角形,则∠BCD的度数为 _________ .5.如图,以正方形ABCD的边为斜边,向内作四个全等的直角三角形,且四边形EFGH为正方形,这样的图形我们称为弦图.将正方形ABCD放入右边每个小正方形的边长为1的网格中,若正方形的四个顶点A,B,C,D和四个直角顶点E,F,G,H都在格点上,我们把这样的图形称为格点弦图,问:当格点弦图中的正方形ABCD的边长为5时,正方形EFGH的面积的所有可能值是_________ .6.如图,P是等边三角形ABC内一点,PA = 6,PB = 8,PC = 10,则∠APB = _________ .7.(温州中考)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD = 2,求DF的长.8.(1)如图①,这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a,b与斜边c满足关系式a2 + b2 = c2.该结论也称为勾股定理.证明:∵大正方形的面积可表示为S = c2,又可表示为S = 4 ×12ab + (b-a)2,∴4 ×12ab + (b-a)2 = c2,∴a2 + b2 = c2.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形,如图②,也能验证这个结论,请你帮助小明完成验证的过程.(3)如图③,∠ABC = ∠ACE = 90°,请你添加适当的辅助线证明结论:a2 + b2 = c2.。
《直角三角形的判定》典型例题
例1 在ABC ∆中,n n a 222+=,12+=n b ,)0(1222>++=n n n c 为三边,试判断该三角形是否为直角三角形?
例2 一个三角形的三边长分别为)(,2,2222n m n m c mn b n m a >+==-=, 则这三角形是直角三角形?
例3 已知a 、b 、c 为ABC ∆的三边且满足c b a c b a 262410338222++=+++. 求证:这个三角形是直角三角形.
例4 已知ABC ∆的三边为c b a 、、,且9,40,41===c b a ,判定ABC ∆的形状.
例5 如图,四边形ABCD 中,C ∠是直角,12,3,4,13====AD CD BC AB , 求证:.BD AD ⊥
例6 如图所示,E 为正方形ABCD 的边AD 的中点,F 在DC 上,DC DF 4
1=
.试问:BEF ∆是直角三角形吗?说明理由.
参考答案
例1解答:∵)22()122(22n n n n a c +-++=-01>=,
)12()122(2+-++=-n n n b c 022>=n ,
∴c 边为三角形的最大边,
又∵1884)122(234222+++=++=n n n n n c ,
22222)12()22(+++=+n n n b a 1884234+++=n n n ,
∴222c b a =+
根据勾股定理的逆定理可知,ABC ∆为直角三角形.
说明:三角形的三边分别为a ,b ,c ,其中c 为最大边.
(1)若222c b a =+,则三角形是直角三角形;
(2)若222c b a >+,则三角形是锐角三角形;
(3)若222c b a <+,则三角形是钝角三角形;
例2分析: 验证c b a ,,三边是否符合勾股定量的逆定理
证明:∵()()
()222422422222222n m n n m m mn n m b a +=++=+-=+
∴222c b a =+ ∴∠C =︒90
说明:勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,与前面学习的方法不同,它需要通过代数运算算出来.
例3分析:要证明ABC ∆是直角三角形,应从它的三边a 、b 、c 入手,如果有关系222c b a =+或222a c b =+或222b a c =+成立,那么这个三角形一定是直角三角形. 从已知条件,可以求出a 、b 、c 的长.
解答:由已知得:0338262410222=+---++c b a c b a .
∴ 016926144242510222=+-++-++-c c b b a a
即 0)13()12()5(222≥-+-+-c b a
∵0)13(,0)12(,0)5(222≥-≥-≥-c b a
∴ 013,012,05=-=-=-c b a ,即13,12,5===c b a
∵22213125=+,即有222c b a =+,∴ABC ∆是直角三角形.
说明:直角三角形适用于勾股定理,而利用逆定理是判断一个三角形是直角三角形的方法,当由边之间的关系判断三角形的形状时,我们用勾股定理先行考证,没有条件时,创造条件,从而求出边长或边长之间的关系,进而判断.
例4分析:为判定三角形的形状,可利用直角三角形的判别条件,判断三角形的最大边的平方是否等于另外两边的平方和.
解:16819402222=+=+c b ,而16814122==a ,
∴222c b a +=,∴ABC ∆是直角三角形,并且A ∠是直角.
说明:利用直角三角形的判别条件不仅能够判断出三角形的形状,而且还能够知道三角形的哪个角是直角.
例5分析:可将直线的互相垂直问题转化成直角三角形的判定.
解:∵在Rt BCD ∆中,3,4==CD BC ,
∴由勾股定理,22234+=BD ,即5=BD ,
在ABD ∆中,222,13,12,5BD AD AB AB AD BD +====,
∴由直角三角形的判别条件,ABD ∆是直角三角形,且ADB ∆是直角,∴BD AD ⊥.
例6解: BEF ∆是直角三角形.
设a DF =,由题意知,.4,3,2a BC AB a CF a AE DE =====
在直角三角形BCF 中,由勾股定理,得
.25)3()4(222222a a a CF BC BF =+=+=
∴222EF BE BF +=.∴BEF ∆是直角三角形.
说明:根据题意设a DF =,运算起来就比较方便,如设正方形的边长为a 运算起来就比较麻烦,这体现了解题的灵活性.
本题属于结论探究开放题,这类型题只给出了条件,由同学自己探求结论,并加以说明.。