≥
2
题型一 题型二 题型三 题型四
目标导航
Z 知识梳理 HISHISHULI
Z 重难聚焦 HONGNANJUJIAO
D 典例透析 IANLITOUXI
(2)设数列{an}的前n项和为Sn, 点
������,
������������ ������
(均������∈在N函*)数y=3x-2的图象
上,求数列{an}的通项公式.
(2)求此数列的前n项和Sn的最大值.
分析(1)求不等式组
������������ ������������
≥
+1
0, <
0
的正整数解即可;
(2)既可以从项的正负考虑,也可以利用等差数列的前n项和公式
是关于n的二次函数,考虑对应二次函数的最值.
目标导航
Z 知识梳理 HISHISHULI
Z 重难聚焦 HONGNANJUJIAO
又由an=a1+(n-1)d,即-512=1+(4-1)d, 解得d=-171.
反思a1,d,n称为等差数列的三个基本量,an和Sn都可以用这三个基 本量来表示,五个量a1,d,n,an,Sn中可知三求二,即等差数列的通项公 式及前n项和公式中“知三求二”的问题,一般是通过通项公式和前n
项和公式联立方程(组)来求解.这种方法是解决数列运算的基本方
D 典例透析 IANLITOUXI
题型一 题型二 题型三 题型四
解(1)由a1=50,d=-0.6,
知an=50-0.6(n-1)=-0.6n+50.6.
令
������������ ������������
≥
+1
0, <