毛管压力
- 格式:pdf
- 大小:680.60 KB
- 文档页数:55
第二节储层岩石的毛管压力曲线(8学时)一、教学目的会计算任意曲面的附加压力,了解毛管压力曲线的测定与换算;了解毛管压力的滞后现象;分析毛管压力曲线;了解毛管压力曲线的应用。
二、教学重点、难点教学重点:1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力的滞后现象;4、毛管压力曲线的分析及应用。
教学难点1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力曲线的分析及应用。
三、教法说明课堂讲授并辅助以多媒体课件展示相关的数据和图表四、教学内容本节主要介绍五个方面的问题:一、任意曲面的附加压力二、毛管中液体的上升(与下降)三、毛管压力曲线的测定与换算四、毛管压力的滞后现象五、毛管压力曲线的分析及应用(一)、任意曲面的附加压力一、任意曲面的附加压力拉普拉斯方程:讨论: (1).毛管中弯液面为球面时毛管压力Pc:毛管中弯液面两侧非湿相压力与湿相压力之差 大小: 方向:指向弯液面内侧 分析讨论:Pc 与r 成反比, r 越小,Pc 越大Pc 与б成正比, б越大,Pc 越大Pc 与cos θ成正比, θ→0°或θ→180°,Pc 越大(2).毛管中弯液面为平面时)11(21R R P +=∆σrR P P c θσσcos 22==∆=rP c θσcos 2=(3).毛管中弯液面为柱面时(4).毛管断面渐变时(5).裂缝中的毛管压力(二)、毛管中液体的上升(与下降)气-液系统:式中:A ——附着张力=σcos θ,达因/cmr ——毛管半径,cmρ——液体密度,g/cm 3g ——重力加速度,cm/s 2σ——液体的表面张力,达因/cm=∆P rP P c σ=∆=rP P c )cos(2βθσ±=∆=WP P c θσcos 2=∆=gr h w ρθσcos 2=θ——接触角h ——液体上升高度,cm油-水系统:根据毛细管公式我们可以看到:1、毛管压力c P 和θcos 成正比,090 θ,极性大的那一相为润湿相,θcos 为正,c P 为正,此时润湿相沿毛管自发吸入上升。
第二章毛管压力曲线的应用第一节压汞法基本原理及应用一、基本原理由于表面张力的作用,任何弯曲液面都存在毛细管压力。
其方向总是指向非润湿相的一方。
储油岩石的孔隙系统由无数大小不等的孔隙组成,其间被一个或数个喉道所连结,构成复杂的孔隙网络。
对于一定流体,一定半径的孔隙喉道具有一定的毛管压力。
在驱替过程中,只有当外加压力(非润湿相压力)等于或者超过喉道的毛管压力时,非润湿相才能通过喉道进入孔隙,将润湿相从其中排出。
此时,外加压力就相当于喉道的毛细管力。
毛细管压力是饱和度的函数,随着压力升高,非润湿相饱和度增大,润湿相饱和度降低。
在排驱过程中起控制作用的是喉道的大小,而不是孔隙。
一旦排驱压力克服喉道的毛细管压力,非润湿相即可进入孔隙。
在一定压力下非润湿相能够进入的喉道的大小是很分散的,只要等于及大于该压力所对应的喉道均可以进入,至于孔隙,非润湿相能够进入与否,则完全取决于连结它的喉道。
以上是毛细管压力曲线分析的基础。
压汞法又称水银注入法,水银对岩石是一种非润湿相流体,通过施加压力使水银克服岩石孔隙喉道的毛细管阻力而进入喉道,从而通过测定毛细管力来间接测定岩石的孔隙喉道大小分布,得到一系列互相对应的毛管压力和饱和度数据,以此来研究油层物理特征。
在压汞实验中,连续地将水银注入被抽空的岩样孔隙系统中,注入水银的每一点压力就代表一个相应的孔喉大小下的毛细管压力。
在这个压力下进入孔隙系统的水银量就代表这个相应的孔喉大小所连通的孔隙体积。
随着注入压力的不断增加,水银不断进入更小的孔隙喉道,在每一个压力点,当岩样达到毛细管压力平衡时,同时记录注入压力(毛细管力)和注入岩样的水银量,用纵坐标表示毛管压力p c,横坐标表示润湿相或非润湿相饱和度,作毛管压力与饱和度关系曲线一毛管压力曲线,该曲线表示毛管压力与饱和度之间的实测函数关系。
通常把非润湿相排驱润湿相称为驱替过程,而把润湿相排驱非润湿相的反过程称之为吸入过程。
在毛细管压力测量中,加压用非润湿相排驱岩芯中的润湿相属于驱替过程,所得毛管压力与饱和度关系曲线称之为驱替毛管压力曲线,降压用润湿相排驱非润湿相属于吸入过程,所得毛管压力与饱和度关系曲线称之为吸入毛管压力曲线,在压汞法中,通常把驱替叫注入,把吸入叫退出。
毛管压力曲线分类标准1.根据毛管压力曲线形态对储层定性分类(1)大孔粗喉型储层特点:孔隙个体大,喉道粗,分选连通好,歪度偏大,孔隙度、渗透率均好。
(2)小孔粗喉型储层特点:喉道粗,孔隙个体小,分选连通较好,孔隙度低--中,渗透率中等--低。
(3)大孔细喉型储层特点:孔隙个体大,喉道偏细,孔隙度中等,渗透率偏低。
(4)小孔细喉型储层特点:孔隙个体小,喉道偏细,细歪度,孔隙度低,渗透率低。
粗喉、中喉、细喉、微喉的分级:级别主要流动喉道直径um特粗喉>30um粗喉20~30中喉10~20细喉1~10微喉<1美国岩心实验室(CoreLaboratorie)根据孔喉半径大小将孔喉分为三种类型:1.大孔喉(Macropore)—孔喉半径大于1.5m;2粗微孔喉(Coaremicropore)—孔喉半径在0.5~1.5m;3.细微孔喉(Finemicropore)—孔喉半径小于0.5m。
1.大孔喉(>1.5m)的孔隙体积百分数;2.粗微孔喉(0.5~1.5m)的孔隙体积百分数;3.细微孔喉(<0.5m)的孔隙体积百分数。
根据E.S.米赛尔和W.V.安琪哈尔特的研究,吸附水膜的厚度一般可达0.1m(有时可以变厚)。
这就意味着,在自然条件下,水膜可以把半径0.1m的管道全部堵死,使石油无法进入。
马丁·雷克曼也曾明确宣称:应当把半径<0.1m的孔隙当成岩石固体部分看待,祝总祺等建议扬弃了半径<0.1m的孔隙之后,其余的半径大于0.1m的孔隙空间代表石油能够进入的孔隙空间,并将这部分空间体积称为“有用孔隙体积”。
笔者认为,可将半径小于0.1m的孔喉称作极细微孔喉,可从压汞毛管压力曲线上计算出极细微孔喉连通的孔隙体积百分数,把它作为反映岩石孔喉大小分布的第四个参数。
即:4.极细微孔喉(<0.1m)的孔隙体积百分数。
水渗透涨发的三种原理
水渗透涨发是指在土壤中,当土壤中的水分含量超过一定饱和点时,水分会通过一定途径(如毛细管、微孔隙)向上运动,导致土壤的涨发现象。
水渗透涨发的原理可以归结为三个方面:
一、毛细管作用原理:
毛细管作用是水分逆向运动的重要力量,是水渗透涨发的主要原理之一。
在细小的毛细管中,水分会因吸附和表面张力的作用而上升。
毛细管作用的产生主要受到毛细管半径和水分表面张力的影响。
当土壤中的水分含量超过一定饱和点时,毛细管中的水分会通过吸附和表面张力的作用逆向上升,导致土壤的涨发现象。
二、根系吸力原理:
根系吸力是水渗透涨发的另一个重要原理。
植物根系能够吸收土壤中的水分,并通过根毛的导管系统将水分运输到地上部分。
当土壤中的水分含量超过根系能力吸收的限度时,根系的吸力会受到水分的涨力作用,进而导致水分的涨发现象。
三、毛管压力原理:
毛管压力是水分涨发的另一个重要原理。
当地下水位下降时,地下水的涨落会通过土壤孔隙中的空气孔隙传导至土壤的上层,形成毛管压力。
这种毛管压力会推动土壤中的水分上升,导致土壤的涨发现象。
综上所述,在水渗透涨发的过程中,毛细管作用、根系吸力和毛管压力是影响土
壤涨发的三个主要因素。
这些原理的共同作用促使水分在土壤中向上升腾,形成水渗透涨发现象。
这种现象在自然界中经常出现,对于维持土壤湿度、植物生长和水循环等方面具有重要的作用。