毛管压力曲线实验
- 格式:doc
- 大小:21.50 KB
- 文档页数:10
第9卷第2期 1998年6月 水科学进展A DVANCES IN WA TER SCIENCE Vo l.9,N o.2 Jun.,1998 岩石裂隙毛管压力-饱和度关系曲线的试验研究叶自桐 韩 冰 杨金忠 周创兵(武汉水利电力大学水利系 武汉430072)摘 要 介绍了三峡花岗岩体裂隙毛管压力-饱和度试验。
试验采用互不溶混驱替法。
试验结果表明,在渗流基本特征方面,裂隙非饱和渗流毛管压力-饱和度关系曲线与空隙介质水分特征曲线具有相似性,如毛管压力-饱和度关系曲线的滞后现象;湿润流体(水)的排泄曲线具有进气压和束缚水饱和度;非湿润流体的吸湿曲线具有残余饱和度。
这种相似性表明,孔隙介质非饱和渗流的研究成果可用于裂隙非饱和渗流,孔隙介质水分特征曲线的解析模型,可用于研究裂隙毛管压力-饱和度关系曲线和拟合毛管压力-饱和度排泄曲线的试验数据。
关键词 岩石裂隙 毛管压力 饱和度 试验分类号 P641.135岩体渗流补给主要来源于降雨入渗和/或因降雨形成的地面水体的入渗,因此,岩体裂隙渗流状况具有明显的季节性。
由于导水和持水特性的差异,在某一入渗补给强度下,风化岩体自上而下形成饱和—非饱和带交替分布渗流场;在非降雨入渗季节,风化岩体中主要是饱和—非饱和渗流状态交替分布的孔隙—裂隙渗流。
除在降雨季节及其饱和滞后期外,岩体裂隙系统处于非饱和渗流状态。
在非饱和状态下,渗透不均匀性、各向异性,以及渗流与变形间的耦合效应更加显著。
孔隙和裂隙介质中水分运动,是既相类似、又有显著差异的两类渗流现象。
它们基本渗流规律均服从达西定理。
由于岩体裂隙的空隙系统与孔隙介质的孔隙系统,在空隙和孔隙结构的几何特征、空间分布等方面的差异,使得裂隙和孔隙系统中渗流的基本特性具有很大差异。
对孔隙介质可通过引入表征单元体(REV)概念[1],将其孔隙尺度上固体颗粒——孔隙非连续体,概化为宏观尺度(远大于孔隙尺度)上的孔隙连续体,孔隙介质渗流的基本物理和水力参数比较易于测定和确定。
储层条件毛管压力电阻率测试系统油藏含油气饱和度是储层评价和油藏储量计算的重要参数。
自1942年阿尔奇公式公开发表以来,应用测井资料评价储层含油气饱和度的方法得到了广泛地应用。
最初是应用于纯砂岩,而后以阿尔奇公式为基础,后来的测井分析家提出了许多改进公式,使它得应用范围扩大到泥质砂岩的饱和度评价。
将方程中的参数统称为阿尔奇参数,起初人们假定这些参数不受温度、压力、流体性质等因素的影响,但随着实验技术水平的提高,应用领域的延伸,这一假设受到人们的质疑。
不仅如此,已有的实验研究表明,饱和度指数n还受润湿性和饱和度史、流体平衡条件的影响。
因此,实验室准确地确定阿尔奇公式参数,需要充分考虑上述影响因素,尽可能地模拟岩石储层条件下的原始状态进行岩电实验。
随着油田开发的不断深入,国内各主要油田已进入高含水期。
从发展趋势来看,国内各油田都认识到加强油田水淹机理研究、提高对不同地质条件下水淹层的认识水平是解决问题的关键。
以前的一些研究工作都只是表象的,没有揭示深层次的理论问题;要解决水淹层问题必须应用新理论、新方法和新思维。
油田长期注水必然导致油层的润湿性、含油性、孔渗性和电性等都发生变化,传统的方法对于一般的简单系统是可行的,而对于水淹层这样动态变化的系统就会遇到困难。
因此,加强基础理论和实验研究,提高对油层水淹机理及岩电关系变化规律的认识,进而针对性地选择测井系列和解释方法,是今后一个时期水淹层测井技术的面临重要问题。
复杂岩性(火成岩、裂缝性储层等)油气储层油气资源是目前国内勘探重点。
但是还没有建立与之相适应的测井解释模型,长期以来,复杂岩性油气储层饱和度测井解释成为捆绕测井分析家的难题。
储层岩石物理特性及其导电机理实验研究是建立有效的测井解释模型基础。
因此,有必要加强基础实验研究,深入研究不同岩性、不同开发过程的岩石电性变化特征,为测井解释储层含油气饱和度提供理论基础。
美国岩心实验系统公司(Coretest Systems, Inc.)生产的RCS-760储层条件毛管压力-电阻率测试系统是一套基于毛管平衡理论研究岩石电性特征的实验设备。
文章编号:1000-2634(2003)06-0009-04核磁共振T2谱法估算毛管压力曲线综述Ξ阙洪培,雷卞军(西南石油学院基础实验部,四川南充637001)摘要:用油藏实测NMR T2谱换算毛管压力曲线,首先需正确确定T2截止值,将T2谱划分为束缚流体T2谱和可动流体T2谱,然后对可动流体T2谱进行烃影响的校正,校正后的可动流体T2谱加上束缚水T2谱获得S W为1条件下的T2谱,然后用换算系数κ将T2谱直接转换成毛管压力曲线。
经大量岩心分析和实际NMR测井数据试验表明,碎屑砂岩油藏NMR测井T2分布数据估算毛管压力曲线方法可靠,与岩心压汞毛管压力曲线吻合,其精度相当于常规测井解释。
应用这一方法换算的毛管压力曲线可用于确定含油(气)深度范围的饱和度—高度关系,确定油藏自由水面位置。
关键词:核磁共振T2谱;毛管压力曲线;碎屑砂岩;测井解释中图分类号:TE135 文献标识码:A 油藏毛细管性质决定油水分布,因此毛管压力的测定是油藏表征的基本要素。
迄今毛管压力曲线的测定仅限于岩心分析,通常岩心数量非常有限;其次取心有机械风险,且费用高,实验室岩心分析常常不能完全代表井下的渗透条件;第三只能取得小块岩心,不一定能代表目的层段。
用油藏NMR测井T2分布数据直接换算毛管压力曲线,其优点是不用取心,也不采用电缆测井连续取样,不失为缺乏岩心的油井获得毛管压力曲线的一种新方法,同时开辟了一种确定油藏饱和度—高度关系的新途径。
本文综述了根据NMR测井T2分布数据直接换算毛管压力曲线的方法及烃对T2谱影响的校正方法[1],举例介绍了这一方法的应用效果。
1 NMR T2谱直接换算毛管压力曲线的理论基础NMR测井工具测量氢核自旋磁化强度感应信号的强度及其随时间的衰减。
对于真实岩石,由于岩石的孔隙分布是非均匀的,弛豫时间呈多指数特征衰减。
核磁信号强度与测量体中的流体(水或烃)的氢原子量成正比,对100%水饱和的岩石而言,弛豫时间与孔隙大小成正比,孔隙越小,弛豫时间越短,反之弛豫时间越长,这样孔隙大小的分布就决定了弛豫时间的分布。
第二节储层岩石的毛管压力曲线(8学时)一、教学目的会计算任意曲面的附加压力,了解毛管压力曲线的测定与换算;了解毛管压力的滞后现象;分析毛管压力曲线;了解毛管压力曲线的应用。
二、教学重点、难点教学重点:1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力的滞后现象;4、毛管压力曲线的分析及应用。
教学难点1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力曲线的分析及应用。
三、教法说明课堂讲授并辅助以多媒体课件展示相关的数据和图表四、教学内容本节主要介绍五个方面的问题:一、任意曲面的附加压力二、毛管中液体的上升(与下降)三、毛管压力曲线的测定与换算四、毛管压力的滞后现象五、毛管压力曲线的分析及应用(一)、任意曲面的附加压力一、任意曲面的附加压力拉普拉斯方程:讨论: (1).毛管中弯液面为球面时毛管压力Pc:毛管中弯液面两侧非湿相压力与湿相压力之差 大小: 方向:指向弯液面内侧 分析讨论:Pc 与r 成反比, r 越小,Pc 越大Pc 与б成正比, б越大,Pc 越大Pc 与cos θ成正比, θ→0°或θ→180°,Pc 越大(2).毛管中弯液面为平面时)11(21R R P +=∆σrR P P c θσσcos 22==∆=rP c θσcos 2=(3).毛管中弯液面为柱面时(4).毛管断面渐变时(5).裂缝中的毛管压力(二)、毛管中液体的上升(与下降)气-液系统:式中:A ——附着张力=σcos θ,达因/cmr ——毛管半径,cmρ——液体密度,g/cm 3g ——重力加速度,cm/s 2σ——液体的表面张力,达因/cm=∆P rP P c σ=∆=rP P c )cos(2βθσ±=∆=WP P c θσcos 2=∆=gr h w ρθσcos 2=θ——接触角h ——液体上升高度,cm油-水系统:根据毛细管公式我们可以看到:1、毛管压力c P 和θcos 成正比,090 θ,极性大的那一相为润湿相,θcos 为正,c P 为正,此时润湿相沿毛管自发吸入上升。
毛管压力曲线实验一、教学目的会计算任意曲面的附加压力,了解毛管压力曲线的测定与换算;了解毛管压力的滞后现象;分析毛管压力曲线;了解毛管压力曲线的应用。
二、教学重点、难点教学重点:1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力的滞后现象;4、毛管压力曲线的分析及应用。
教学难点1、任意曲面的附加压力的计算;2、毛管压力曲线的测定与换算;3、毛管压力曲线的分析及应用。
三、教法说明课堂讲授并辅助以多媒体课件展示相关的数据和图表四、教学内容本节主要介绍五个方面的问题:一、任意曲面的附加压力二、毛管中液体的上升(与下降)三、毛管压力曲线的测定与换算四、毛管压力的滞后现象五、毛管压力曲线的分析及应用(一)、任意曲面的附加压力一、任意曲面的附加压力拉普拉斯方程:讨论:(1)、毛管中弯液面为球面时毛管压力Pc:毛管中弯液面两侧非湿相压力与湿相压力之差大小:方向:指向弯液面内侧分析讨论:Pc与r成反比, r 越小,Pc越大 Pc与б成正比, б越大,Pc越大 Pc与cosθ成正比, θ→0°或θ→180°,Pc越大(2)、毛管中弯液面为平面时(3)、毛管中弯液面为柱面时(4)、毛管断面渐变时(5)、裂缝中的毛管压力(二)、毛管中液体的上升(与下降)气-液系统:式中:A附着张力=σcosθ,达因/cmr毛管半径,cmρ液体密度,g/cm3g重力加速度,cm/s2σ液体的表面张力,达因/cmθ接触角h液体上升高度,cm油-水系统:根据毛细管公式我们可以看到:1、毛管压力和成正比,,极性大的那一相为润湿相,为正,为正,此时润湿相沿毛管自发吸入上升。
2、毛管压力和Pc和毛管半径成反比,这就是说毛管半径越小,毛管力就越大,毛细管自发吸入湿相的能力就越强,润湿相沿毛细管上升的高度就越大。
3、毛管力实质上是润湿现象的一个特例,是自由表面能在毛细管内相互作用平衡的结果,因此,随着两流体界面张力的增大,即两种液体性质差别的增大,毛管力也应当增大,湿相在毛细管中上升就越高。
4、毛管力是发生在毛细管中的润湿现象,亦就是说:毛管力是润湿的结果,随着润湿相沿毛管的上升。
毛管中必然出现弯液面(如果不考虑重力的影响,则应该为球面),由引可知,只有在出现弯液面的条件下,才有毛细现象存在。
且润湿相和非润湿相的润湿能力相差越大,毛细管半径越小,那么,两相界面在毛细管中弯曲的越明显,即曲率半径越小,毛管力越大。
另外,根据前面的推导可知:当毛细管插入湿相中时,则湿相将沿管中润湿相驱走,这一过程是自发的,所以毛管力比时为湿相驱非湿相的动力。
根据上述的毛管力计算公式可以看出,当毛细管倾斜时,液柱高度将保持不变,那么当毛细管成水平方向时,亲水毛细管的毛管力则成为水驱油的动力,即:1)当油芷岩石表面亲水时,油芷中的毛管力是水驱油的动力。
2)当岩石表面亲油时,油芷中的毛管力则是水驱油的阻力。
但是在实际注水开发的油芷中,往往注入水向前的运动速度过大,由于润湿滞后听影响,则会导致弯液面发生反转,导致润湿性发生变化,即使毛管力作为水驱油的动力作用得不到发挥。
因而降低了驱油效率。
(三)、毛管压力曲线的测定与换算1、毛管压力曲线非湿相首先进入最大孔道时所相应的最低驱替压力(即毛管压力)称为“阀压”或“门槛压力”,超过此压力非湿相就进入孔隙介质之中。
岩心中湿相饱和度与毛管压力之间存在着某种函数关系。
这种函数关系无法用代数表达式来表示,只有通过室内实验用曲线的形式来描述,这种曲线就是毛管压力曲线。
根据分析我们可以看出:①毛细管压力是由非润湿相表面的曲率所决定的,而界面曲率又与孔隙喉道的大小有关,同时与非湿相(或湿相)的饱和度有关。
随着压力的升高,非润湿相饱和度增大,润湿相饱和度降低,即非润湿相界面曲率也增大(曲率半径减小),所以说毛细管压力随湿相饱和度的减小而增大,即毛细管压力是湿相饱和度的函数,通常用曲线表示②在排驱过程中起控制作用的喉道的大小,而不是孔隙。
一旦排驱压力克服了喉道的毛细管压力,非润湿相即可进入孔隙。
③在一定压力下非润湿相能够进入的喉道的大小分布是很分散的,只要等于及大于该压力所对应的喉道均可以进入,至于孔隙,非润湿相能够进入与否,则完全取决于连结它的喉道。
2、毛管压力曲线的测定毛管压力曲线的测定实际上就是测出毛管压力和饱和度的关系曲线,通常所用的方法有:半渗隔极法压汞法和离心机法。
另外还有蒸气压力法和动力法只是后两种方法用得较少,所以我们只就前三种方法作详细介绍。
A、半渗隔板法半渗隔板法测毛管压力曲线的原理就是:在驱替过程中,只有当外加压力(即加在毛管孔道两端的压差)(因为我们通常将多孔介质简化为毛管束)等于或超过一定喉道的毛细管力时,非湿相才能通过喉道进入孔隙,把润湿相从其中排出。
这时的外加压力就相当于一定喉道的毛细管力。
加压法测毛管压力所用的装置的主要设备就是一个带半渗隔板的玻璃漏斗(也称岩心室),半渗透隔板是其中的主要部体,它是一块多孔玻璃或陶瓷园板,隔板的孔隙略小于岩心孔隙。
因而当用润湿液体饱和隔板时,由于毛管压力的阻碍作用,在外加压力超过隔板最大喉道的毛管压力之前,隔板只能通过润湿相,而不能通过非润湿相,故而叫做半渗透隔板。
实验时,它是通过加压的办法来建立岩心两端的驱替压差的,在该压差下非湿相流体(如空气)驱替岩心中湿相饱和降低;基于驱替过程中某一驱替压力和毛管力平衡以及岩心中相应的湿相饱和度(原始含水饱和度减去驱出水的体积百分数),便可以获得毛管力和湿相流体饱和度的关系。
半渗隔板法的优点:无论是气驱水(或油),还是油驱水(或水驱油),都接近模拟油层的驱替状况。
测量精确、可靠、仪器简单,操作也方便,同测多块岩样,如Core Lab公司的这种仪器可同时进行64块岩心的测试,饱和度采用称重法。
半渗隔板法的缺点:测试时间太长。
每一平衡点需几个甚至几个小时,通常测定68点,所以测一块岩心往往要花10-40小时,另外,因半渗隔板承压有限(目前国产半渗隔板承压<1atm,国外生产的半渗隔板承压2000psi(14atm)),所以用此法测低渗透岩样时往往得不到完整的毛管压力曲线。
B、压汞法压汞法测定毛管压力曲线的基本原理是:汞与大多数流体相比较都是非润湿相,如果要把水银注进到洗净烘干了的岩心孔隙中,就必须克服孔隙系统的毛管阻力,也就是说要对汞施加一定的压力,显然,注入水银的加压过程就是测量毛管压力的过程。
注入水银的每一个压力就代表一个相应的孔隙大小下的毛管压力,在这个压力下进入空隙系统的水银量就代表这个相应大小的孔隙,喉道在系统中连通的孔隙体积。
随着压力的提高,记下进入岩样的水银体积和相应的压力,便可以得到水银空气(水银蒸气)的毛管压力和岩样含汞饱和度的关系曲线。
同其它测定毛管压力曲线的方法相比较,压汞法具有以下的优缺点:优点:1)测定速度快,通常每1-2小时测一块样品,低渗岩样也只不过半天。
2)测量压力高,最高压力可达6000psI(420atm),因此适用于高、中、低各种渗透率岩心,且都能得到完整的毛管压力曲线。
3)形状不规则的岩样也能进行测试4)作退汞(湿相驱非湿相)试验很方便,而退汞曲线的应用很广,后面会作介绍。
缺点:1)不能模拟实际油层的润湿性和原生水饱和度,因此,所测毛管压力曲线不宜直接用于油田。
2)水银有毒,对人体有害3)试验结束时,岩样充满水银,不宜再做其它试验。
C、离心机法离心机法测毛管压力曲线的基本原理就是利用离心作用产生的强大驱替压力达到非湿相从多孔介质中把湿相驱替出来的目的。
根据普通物理学知识得,沿转动轴转动的物体所产生的离心力F应为:F=ma=mw2R式中:m转动物体的质量a向心加速度,a=w2Rw角速度R转动半径由此可见,随着m、w和R的增大,离心力F也在增大,所以在试验中,我们通过逐渐提高离心机速即增加角速度的办法来获得逐渐增加的离心力的。
从而使各种渗透率的多孔介质中的润湿相被驱替出来,最后获得PcSw关系曲线。
(四)、毛管压力的滞后现象曲线W为退出毛管压力曲线(Withdraw Capillary Cure),亦为退汞曲线,它是指润湿相从束缚饱和度Swi增加到残余非湿相饱和度Sor的关系曲线,对于亲水油芷来说它相当于油田注水开发过程,值得注意的是:该曲线的一个主要特征参数是退出效率W区,也主是说利用退汞曲线可以得到退汞效率(或退出效率)。
所谓退汞效率实际上是指降压后退同的水银体积与降压前注入的水银总体积的比值,即当然利用其它两种流体而不是汞和汞蒸汽同样可以做出注主和退出以及再注入曲线,所以说用退出效率代替退尔效率显然更具有广义性。
很明显,退出效率是反映的润湿相驱替非润湿相的毛管效应采收率,这就是说依靠毛管力的作用而达到的采收率,而所调采收率就是指从一个油芷所采出的量占原始储量的百分数。
曲线R 为再驱替毛管压力曲线(Rejection Capillary Presswre Curve),它是指从残余非湿相饱和度Sor开始,驱替到束缚非湿相饱和度Swi过程中的毛管压力与饱和度之间的关系。
压汞曲线与退汞曲线不重合的原因:1、捕集滞后压汞时,汞以连续状态进入岩石孔隙,退汞时,既有连续的汞也有非连续的汞。
因此,在毛管压力相等时,退汞时的汞饱和度总是大于压汞时的汞饱和度。
2、拖延滞后(1)、压汞的б大于退汞的б(2)、压汞的θ大于退汞的θ(五)、毛管压力曲线的分析及应用(一)毛管压力曲线的分析在毛管压力的测定中,不管采用前述哪种方法,所测得的毛管压力曲线都有其共同规律,如下图即为典型的毛管压力曲线,一条毛管压力曲线通常用以下几个参数来表征。
1、排驱压力或称入口压力、门坎压力、阀压PT排驱压力一般是指非湿相进入多孔介质孔道驱替润湿相,使润湿相离开孔道产生流动所需要的最小压力。
即非润湿相开始进入岩样最大喉道的压力。
也就是等于岩样最大喉道半径的毛管压力。
排驱压力的确定常常是在毛管压力曲线上进行的,它是润湿相饱和度等于100%,非润湿相饱和度等于0%处的毛管压力,它反映的是多孔介质最大喉道处非润湿相的毛管压力。
确定阀压PT时是将毛管压力曲线中间的平缓段延长至零非润湿相饱和度,与纵坐标轴相交,其交点所对应的压力即为排驱压力PT。
与PT相对应的喉道半径是连通岩样表面孔隙的最大喉道半径rmax。
根据这种确定方法,将排驱压力理解为非润湿相开始进入岩样的压力是合理的。
排驱压力是评价岩石储集性能的主要参数之一,实际资料表明,它与岩石物性(特别是渗透率)有密切关系。
凡物性好的PT均比较低;排驱压力越大,物性越差,这说明大喉道对于岩石储集性能具有分重要的意义。
所以排驱压力等于油气二次运移所需的最小驱动力,它是研究二次运移及封密能力的主要参数。
2、平缓段ab当非润湿相进入岩样孔道中后,随着压力的不断增大,润湿相在多孔介质中的饱和度不断降低。