六年级下册数学讲义-圆锥的认识和体积;圆柱和圆锥体积的应用-人教版(含答案)
- 格式:docx
- 大小:278.01 KB
- 文档页数:13
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
第1讲几何(三)----圆柱与圆锥思维启航一、训练目标知识传递:掌握圆柱与圆锥的表面积和体积的求法,解决生活中的实际问题。
能力强化:分析能力、综合能力、观察能力、操作能力、想象能力。
思想方法:运算思想、组合思想、构造思想、恒等思想、比例思想。
二、知识与方法归纳解答立体图形的体积问题时,要注意以下几点:1.物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
2.把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
3.求一些不规则形体体积时,可以通过变形的方法求体积。
4.求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
思维进阶例1.把如图中的长方形ABCD以BC为轴旋转一周得出圆柱体,它的底面积是多少平方厘米?侧面积是多少平方厘米?体积是多少立方厘米?例2.如图所示,一个圆柱体底面周长和高相等。
如果高缩短了2厘米,表面积就减少了12.56平方厘米,这个圆柱体的表面积和体积分别是多少?思维训练1.把底面周长25.12厘米的圆柱体沿着底面直径切开,可以得到两个半圆柱,其表面积比原来圆柱体的表面积增加32平方厘米,其中一个半圆柱的表面积是多少平方厘米?例3.如图所示,圆锥体容器中装有3升水,水面高度正好是圆锥高度的一半。
这个容器还能装多少升水?例4.一个直角三角形的三条边的长度是3、4、5,如果分别以各边为轴旋转一周,得到三个立体图形.这三个立体图形中最大的体积和最小的体积的比是多少?思维训练2.一个底面直径为20cm的装有一部分水的圆柱形容器,水中放着一个底面直径12cm,高10cm的圆锥体铅锤,当铅垂从水中取出后,容器中的水面高度下降了几厘米?例5.一个装了一些水的瓶子,它的瓶口部分是半径为1厘米的圆柱体,瓶身部分是半径为3厘米的圆柱体,如图a所示,当瓶子正立放着时,水面的高度为20厘米,如图b所示;当瓶子倒立放着时,水面的高度为28厘米,如图c所示。
六年级数学下册圆柱和圆锥知识点讲解数学是必考科目之一,故从一年级开始我们就要认真地学习数学,认真对所学的每个知识点,小编通过准备了这篇六年级数学下册圆柱和圆锥知识点讲解以供大家参考1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积 = 圆柱的侧面积 +底面积2 即S表=S侧+S底2或2h + 2r27、圆柱的侧面积 = 底面周长高即S侧=Ch 或 2h8、圆柱的体积=圆柱的底面积高,即V=sh或 r2h(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
)9、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
)11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh 或 r2h313、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
以上就是小编为大家整理的有关六年级数学下册圆柱和圆锥知识点讲解的全部内容,希望能够对大家在数学上的学习有所帮助!。
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
2019-2020学年人教版小学六年级数学下册寒假预习与检测专题讲义圆柱与圆锥一.知识点归纳1. 圆锥的特征圆锥是由一个底面和一个侧面两部分组成的,它的底面是一个圆,侧面是一个曲面.【经典例题】例1:圆锥的侧面展开后是一个等腰三角形.×.(判断对错)分析:因为用一个扇形和一个圆可以制作一个圆锥,扇形是圆锥的侧面,圆是底面,由此得出结论.解:圆锥的侧面展开后是一个扇形,不是等腰三角形;故答案为:×.点评:此题主要回顾圆锥的特征和制作过程,以此做出判断.例2:直角三角形绕着一条直角边旋转一周,得到的图形是圆锥.√.(判断对错)分析:根据圆锥的定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.由此解答.解:根据圆锥的定义,直角三角形绕着一条直角边旋转一周,得到的图形是圆锥.此说法正确.故答案为:√.点评:此题考查的目的是使学生掌握圆锥的特征.2. 圆柱的展开图圆柱的侧面沿高剪开的展开图是一个长方形(或正方形),这个长方形(或正方形)的长等于圆柱底面的周长,宽等于圆柱的高.【经典例题】例1:将圆柱体的侧面展开,将得不到()A、长方形B、正方形C、平行四边形D、梯形分析:根据对圆柱的认识和圆柱的侧面展开图及实际操作进行选择即可.解:围成圆柱的侧面的是一个圆筒,沿高线剪开,会得到长方形或正方形,沿斜直线剪开会得到平行四边形.但是无论怎么直线剪开,都不会得到梯形.故选:D.点评:此题考查圆柱的侧面展开图,要明确:沿高线剪开,圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高.例2:一个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是()A、1:πB、1:2πC、π:1D、2π:1分析:因为将圆柱沿高展开后得到一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,由此再根据“一个圆柱的侧面展开是一个正方形,”知道圆柱的底面周长与圆柱的高相等;设圆柱的底面半径为r,根据圆的周长公式,C=2πr,表示出圆的底面周长,即圆柱的高,由此即可得出圆柱的底面半径和高的比.解:设圆柱的底面半径为r,则圆柱的底面周长是:2πr,即圆柱的高为:2πr,圆柱的底面半径和高的比是:r:2πr=1:2π;故选:B.点评:此题主要考查了圆柱与圆柱的侧面展开图之间的关系,再根据相应的公式与基本的数量关系解决问题.3. 圆柱的侧面积、表面积和体积圆柱的侧面积=底面的周长×高,用字母表示:S侧=Ch(C表示底面的周长,h表示圆柱的高),或S侧=2πrh圆柱的底面积=πr2圆柱的表面积=侧面积+两个底面积,用字母表示:S表=2πr2+2πrh圆柱的体积=底面积×高,用字母表示:V=πr2h.【经典例题】例1:做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A、表面积B、体积C、侧面积分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积.解:因为,烟囱是通风的,是没有上下两个底的,所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,故选:C.点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.例2:一个圆柱形量杯底面周长是25.12厘米,高是10厘米,把它装满水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米?分析:由题意可知,把圆柱形容器中的水倒入长方体容器中,只是形状改变了,但是水的体积不变.因此,先根据圆柱的容积(体积)公式v=sh ,求出圆柱形容器中水的体积,再除以长方体容器的底面积.由此列式解答.解:3.14×(25.12÷3.14÷2)2×10÷(10×8),=3.14×42×10÷80,=3.14×16×10÷80,=502.4÷80,=6.28(厘米);答:水面高6.28厘米.点评:此题属于圆柱和长方体的容积的实际应用,首先根据圆柱的容积(体积)公式求出水的体积,再用水的体积除以长方体容器的底面积.据出解决问题.4. 圆锥的体积圆锥体积=31×底面积×高,用字母表示: V=31Sh=31πr 2h ,(S 表示底面积,h 表示高) 【经典例题】例1:把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将( )A 、扩大3倍B 、缩小3倍C 、扩大6倍D 、缩小6倍分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案. 解:根据等底等高的圆锥形的体积是圆柱形体积的31,又因为,在捏橡皮泥的过程中,它的总体积不变, 所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A . 点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的31,即可得到答案. 例2:一个圆锥形小麦堆,高1米,底面周长18.84米,如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?分析:根据圆锥的底面周长求出底面半径,再代入圆锥的体积公式求出体积,进而求得重量即可.解:r=C ÷2π,=18.84÷(2×3.14),=3(米);V 锥=31πr 2h , =31×3.14×32×1, =31×3.14×9×1, =9.42(立方米);9.42×0.75=7.065(吨);答:这堆小麦大约有7.065吨.点评:此题考查了圆锥的体积公式的实际应用.二.同步测试同步测试题一.选择题(共8小题)1.圆锥的侧面展开后是一个( )A .圆B .扇形C .三角形D .梯形2.在下面的图形中,以直线为轴旋转,可以得到圆锥的是( )A .B .C .D .3.下列圆柱的表面积示意图中,各长度标注正确的是( )A .B .C.D.4.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积5.沿圆柱的高将圆柱的侧面展开后是一个()A.三角形B.长方形或正方形C.圆形D.扇形6.把一个圆柱削成一个与它等底等高的圆锥,削去的体积是90立方厘米,这个圆柱的体积是多少立方厘米?列式正确的是()A.90÷3=30B.90÷2×3=135C.90×3=270D.90÷2=457.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()A.扩大到原来的2倍B.缩小到原来的C.不变D.扩大到原来的3倍8.用24个铁圆锥,可以熔铸成()个等底等高的铁圆柱.A.12B.8C.6D.4二.填空题(共8小题)9.用一张边长是12.56分米的正方形纸,围成一个圆柱体,这个圆柱体的底面直径是分米.10.选择下面圆柱对应的侧面展开图.A、B、;.11.一个圆柱的体积是5024cm3,高是4cm,则它的底面半径是cm.12.以一个等腰直角三角形的一条直角边为轴,旋转一周生成的图形是.如果这个等腰直角三角形的一条直角边的长是10厘米,那么生成图形的高是厘米,底面积是平方厘米.13.一根长1米的圆柱形木棒,锯成3段后,表面积增加了64平方分米,这根木棒的体积是.14.现有一个直径是6分米的圆形铝片,以它为底制作一个高为7分米的无盖水桶,需要增加平方分米的铝片.这个水桶的容积是立方分米(铝片接头处和其它损耗都忽略不计)15.一个直角三角形的三条边长分别是3cm、4cm和5cm,若以直角边为轴旋转一圈,旋转一圈形成的图形体积是立方厘米.(π取3.14)16.(单位:cm)以直角三角形的长直角边为轴旋转一周(如图)得到几何体是,体积是cm3.三.判断题(共5小题)17.圆柱的表面积等于底面积乘高.(判断对错)18.从圆锥的顶点到底面周长任意一点的连线都是圆锥的高..(判断对错)19.圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)20.两个圆锥的底面积相等,它们的体积不一定相等.(判断对错)21.圆柱体的侧面展开图可能是平行四边形..(判断对错)四.计算题(共1小题)22.计算圆锥的体积.五.应用题(共4小题)23.有一堆混凝土呈圆锥形,底面半径为10米,高3米,用它在东庄修一条宽4米,厚0.2米的水泥路,能修多长?(得数保留整数)24.用铁皮制作圆柱形通风管,每节长60cm,底面半径5cm,制作10节这样的通风管,至少需要多大面积的铁皮?25.一个圆柱形容器,底面直径6分米高8分米里面装满了水.现将水全部倒入一个长方体容器中,水占长方体容器的50%.这个长方体容器的容积是多少立方分米?26.一个圆柱体高是5米,底面直径是8米,这个圆柱体的表面积和体积是多少?参考答案与试题解析一.选择题(共8小题)1.【分析】根据圆锥的特征:圆锥的侧面展开后是一个扇形,据此选择即可.【解答】解:根据圆锥的特征可知:圆锥的侧面展开后是一个扇形;故选:B.【点评】此题考查了圆锥的侧面展开图,是对圆锥基础知识的掌握情况的了解,应注意平时基础知识的积累.2.【分析】一个直角三角形以一条直角边为轴,旋转一周,得到的图形是圆锥,据此解答.【解答】解:在下面的图形中,以直线为轴旋转,可以得到圆锥的是.故选:C.【点评】灵活掌握圆锥的特点,是解答此题的关键.3.【分析】因为圆柱的侧面展开是长方形,长方形的长等于圆柱的底面周长,宽等于圆柱的高;由此结合选项可知:圆柱的底面直径是2厘米,则底面周长是3.14×2=6.28厘米;由此解答即可.【解答】解:因为为圆柱的侧面展开是长方形,长方形的长等于圆柱的底面周长,3.14×1=3.14(厘米),所以圆柱的直径为1厘米,底面周长为3.14厘米,即A不正确;3.14×2=6.28(厘米),圆柱的直径是2厘米,所以侧面展开图是一个长方形,长是6.28厘米,B正确,如图:;故选:B.【点评】解答此题应明确:圆柱的侧面展开是长方形,长方形的长等于圆柱的底面周长,宽等于圆柱的高.4.【分析】压路机的前轮是圆柱形,压路机的前轮转动一周所压过的路面积是指前轮的侧面积.【解答】解:压路机的前轮转动一周所压过的路面面积是指前轮的侧面积.故选:B.【点评】压路机的前轮的形状是圆柱,这个圆柱是侧躺在地面,转动一周,所压过的面正好是圆柱的侧面.5.【分析】根据圆柱的特征,它的上、下是完全相同的两个圆,侧面是一个曲面,圆柱侧面沿高展开是一个正方形或长方形;当圆柱体的底面周长和高相等时,侧面展开是正方形,据此解答即可.【解答】解:圆柱侧面沿高展开是一个正方形或长方形;当圆柱体的底面周长和高相等时,侧面展开是正方形;故选:B.【点评】此题主要考查圆柱的特征和它的侧面展开图的形状,以及展开图的长、宽与圆柱的底面周长和高的关系.6.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3﹣1)倍,据此可以求出圆锥的体积,进而求出圆柱的体积.【解答】解:90÷(3﹣1)×3=90÷2×3=45×3=135(立方厘米)答:这个圆柱的体积是135立方厘米.故选:B.【点评】此题主要考查等底等高的圆柱和圆锥体积之间的关系及应用.7.【分析】根据圆柱的侧面积公式:S=sh,再根据因数与积的变化规律,一个因数扩大到原来的2倍,另一个因数缩小到原来,积不变.据此解答.【解答】解:根据圆的周长公式:C=πd,因为圆周率一定,所以圆的周长和直径成正比例,因此,一个圆柱的底面直径扩大到原来的2倍,也就是圆柱的底面周长扩大2倍,高缩小到原来的,所以圆柱的侧面积不变.故选:C.【点评】此题考查的目的是理解掌握圆柱的侧面积公式及应用,以及因数与积的变化规律及应用.8.【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以3的圆锥可以熔铸成一个与圆锥等底等高的圆柱,据此解答即可.【解答】解:24÷3=8(个),答:可以熔铸成8个等底等高的圆柱.故选:B.【点评】此题考查的目的是理解掌握等底底等高的圆柱与圆锥体积之间的关系及应用.二.填空题(共8小题)9.【分析】根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形或正方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高.根据圆的周长公式:C=πd,那么d=C÷π,据此解答即可.【解答】解:12.56÷3.14=4(分米)答:这个圆柱的底面直径是4分米.故答案为:4.【点评】此题考查的目的是理解掌握圆柱侧面展开图的特征,以及圆周长公式的灵活运用.10.【分析】根据“圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高”由此解答即可.【解答】解:因为圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以侧面展开后高不变,底面直径小,则底面周长小,所以是侧面展开后高不变,底面直径大,所以侧面展开后是故答案为:B;A.【点评】根据圆柱展开图的特点,其侧面是一个长方形,长是圆柱底面的周长,由此即可解决问题.11.【分析】根据圆柱的体积公式:V=sh,那么S=V÷h,据此求出底面积,再根据圆的面积公式:S=πr2,把数据公式解答.【解答】解:5024÷4=1256(平方厘米)1256÷3.14=400因为20的平方是400所以底面半径是20厘米答:它的底面半径是20厘米.故答案为:20.【点评】此题主要考查圆柱的体积公式、圆的面积公式的灵活运用,关键是熟记公式.12.【分析】如果以这个等腰直角三角形的直角边为轴,旋转后组成的图形是一个底面半径为10cm,高为10cm的一个圆锥;根据圆锥的底面积公式S=π×r×r,即可求出圆锥的底面积,据此解答即可.【解答】解:圆锥底面半径10厘米,高10厘米3.14×10×10=3.14×100=314(平方厘米)答:以一个等腰直角三角形的一条直角边为轴,旋转一周生成的图形是圆锥.如果这个等腰直角三角形的一条直角边的长是10厘米,那么生成图形的高是10厘米,底面积是314平方厘米.故答案为:圆锥,10,314.【点评】本题考查了将一个简单图形绕一轴旋转一周所组成的图形是什么图形,以及圆锥的底面积计算和特征.13.【分析】根据圆柱的切割特点可知,切成3段后,表面积比原来增加了4个圆柱的底面的面积,由此利用增加的表面积64平方分米,除以4即可得出圆柱的一个底面的面积,再利用圆柱的体积公式V=πr2h 即可求出这根木棒的体积.【解答】解:1米=10分米64÷4×10=16×10=160(立方分米)答:这根木棒的体积是160立方分米.故答案为:160立方分米.【点评】抓住圆柱的切割特点和增加的表面积,先求出圆柱的底面积是解决此类问题的关键.14.【分析】(1)要求做这个水桶需要增加多少铝片,实际是求圆柱形水桶的侧面积,由此根据圆柱的侧面积公式S=ch=πdh,列式解答即可;(2)根据圆柱的体积公式V=πr2h,代入数据,列式解答即可求出水桶的容积.【解答】解:(1)3.14×6×7=131.88(平方分米)(2)3.14×(6÷2)2×7=3.14×9×7=197.82(立方分米)答:需要增加131.88平方分米的铝片.这个水桶的容积是197.82立方分米.故答案为:131.88;197.82.【点评】本题主要考查了圆柱的侧面积与体积的求法.15.【分析】根据题意可知:以直角三角形的一条直角边(3厘米)为轴旋转一周得到的圆锥的底面半径是4厘米高是3厘米,如果三角形的另一条直角边(4厘米)为轴旋转一周得到的圆锥的底面半径4厘米,高是3厘米,根据圆锥的体积公式:V=πr2h,把数据代入公式解答.【解答】解: 3.14×32×4= 3.14×9×4=37.68(立方厘米);3.14×42×3==50.24(立方厘米);答:形成图形的体积是37.68立方厘米或50.24立方厘米.故答案为:37.68、50.24.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.16.【分析】(1)如图,以4cm的直角边为轴旋转一周,可以得到一个高是4厘米,底面半径是3厘米的圆锥.(2)根据圆锥的体积公式V=πr2h即可求出这个圆锥的体积.【解答】解:(1)以4cm的直角边为轴旋转一周,可以得到一个立体图形,这个立体图形是圆锥体;(2)×3.14×32×4=3.14×3×4=37.68(立方厘米)故答案为:圆锥体,37.68.【点评】本题一是考查将一个简单图形绕一轴旋转一周所组成的图形是什么图形,二是考查圆锥的体积计算.三.判断题(共5小题)17.【分析】根据圆柱表面积的意义,圆柱的表面积是指围成这个圆柱的侧面和两个底面的总面积.即圆柱的表面积=侧面积+底面积×2.据此判断.【解答】解:圆柱的表面积=侧面积+底面积×2,因此,圆柱的表面积等于底面积乘高.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握圆柱表面积的意义,以及圆柱的表面积公式.18.【分析】根据圆锥的特征,圆锥的底面是一个圆,侧面是曲面,侧面展开是一个扇形,从圆锥的顶点到底面圆心的距离叫做圆锥的高.据此判断.【解答】解:从圆锥的顶点到底面圆心的距离叫做圆锥的高.因此,从圆锥的顶点到底面周长任意一点的连线都是圆锥的高.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握圆锥的特征,以及圆锥高的意义.19.【分析】根据圆柱侧面展开图的特征,圆柱的侧面展开是一个长方形,这个长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等.据此解答.【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等.所以题干说法正确.故答案为:√.【点评】此题考查的目的是理解掌握圆柱侧面展开图的特征.20.【分析】根据圆锥的体积计算公式“V=Sh”,即圆锥的体积是由圆锥的底面积、高确定,因此,两个圆锥的底面积相等,如果高也相等,它们的体积不一定相等;如果高不相等,它们的体积不相等.【解答】解:由圆锥的体积计算公式“V=Sh”可知,圆锥的体积是由它的底面积和高确定的因此,两个圆锥的底面积相等,它们的体积不一定相等原题说法正确.故答案为:√.【点评】确定圆锥体积的因素有两个:底面积、高,因此个圆锥只底面积相等或只有高相等,它们的体积一定不相等.21.【分析】圆柱的侧面沿着不是高的直线展开就是平行四边形,据此即可进行判断.【解答】解:要看侧面怎么展开,要是沿高展开可能是长方形,也有可能是正方形,如果沿上下面任意两点连成的斜直线展开就是平行四边形;所以原题说法正确.故答案为:√.【点评】圆柱的侧面展开图不仅可以是平行四边形,而且还可以是其他图形,这要取决于侧面展开时是如何剪开的.四.计算题(共1小题)22.【分析】根据圆锥的体积公式:V=r2h,把数据代入公式解答.【解答】解: 3.14×22×15= 3.14×4×15=62.8(立方分米),答:它的体积是62.8立方分米.【点评】此题主要考查圆锥体积公式的灵活运用,关键是熟记公式.五.应用题(共4小题)23.【分析】首先根据圆锥的体积公式:V=sh,把数据代入公式求出这堆混凝土的体积,再根据长方体的体积公式:V=sh,那么h=V÷S,把数据代入公式解答.【解答】解: 3.14×102×3÷(4×0.2)= 3.14×100×3÷0.8=314÷0.8≈393(米)答:能铺393米长.【点评】此题主要考查圆锥的体积公式、长方体的体积公式的灵活运用,关键是熟记公式.24.【分析】因为通风管没有底面只有侧面,要求制作圆柱形铁皮通风管需要多少铁皮,实际上就是求它的侧面积,根据圆柱的侧面积公式:S=Ch,可先求一节的侧面积,再乘10,求出10节的侧面积即可.【解答】解:(2×3.14×5×60)×10=1884×10=18840(平方厘米)答:至少需要18840平方厘米面积的铁皮.【点评】此题是考查圆柱侧面积的计算,注意此类题目只求侧面积,没有底面积.25.【分析】首先根据圆柱体的体积公式:V=π(d÷2)2h,求出圆柱体容器内水的体积,用水的体积除以长方体的体积,然后根据已知一个数的百分之几是多少求这个数是多少用除法计算,据此解答即可.【解答】解:3.14×(6÷2)2×8÷50%=3.14×9×8÷0.5=226.08÷0.5=452.16(立方分米)答:这个长方体容器的容积是452.16立方分米.【点评】此题主要考查长方体的体积(容积)公式、圆柱的容积公式的灵活运用,关键是熟记公式.26.【分析】根据圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,把数据分别代入公式解答.【解答】解:3.14×8×5+3.14×(8÷2)2×2=125.6+3.14×16×2=125.6+100.48=226.08(平方米);3.14×(8÷2)2×5=3.14×16×5=50.24×5=251.2(立方米);答:这个圆柱的表面积是226.08平方米,体积是251.2立方米.【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用,关键是熟记公式.。
圆锥的认识和体积;圆柱和圆锥体积的应用学生姓名年级学科授课教师日期时段核心内容认识圆锥及其体积;掌握圆柱及圆柱体积应用课型一对一教学目标1、初步认识圆锥,掌握圆锥的特征;2、理解圆柱、圆锥体积的推导过程;3、掌握圆锥体积的计算公式,运用其解决简单的实际问题。
4、运用圆柱与圆锥的关系解决问题。
重、难点重点:教学目标1、3 难点:教学目标2、4课首沟通1、还记得圆柱吗?圆柱的表面积和体积的计算公式吗?2、你能说说我们解决圆柱的体积的计算方式是什么?知识导图课首小测1.一段圆柱形钢材长5米,横截成三个小圆柱表面积增加了40平方厘米。
如果每立方厘米钢重 7.8克,这段钢材重多少千克?2.一个圆形罐头盒的底面半径是5cm,高是18cm。
它的体积是多少?导学一:圆锥的认识和体积知识点讲解 1:圆锥的认识圆锥是由一个底面和一个侧面两部分组成的。
(1)底面:圆锥中圆形的面就是它的底面,它有一个底面。
底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。
(2)侧面:圆锥周围的面就是它的侧面。
圆锥的侧面是一个曲面(3)高:从圆锥的顶点到底面圆心的距离就是圆锥的高,高用字母h表示。
圆锥只有一条高。
例 1. 圆锥的底面是一个( );侧面是一个( ),侧面展开是一个( )。
例 2. 圆锥的高是指从圆锥( )到底面( )的( )。
【学有所获】测量圆锥的高:“先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
”我爱展示1.圆锥有()条高2.画出下列每个圆锥的高知识点讲解 2:圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积。
圆锥的体积的计算公式:圆锥的体积=底面积×高×V圆锥=S h推导公式:圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×例 1. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:cm)【学有所获】同底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍。
例 2. (2021年海珠区六年级数学单元检测卷)一个圆锥形容器,底面半径是2dm,高3dm。
把它装满水,然后全部倒入一个底面半径为1dm的圆柱形空容器中(未装满),圆柱形容器的水深多少分米?例 3. 一个圆锥的底面直径是5dm,高是4dm,求圆锥的体积。
(得数保留两位小数)我爱展示1.[单选题] 一个圆锥的高不变,底面积扩大到原来的3倍,则它的体积()A.扩大到原来的3倍B.缩小到原来的C.不变2.计算下面各圆锥的体积。
(1)底面直径是4dm,高是6dm。
(2)底面半径是3cm,高是2dm。
(3)底面周长是6.28m,高是1.5m。
导学二:圆锥体积计算公式的应用知识点讲解 1:已知圆锥的底面积和高,求圆锥的体积。
直接利用圆锥的体积计算公式V=Sh进行计算例 1. 一个圆锥形铁锤的底面积是24cm³,高是8cm。
这个铁锤的体积是多少立方厘米?知识点讲解 2:已知圆锥的底面半径和高,求圆锥的体积。
例 1. 求右边圆锥的体积。
(单位:cm)。
知识点讲解 3:已知圆锥的底面直径和高,求圆锥的体积。
已知圆锥的底面直径和高,可以直接利用公式V=π()²h来求圆锥的体积例 1. 工地上有一堆沙子,近似于一个圆锥(如右图)。
这堆沙子的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数)知识点讲解 4:已知圆锥的底面周长和高,求圆锥的体积。
计算时先根据公式S=π()²(求出圆锥的底面积,再根据公式V=Sh求出圆锥的体积。
例 1. 天坛祈年殿塔的顶端近似于圆锥形,它的底面周长是18.84m,高是6m,求塔的顶端的体积。
我爱展示1.李伯伯家种的小麦丰收了,他把小麦放在院子里堆成了圆锥形,底面周长是12.56m,高是1.5m。
如果每立方米小麦重750kg,这堆小麦重多少千克?2.一个近似圆锥形的稻谷堆,底面周长是9.42m,高是1.2m。
每立方米稻谷大约重730千克,把这些稻谷装进袋子里,每袋装90千克,需要多少个袋子?3.沙漏是两个完全相同的圆锥形容器的组合体,单个圆锥形容器高6cm,漏口每秒可漏细沙0.05cm³,漏完全部细沙用时5分钟,这个沙漏的底面积是多少平方厘米?导学三:圆柱和圆锥体积的应用知识点讲解1:等底等高的圆柱和圆锥:圆锥的体积等于和它等底等高的圆柱体积的。
圆柱的体积比圆锥的体积多2倍;圆锥的体积比圆柱的体积少。
等底等高的圆柱和圆锥的体积比:例 1. 一个圆柱的底面半径是3cm,高是2cm,与它等底等高的圆锥的体积是()cm³。
知识点讲解 2:等底等体积的圆柱和圆锥:圆锥的高是圆柱的高的3倍,或者说圆锥的高比圆柱的高多2 倍;圆柱的高是圆锥的高的,或者说圆柱的高比圆锥的高少。
例 1. 圆柱的高是3cm,与它等底等体积的圆锥的高是9cm。
()知识点讲解 3:等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍,或者说圆锥的底面积比圆柱的底面积多2倍;圆柱的底面积是圆锥的底面积的,或者说圆柱的底面积比圆锥的底面积少。
例 1. (2021年海珠区单元测试题)一个圆柱与一个圆锥体积相等,高也相等,圆柱的底面积是12cm²,那么圆锥的底面积是4cm²。
()我爱展示1.一个圆柱体和一个圆锥体的体积相等,它们的底面积的比是3:5,圆柱的高8厘米,圆锥的高是()厘米。
2.把一个体积是120cm³的圆柱形木材削成一个最大的圆锥,则削去部分的体积是()cm³3.(2010年广州市大联盟小升初试题)一个圆柱体和一个圆锥体等底等高,他们的体积和是72立方分米,圆锥的体积是()立方分米,圆柱体的体积是()立方分米。
4. 等底等高的正方体、长方体的和圆柱的体积都相等()5.圆柱体的体积与圆锥体的体积比是3:1。
()6.等体积等高的圆柱和圆锥:圆柱的底面积是圆锥的底面积的3倍。
()7.计算下列圆柱的体积。
(1)(2)8.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸入水中),鱼缸中的水面升高了2cm。
这个圆锥的高是多少?限时考场模拟1. 等底等高的圆柱和圆锥,圆柱的体积是圆锥的(),圆锥的体积是圆柱的(),圆柱的体积比圆锥大(),圆锥的体积比圆柱小()。
2.一个圆柱和一个圆锥的体积都是24.6立方分米,底面积都是6平方分米,那么圆柱的高是()分米,圆锥的高是()分米。
3.(2021年天河区小升初数学招生试卷).一个圆柱与一个圆锥体积相等,底面积也相等。
已知圆柱的高是12cm,圆锥的高是()cm。
课后作业1.(2021年大联盟小升初试题)一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:9,圆锥的高是4.8 厘米,则圆柱的高是()厘米。
2.一个圆锥的体积是10.8立方米,与它等底等高的圆柱的体积是()。
3.一个圆锥的体积是50.24立方米,底面半径是2米,它的高是()米。
4.一个圆柱的底面半径是3分米,高2分米,体积是()立方分米5.一个圆锥体,底面直径和高都是3cm,它的体积是()立方厘米6.一个圆锥的体积是75.36dm³,底面半径是3dm,它的高是()dm7.V=Sh只能求圆柱的体积()8.圆柱和圆锥都有无数条高。
()9.一个圆锥的底面半径扩大到原来的5倍,它的体积也扩大到原来的25倍。
()10.[单选题] 同底等高的圆柱体的体积是圆锥体积的()A.3倍B.C.无法确定11. [单选题] 将一个圆柱体铝块熔铸成圆锥体,它的()不变。
A.表面积B.体积C.底面积12. [单选题] 一个圆锥的高不变,底面半径扩大到原来的2倍,它的体积就扩大到原来的()被。
A.2B.4C.613. [单选题] 一个圆锥的体积是3m³,底面积是3㎡,它的高是()m。
A.3B.1C.14.[单选题] (2021年广州市小联盟数学试题)把底面积是18平方厘米,高是2厘米的圆柱形零件削成最大的圆锥体,削成的最大圆锥体的体积是()立方厘米A.12B.18C.24D.3615.计算下图的体积。
(单位:cm)(1)(2)(3)16.一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?17.一个圆锥形沙堆,它的底面周长是12.56m,高是1.8m。
用这堆沙子在8m宽的公路上铺3cm厚的路面,能铺多少米?18.有一囤稻谷,上面是圆锥形,下面是圆柱,量得圆柱的底面周长是6.28米,高是2米,圆锥的高0.3米,这囤稻谷重多少千克?(每立方米稻谷重650千克)19.(2021年广州市小联盟数学试题)唐老鸭用一个圆锥形容器装满了2000克香油,米老鼠趁唐老鸭不在,在容器的中间咬了一个洞,然后开始偷油,一直偷到油面与小洞平齐为止(如图)。
问:米老鼠共偷得香油多少克(容器的厚度不计)?1、学完这节课的内容后,回去复习圆锥和圆柱的知识。
2、标注理解不够深刻的例题及时复习整理。
3、总结圆柱与圆锥的体积应用题。
4、整理课堂上做错的习题到错题本上,课下及时完成相应练习。
课首小测1.39千克。
解析:5米=500厘米40÷4×500×7.8=39000(克)=39(千克)答:这段钢材重39千克。
2.1413cm³。
解析:3.14×5²×18=3.14×25×18=1413(cm³)答:它的体积是1413 cm³。
导学一知识点讲解 1:圆锥的认识例题1.圆;曲面;扇形2.顶点;圆心;垂直距离我爱展示1.12.知识点讲解 2:圆锥的体积例题1.4cm解析: ×12=4(cm)答:这时乙容器中的水有4cm。
2.4分米解析: ×3.14×2²×3÷(1²×3.14)=4(分米)答:圆柱形容器的水深4分米。
3.26.17dm³解析: ×[3.14×(5÷2)³]×4≈26.17(dm³)答:圆锥的体积约为26.17 dm³。
我爱展示1.A解析: 圆锥的体积=底面积×高×,当底面积扩大3倍时,圆锥现在的体积=(底面积×3)×高×,即3倍圆锥原来的体积。
所以选扩大到原来的3倍。
2.(1)25.12dm³;(2)188.4cm³;(3)1.57m³解析:(1)×3.14×(4÷2)²×6=25.12(dm³)(2)2dm=20cm×3.14×3²×20=188.4(cm³)(3)×3.14×(6.28÷3.14÷2)²×1.5=1.57(m³)导学二知识点讲解 1:已知圆锥的底面积和高,求圆锥的体积。