第三章 元素半导体
- 格式:ppt
- 大小:7.07 MB
- 文档页数:86
半导体重点总结(1-7章)绪论1. 制作pn 结的基本步骤。
(重点,要求能够画图和看图标出步骤)第一章. 固体晶体结构1. 半导体基本上可以分为两类:位于元素周期表IV 元素半导体材料和化合物半导体材料。
大部分化合物半导体材料是III 族和V 族化合形成的。
2. 元素半导体,如:Si 、Ge ; 双元素化合物半导体,如:GaAs (III 族和V 族元素化合而成)、InP 、ZnS 。
类似的也有三元素化合物半导体。
3. 固体类型:(a )无定形(b )多晶(c )单晶 图见P6 多晶:由两个以上的同种或异种单晶组成的结晶物质。
多晶没有单晶所特有的各向异性特征 准晶体: 有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性。
似晶非晶。
4. 原胞和晶胞:原胞是可以通过重复形成晶格的最小晶胞。
晶胞就是可以复制出整个晶体 的小部分晶体。
5. (a )简立方 1 个原子(b )体心立方 2 个原子(c )面心立方 4 个原子计算方法:顶点的一个原子同时被8个晶胞共享,因此对于所求晶胞而言只占有了该原子的1/8;边上、面心和体心原子分别同时被4,2,1个晶胞共享,对于所求晶胞而言分别占有了该原子的1/4,1/2,1/2.如此计算。
例如(c )图中8*1/8+6*1/2=1+3=4. 6. 晶格常数:所取的立方体晶胞的边长。
单位为A ,1A=10^-8cm. 7. 原子体密度:原子个数/体积。
比如上图(c )假设晶格常数为5A 。
求原子体密度。
8.密勒指数(取面与x,y,z 平面截距的倒数):密勒指数描述晶面的方向,任何平行平面都有相同的密勒指数。
9. 特定原子面密度:原子数/截面面积。
计算方法:计算原子面密度时求原子个数的方法与求体密度时的方法类似,但是应当根据面的原子共用情况来计算。
其中有一种较为简便的算法:计算该面截下该原子的截面的角度除处以360,即为该面实际占有该原子的比例。
举例1:计算下图(a )中所显示面所拥有的原子个数和原子面密度:该面截取了顶角四个原子和体心一个原子,顶角每个原子与面的截面角度为90度,90/360=1/4,体心原子与面的截面角度为360度,360/360=1,所以原子总数,1+1+1/4*4=2()223384 3.210510cm ρ-==⨯⨯个原子/举例2:第一次作业中有一道小题是计算硅晶体在晶面(1,1,1)的面密度,晶格常数为a ,如下图可以知道如图所示的等边三角形的边长为√2*a,三个角顶点截面角度为60度,所以该面实际占据这个三个点的比率都为1/6,三个面心点截面角度为180度,所以该面实际占据这个三个点的比率都为1/2.所以该面拥有原子数为3*1/6+3*1/2=1/2+3/2=2.等边三角形面积为√3/2*a^2,所以可以算出面密度为4/(√3a^2).10. 晶向:与晶面垂直的矢量(在非简立方体晶格中不一定成立)。
半导体材料有哪些元素半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
半导体在收音机、电视机以及测温上有着广泛的应用。
如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
具有半导体特性的元素,如硅、锗、硼、硒、碲、碳、碘等组成的材料。
其导电能力介乎导体和绝缘体之间。
主要采用直拉法、区熔法或外延法制备。
工业上应用最多的是硅、锗、硒。
用于制作各种晶体管、整流器、集成电路、太阳能电池等方面。
其他硼、碳(金刚石、石墨)、碲、碘及红磷、灰砷、灰锑、灰铅、硫也是半导体,但都尚未得到应用。
在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。
C、P、Se 具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。
P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。
As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。
B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。
因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。
半导体材料(复习资料)半导体材料复习资料0:绪论1.半导体的主要特征:(1)电阻率在10-3 ~ 109 ??cm 范围(2)电阻率的温度系数是负的(3)通常具有很高的热电势(4)具有整流效应(5)对光具有敏感性,能产生光伏效应或光电导效应2.半导体的历史:第一代:20世纪初元素半导体如硅(Si)锗(Ge);第二代:20世纪50年代化合物半导体如砷化镓(GaAs)铟磷(InP);第三代:20世纪90年代宽禁带化合物半导体氮化镓(GaN)碳化硅(SiC)氧化锌(ZnO)。
第一章:硅和锗的化学制备第一节:硅和锗的物理化学性质1.硅和锗的物理化学性质1)物理性质硅和锗分别具有银白色和灰色金属光泽,其晶体硬而脆。
二者熔体密度比固体密度大,故熔化后会发生体积收缩(锗收缩5.5%,而硅收缩大约为10%)。
硅的禁带宽度比锗大,电阻率也比锗大4个数量级,并且工作温度也比锗高,因此它可以制作高压器件。
但锗的迁移率比硅大,它可做低压大电流和高频器件。
2)化学性质(1)硅和锗在室温下可以与卤素、卤化氢作用生成相应的卤化物。
这些卤化物具有强烈的水解性,在空气中吸水而冒烟,并随着分子中Si(Ge)?H键的增多其稳定性减弱。
(2)高温下,化学活性大,与氧,水,卤族(第七族),卤化氢,碳等很多物质起反应,生成相应的化合物。
注:与酸的反应(对多数酸来说硅比锗更稳定);与碱的反应(硅比锗更容易与碱起反应)。
2.二氧化硅(SiO2)的物理化学性质物理性质:坚硬、脆性、难熔的无色固体,1600℃以上熔化为黏稠液体,冷却后呈玻璃态存在形式:晶体(石英、水晶)、无定形(硅石、石英砂) 。
化学性质:常温下,十分稳定,只与HF、强碱反应3.二氧化锗(GeO2)的物理化学性质物理性质:不溶于水的白色粉末,是以酸性为主的两性氧化物。
两种晶型:正方晶系金红石型,熔点1086℃;六方晶系石英型,熔点为1116℃化学性质:不跟水反应,可溶于浓盐酸生成四氯化锗,也可溶于强碱溶液,生成锗酸盐。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==关于空气污染的资料篇一:关于环境污染的资料关于环境污染的资料说到环境污染,同学们或多或少都有切身体会,或者在电视上看到过污染的情况。
比方说汽车从我们身边开过,会扬起灰尘,汽车还排放尾气,这就是一种空气污染。
还有许多工厂都要排放废水,工厂生产需要使用干净的水,这些干净的水经过各种各样的生产工艺,水里边加进了许多污染物质,变成了废水,工厂再把这些废水排放到环境里去,就会污染河流、水渠、湖泊、水库,甚至是大海,这就是水污染。
我们生活中也产生许多废渣,我们叫它生活垃圾。
环境污染最大的危害是造成环境质量下降,从而影响我们的生活和身体健康,也影响经济发展。
现在,我国的城市空气质量良好的约占三分之一,受到轻度污染和重度污染的各占三分之一。
现代环境污染首先是伴随着工业发展而产生的,我们把它叫做工业污染。
我们把产生工业污染的工厂叫做工业污染源。
现在我国每年工业污染源排放到空气中的二氧化硫有1570万吨(201X年),工业粉尘841万吨,烟尘217万吨。
每年排放工业废水200亿吨。
每年排放工业固体废物8.9亿吨。
随着人口的增多,城市化水平的提高和生活水平的提高,生活污染也越来越严重,现在我国每年产生的城市生活污水有227亿吨,已经超过了工业废水的排放量。
生活二氧化硫排放量381万吨,烟尘217万吨。
由于现代农业的发展,化肥和农药大量使用,产生了农业污染,农业污染最可怕的是农产品有害物质含量超标。
因为农产品大量的是食品。
这几年在我国就出现了几起有毒大米、有毒猪肉、有毒食油的典型案件。
当然农业污染最普遍的是使食品中的有害物质含量增加。
这些有害物质我们食用后短时间内可能不会有什么感觉,如果时间长了,就会在身体内富集,危害我们的健康。
最可怕的还有这些有害物质会在自然界中通过食物链造成富集,长时期地积累在植物中和生物体内,最终影响到我们人类的身体健康。
第一章、固体晶体结构1.小结1.硅是最普遍的半导体材料2.半导体和其他材料的属性很大程度上由其单晶的晶格结构决定。
晶胞是晶体中的一小块体积,用它可以重构出整个晶体。
三种基本的晶胞是简立方、体心立方和面心立方。
3.硅具有金刚石晶体结构。
原子都被由4个紧邻原子构成的四面体包在中间。
二元半导体具有闪锌矿结构,它与金刚石晶格基本相同。
4.引用米勒系数来描述晶面。
这些晶面可以用于描述半导体材料的表面。
密勒系数也可以用来描述晶向。
5.半导体材料中存在缺陷,如空位、替位杂质和填隙杂质。
少量可控的替位杂质有益于改变半导体的特性。
6.给出了一些半导体生长技术的简单描述。
体生长生成了基础半导体材料,即衬底。
外延生长可以用来控制半导体的表面特性。
大多数半导体器件是在外延层上制作的。
2.重要术语解释1.二元半导体:两元素化合物半导体,如GaAs。
2.共价键:共享价电子的原子间键合。
3.金刚石晶格:硅的原子晶体结构,亦即每个原子有四个紧邻原子,形成一个四面体组态。
4.掺杂:为了有效地改变电学特性,往半导体中加入特定类型的原子的工艺。
5.元素半导体:单一元素构成的半导体,比如硅、锗。
6.外延层:在衬底表面形成的一薄层单晶材料。
7.离子注入:一种半导体掺杂工艺。
8.晶格:晶体中原子的周期性排列9.密勒系数:用以描述晶面的一组整数。
10.原胞:可复制以得到整个晶格的最小单元。
11.衬底:用于更多半导体工艺比如外延或扩散的基础材料,半导体硅片或其他原材料。
12.三元半导体:三元素化合物半导体,如AlGaAs。
13.晶胞:可以重构出整个晶体的一小部分晶体。
14.铅锌矿晶格:与金刚石晶格相同的一种晶格,但它有两种类型的原子而非一种。
第二章、量子力学初步3.小结1.我们讨论了一些量子力学的概念,这些概念可以用于描述不同势场中的电子状态。
了解电子的运动状态对于研究半导体物理是非常重要的。
2.波粒二象性原理是量子力学的重要部分。
粒子可以有波动态,波也可以具有粒子态。
第一章 半导体中的电子状态1.元素半导体 硅 和 锗 都是 金刚石 结构 。
2.结构上,金刚石结构由 两套面心立方格子 沿其立方体对角线位移 1/4 的长度套构而成的,3.在四面体结构的共价晶体中,四个共价键是 sp3杂化 。
4.第III 族元素铝、镓、铟和第V 族元素磷、砷、锑组成的 III-V 族化合物 。
也是正四面体结构,四个共价键也是sp3杂化,但具有一定程度的离子性。
是 闪锌矿 结构。
5. ZnS 、GeS 、ZnSe 和GeSe 等 Ⅱ-Ⅵ族化合物 都可以 闪锌矿型 和 纤锌矿型 两种方式结晶,也是以 正四面体结构 为基础构成的,四个混合共价键也是 sp3 杂化,也有一定程度的离子性。
6. Ge 、Si 的禁带宽度具有 负温度系数 。
禁带宽度E g 随温度增加而减小( 负温度系数特性 )7.半导体与导体的最大差别: 半导体的电子和空穴均参与导电 。
半导体与绝缘体的最大差别: 在通常温度下,半导体已具有一定的导电能力 。
8.有效质量的意义半导体中的电子在外场作用下运动时,外力并不是电子受力的总和,电子一方面受到外电场力的作用,另一方面还和内部的原子、电子相互作用着。
电子的加速度应该是 半导体内部势场 和 外电场作用 的综合效果。
为了简化问题,借助有效质量来描述电子加速时内部受到的阻力。
引入有效质量的意义在于它概括了半导体内部势场的作用。
使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及到半导体内部势场的作用。
有效质量可以通过实验直接测得。
有效质量的大小取决于 晶体内电子与电子周围环境 的作用。
电子有效质量的意义是什么?它与能带有什么关系?答:有效质量概括了晶体中电子的质量以及内部周期势场对电子的作用,引入有效质量后,晶体中电子的运动可用类似于自由电子运动来描述。
有效质量与电子所处的状态有关,与能带结构有关:(1)、有效质量反比于能谱曲线的曲率:(2)、有效质量是k 的函数,在能带底附近为正值,能带顶附近为负值。
元素半导体和化合物半导体引言:半导体是一种介于导体和绝缘体之间的材料,其导电性介于金属和非金属之间。
半导体材料广泛应用于电子技术领域,如集成电路、太阳能电池等。
根据构成半导体的化学元素类型,半导体可分为元素半导体和化合物半导体两大类。
本文将分别介绍这两类半导体的特点和应用。
一、元素半导体:元素半导体是由一种纯粹的化学元素构成的半导体材料,常见的元素半导体有硅(Si)和锗(Ge)。
这两种元素半导体具有以下特点:1. 硅和锗的晶体结构:硅和锗都属于周期表中的第四族元素,它们的晶体结构是钻石型结构,即每个原子与四个邻近原子通过共价键相连,形成三维网格。
2. 硅和锗的能带结构:元素半导体的能带结构决定了其导电性质。
在绝对零度时,硅和锗的价带都是完全填满的,而导带是空的。
这意味着在零度下,硅和锗是绝缘体。
3. 杂质掺杂:为了改变硅和锗的导电性质,常常将适量的其他元素引入其中,这个过程称为掺杂。
常见的掺杂元素有磷(P)和硼(B)。
掺杂磷或硼后,硅和锗的导电性发生了显著改变,成为了半导体。
4. p型和n型半导体:在掺杂过程中,掺入五价元素(如磷)的区域称为n型区,其中导电主要由自由电子负责;而掺入三价元素(如硼)的区域称为p型区,其中导电主要由空穴负责。
p型和n 型区域相接形成的结构称为p-n结,是半导体器件的基础。
5. 元素半导体的应用:元素半导体是现代电子技术的基础材料,被广泛应用于集成电路、太阳能电池、传感器等领域。
其中,硅是最主要的元素半导体材料,其在集成电路领域占据统治地位。
二、化合物半导体:化合物半导体是由两种或多种不同元素组成的半导体材料,常见的化合物半导体有砷化镓(GaAs)、磷化氮(GaN)等。
化合物半导体相较于元素半导体,具有以下特点:1. 晶体结构:化合物半导体的晶体结构较为复杂,常见的有锌刚石型、岩盐型、闪锌矿型等。
不同的晶体结构决定了化合物半导体的电子能带结构和导电性质。
2. 带隙宽度:化合物半导体的带隙宽度通常比元素半导体大,这使得化合物半导体在能带结构和导电性质上与元素半导体有所不同。