油气田开发地质学重点总结(文本)
- 格式:doc
- 大小:113.00 KB
- 文档页数:11
一.名词解释1.岩心录井:岩心录井包括按设计要求卡准取心层位和井段、岩心出筒、整理、观察、描述及选送分析样品全过程的有关内容。
2.岩屑录井:在钻井过程中,地质人员按照一定取样间距和迟到时间,连续收集与观察岩屑并恢复地下地质剖面的过程,称为岩屑录井。
3.地层压力:地层压力是指作用于岩层孔隙空间内流体上的压力,所以又可称为孔隙流体压力,常用Pf表示。
4.流动单元:流动单元是一个纵横向连续的,内部渗透率、孔隙度、层理特征相似的储集带。
5.地层流动系数:表示流体在油层中流动难易程度的参数,等于地层系数和原油粘度的比值。
Kh/μ单位(μm2·m/mPa·s)[/size] [size=14pt]6.储层结构模型:储层结构模型是指储层及其内部构成单元的大小、几何形态及其在三维空间的分布。
7.油水系统:具有统一压力系统和油水界面的油水聚集的基本单元,亦即一个单一的油气藏及其底部或边部水体的组合,称为一套油水系统。
8.控制地质储量:控制地质储量是指在圈闭预探阶段井获得工业油(气)流,并经过初步钻探认为可供开采后,估算求得的、准确性较大的地质储量,其相对误差不超过±50%。
9.地层测试:为了认识和鉴别油气层,掌握油气层的客观规律,为油气田开发和开采提供可靠的科学依据,在找到油气层之后,还要获取油气层产量、压力、产液性质。
地层渗透率。
流体样品等资料,这一类工作称之为地层测试。
二.填空1.常见的碎屑岩的孔隙喉道有以下四种类型:孔隙缩小型喉道、缩颈型喉道、片状或弯片状喉道、管束状喉道。
2.折算压力是指井内静液面到某一折算基性面的垂直高度,折算压力是指折算压强所产生的压力,通常可以利用油水系统中流体流动方向?3.储层建模是,其核心问题是提高井间预测精度,4种途径是确定性建模与随机建模、等时储层建模、成因控制储层相建模、相控储层建模,2种方法是储层离散属性建模方法、储层参数模建方法。
4.岩心描述时采取与一般野外描述相同,描述包括以下5方面:颜色,矿物成分,结构,构造,含油、气、水情况。
油气开发知识点总结高中一、石油和天然气的概念1. 石油的含义:石油是一种重要的化石燃料,是地球上的一种矿产资源,也是一种特殊的液态烃,含有碳、氢等元素。
2. 天然气的含义:天然气是一种轻质的非常规天然气,主要成分是甲烷,在地球内部富集形成的气体。
3. 石油和天然气的相互关系:石油和天然气是地球赋存的两种燃料,是人类生产和生活不可或缺的能源资源。
石油和天然气的勘探、开发和应用密切相关。
二、油气勘探技术和方法1. 地质勘探技术:包括地质调查、野外测量和实验研究等,主要是通过对地质构造、地质构造、岩石组合、矿物组合和地层中各类地质构造等地球体进行勘探。
2. 地球物理勘探技术:包括地震勘探、重力测量、地磁测量和电磁测量等方法,主要是用来确定地下结构和矿产分布。
3. 石油地质勘探方法:包括野外地质调查、钻孔勘探和地震勘探等技术,以确定石油资源的分布、规模和储量。
4. 天然气勘探方法:包括天然气地质调查、地质构造勘探和微地震勘探等技术,以确定天然气资源的分布、规模和储量。
三、油气勘探和开发的主要地质条件1. 地质构造条件:包括构造岩层、褶皱、断裂、隆起、坳陷等构造特征,是石油和天然气形成的地质条件之一。
2. 地层条件:包括古地理、沉积盆地分布、沉积岩相及岩石组合,决定了石油和天然气的形成和储集条件。
3. 地质作用条件:包括生物化学作用、热液作用、热岩浆作用等地质作用过程,影响石油和天然气的形成和储集。
四、油气勘探和开发的主要工作内容1. 地质勘探工作:包括地质调查、地质探测、地质勘探等工作,确定石油和天然气的分布规模和储量。
2. 钻井工作:包括地面钻井和海底钻井,通过地下勘探、天然气勘探和海底钻探等技术资料,获取含油气的地层信息。
3. 地质勘探工作:包括地质调查、地质探测、地质勘探等工作,确定石油和天然气的分布规模和储量。
4. 钻井工作:包括地面钻井和海底钻井,通过地下勘探、天然气勘探和海底钻探等技术资料,获取含油气的地层信息。
油气田地下地质学课程总结《油气田地下地质学》课程总结第一章钻井地质一、主要概念1、参数井:地层探井、区域探井-指在区域勘探阶段部署的,主要了解各一级构造单元的地层层序、厚度、岩性、石油地质特征(生、储、盖及其组合,获取烃源岩地球化学指标),为物探解释提供参数而钻的探井。
2、预探井:指在圈闭预探阶段,在地震详查的基础上,以局部构造(圈闭)或构造带等为对象,以发现油气藏、取得储集层物性资料、计算控制储量和预测储量为目的而钻的探井。
3、评价井:指在地震精查或三维地震的基础上,在已获工业性油气流的圈闭上,为详细查明油气特征,评价油气田的规模、产能、经济价值,计算探明储量等而钻的探井。
4、开发井:指根据编制的该油气田开发方案,为落实探明储量、完成产能建设任务,按开发井网所钻的井。
5、调整井:指油气田全面投入开发若干年后,根据开发动态及油气藏数值模拟资料,为提高储量动用程度及采收率,需要分期钻一批调整井;根据油气田调整开发方案加以实施。
6、钻时:每钻进一定厚度岩层所需要的时间,单位min/m。
7、定向井:按照一定的目的和要求,有控制地使井身沿着设计的方向和路线钻达预定的目的层段和井下目标(靶位)的井。
8、岩心收获率:岩心长度占取心进尺的百分比。
9、岩屑迟到时间:岩屑从井底返回井口的时间。
10、泥浆录井:根据钻井液性能的变化及槽面显示推断井下是否钻遇油气水层和特殊岩性的方法。
二、问答题1、简述定向井的主要用途,图示说明井身剖面基本类型。
纠正已钻斜的井眼成一个垂直的井身,对落鱼等井下障碍物进行侧钻,在不可能或不适宜安装钻机的地面位置的下边钻油井,为扑灭大火、压住井喷等而设计的井—抢险井或救险井,在一个井场、钻井平台或人工岛上,钻几口、几十口井、丛式井—海上油田、地面受限制的沙漠、沼泽等地,最大井斜角接近或达到90°,且有水平延伸的井--水平井。
I型井身剖面;Ⅱ型井身剖面(S形曲线井身剖面);Ⅲ型井身剖面(见图)2、简述影响钻时的主要因素及钻时录井的主要用途。
油气生成的知识点总结一、油气生成地质学基础知识1. 岩石圈和地幔构成地球的岩石层,是地球矿物质和生态活动的主要地区。
2. 地球岩石层是地球生命和自然资源的基础,是地球岩石层和生态活动的主要地区。
地球岩石层是地球的岩石圈和地幔的基础构成,是地球的岩石圈和地幔的基础构成。
3. 地球岩石层是地球的岩石圈和地幔的基础构成,是地球的岩石圈和地幔的基础构成。
地球岩石层是地球的岩石圈和地幔的基础构成,是地球的岩石圈和地幔的基础构成。
二、油气生成的基本概念1. 烃源岩:主要由有机质、粘土矿物、碳酸盐矿物和石英等成分组成。
2. 成烃作用:是指烃源岩中的有机质在一定温度、压力和时间条件下发生热解反应、高温催化反应,生成烃类物质的反应过程。
3. 成气作用:是指烃源岩中的有机质在一定条件下,经过压力、温度等作用,逐渐分解成天然气的过程。
4. 成油作用:是指烃源岩中的有机质在一定条件下,经过压力、温度等作用,逐渐分解成原油的过程。
5. 成烃期:是指有机质经过烃源岩中的生物成分,通过地质作用形成烃的时间段。
6. 成藏期:是指烃源岩中的烃类物质形成原油和天然气,在地质层中成藏的时间段。
三、油气生成的地质条件1. 温度条件:烃源岩的温度高于60℃时,有机质才能进行热解反应,生成烃类物质。
2. 压力条件:地下深处的高压和高温条件有利于烃源岩中的有机质成烃作用的进行。
3. 时间条件:成烃过程需要漫长的地质时间,通常需要几百万年到几十亿年的时间。
4. 成藏条件:烃源岩需要在埋藏和形成地层沉积环境下进行成烃作用,使生成的烃类物质可以在适当的条件下成藏。
四、油气成藏地质条件1. 有效储集层:是指烃源岩中生成的原油和天然气,通过一定地质作用,在适当条件下进行成藏和储集的地质层。
2. 地质构造条件:构造隆起和坳陷构造是地质作用形成原油和天然气成藏最为常见的构造类型,构造形成条件对油气成藏起着关键作用。
3. 地层孔隙和裂缝条件:地层孔隙和裂缝是原油和天然气的主要储集空间,地层孔隙度和裂缝发育程度是影响烃类物质成藏的重要地质条件。
油田开发知识点总结大全一、油田勘探1. 地质构造分析:通过对地质构造进行分析,可以确定潜在的油气聚集区域,为进一步的勘探工作提供指导。
2. 地震勘探:地震勘探是一种常用的勘探手段,通过地震波在不同介质中的传播速度不同来推断地下的岩层情况,从而判断潜在的油气储集层。
3. 重力和磁力勘探:重力和磁力勘探是利用地球引力和磁场的变化来推断地下岩层性质和构造特征,从而确定潜在的油气富集区域。
4. 电测勘探:电测勘探是通过测量地下电阻率、自然电场和人工电场等物理量来推断地层结构和油气聚集情况。
5. 地质钻探:地质钻探是直接获取地下岩石样本,通过对地下岩石进行分析,可以确定地层结构、岩性、孔隙度、渗透性等参数,为油田勘探提供重要数据支持。
二、油田开发1. 地质储量评估:通过对地层结构、岩石性质、孔隙度、渗透性等参数的分析,可以对油田的地质储量进行评估,为后续的开发工作提供指导。
2. 采收率预测:采收率是指油田中可采集到的地质储量的比例,通过对地质条件、岩性特征、流体性质等因素进行综合分析,可以预测油田的采收率,为开发方案的制定提供依据。
3. 油气藏开发方式选择:根据油田地质条件、储层性质、工程技术水平等因素,选择合适的开发方式,包括常规开采、次生采收、注水开采等。
4. 选址规划:根据油田地质条件、勘探数据和开发方案,对井位进行选址规划,确定井位位置和井网布局,以最大限度地提高油气采收率。
5. 地面设施建设:包括钻井平台、生产设备、管道、储罐等地面设施的建设,为油气开采提供必要的设施和条件。
6. 注水开采:对于一些老旧油田或高含水油气藏,可以通过注水开采的方式来提高采收率,延长油田的生产寿命。
7. 水驱采收:通过注入水驱的方法来推动油气的开采,提高采收率。
8. 天然气开发:针对含天然气的油田进行开发,包括天然气的采收和处理。
三、油田生产1. 裸眼检查:对于油田生产现场,进行裸眼检查,及时发现设备的异常情况,确保生产的正常运行。
石油地质工作总结
石油地质工作是石油勘探和开发的基础,它涉及到地质学、地球物理学、地球
化学等多个学科领域。
在过去的一年里,我们团队在石油地质工作中取得了一些重要的成果和经验,现在我将对这些工作进行总结。
首先,我们在勘探领域取得了一些重要的进展。
通过对地质构造、地层岩性和
地质构造特征的综合分析,我们成功地确定了几个有潜力的勘探区块,并进行了详细的勘探工作。
在这些区块中,我们发现了一些潜在的石油藏区,并为后续的勘探和开发工作奠定了基础。
其次,我们在地震勘探和地球物理勘探方面也取得了一些重要的进展。
通过对
地震数据和地球物理数据的综合解释,我们成功地确定了一些潜在的石油勘探目标,并为后续的勘探工作提供了重要的依据。
同时,我们还通过地球化学分析和实验室测试,对勘探区块中的地下流体进行了详细的研究,为后续的勘探和开发工作提供了重要的参考。
最后,我们在石油地质工作中积累了一些宝贵的经验。
通过对勘探和开发工作
的总结和反思,我们发现了一些问题和不足之处,并对这些问题和不足之处提出了一些改进和完善的建议。
同时,我们还总结了一些成功的经验和做法,并将其作为今后工作的指导。
总的来说,我们在石油地质工作中取得了一些重要的成果和经验,这些成果和
经验为今后的勘探和开发工作提供了重要的参考和指导。
我们将继续努力,不断提高工作水平,为国家的石油资源勘探和开发做出更大的贡献。
1 开发地质特征:油藏所具有的那些控制和影响油气开发过程,从而也影响所采取的开发措施的所有地质特征。
2迟到时间:是指碎屑从井底反至井口的时间。
3地层测试:在找到油气层后,为获取油气层产量,压力、产业性质、地层渗透率、流体样品等资料,这一类工作称之为地层测试。
4油层对比:在一个油田范围内,对含油层系中的油层进行对比。
5 储层地质模型:能描述实际储层性质特征并简化了的人造模拟系统,用地质上的术语来说,就是将储层各种性质特征在三维空间的变化及其分布定量表述出来的地质模型。
6 水淹层:油田注水开发后,原来的油气层进入了注入水,试油后部分产水或完全产水的地层。
7 剩余油:已开采但未采出生留在地下的石油。
8开发地质学;油气田发现后围绕油气田开发而进行各项地质研究工作的一门应用科学。
9 储量核算;储量复算后开发过程中的各次储量计算。
10 储层非均质性;储层在空间分布及内部各种属性上都存在不均匀的变化,这种变化称为储层非均质性。
11 地质录井;在钻井过程中,收集、记录和整理各种地质资料,判断井下地质情况及其含油气性情况的工作。
12 井身结构;是指套管层次、各层套管的直径和下入深度、各层套管相应的铅头直径和钻进深度,各层套管外的水泥上返高度等等。
13 测井系列;指在给定的地区地质条件下,为了完成预定的地质勘探开发任务或工程任务而选用的一套经济适用的综合测井方法。
14 标准层;在地层剖面上岩性特征突出,分布较稳定且厚度变化不大的岩层,为某一特定时间在一定范围内形成的特殊沉积。
15 储层敏感性:外来流体与油气储层内填隙物发生各种物理或化学作用而使储层孔隙结构和渗透性发生变化的性质,即为储层的敏感性。
16 储层综合评价;在沉积相,成岩作用,储集特征等综合研究的基础上,对储层进行分类并分段,分区块的进行评价,确定不同层段,不同区块储层质量的相对差异,进行相对分类,以指导勘探方向和开发方案的制定。
17 表内储层;在现有技术经济条件下,有开采价值并能获得社会经济效益的地质储量18 渗透率极差;渗透率最大值与最小值之比。
油田开发地质知识点总结1. 地质勘探地质勘探是油田开发的第一步,它的主要目的是找出石油储集层的分布和规模。
地质勘探主要有地球物理勘探、地质勘探和地球化学勘探三种方法。
地球物理勘探是通过测量地球物理场(例如地震波、重力场、磁场等)的方法来找出地下构造,并进而推断储层的位置和规模。
地质勘探是通过野外地质调查和钻探,分析岩石岩性、构造特征、岩石构造形态等,找出潜在的储层。
地球化学勘探是通过分析地下水、天然气和土壤中的烃类物质,确定地下储集层的存在和分布情况。
2. 储层地质储层是指地质构造中能够储存油气的具有一定规模的岩石体系。
了解储层地质对于油田的勘探和开发非常重要。
储层的类型包括孔隙型储层和裂缝型储层。
孔隙型储层是指储层中具有一定的孔隙度,能够有效储存石油和天然气的岩石;裂缝型储层是指在地层中存在裂缝或者节理,这些裂缝或者节理能够有效储存石油和天然气。
储层地质特征包括孔隙度、渗透率、孔隙结构、异质性等。
孔隙度是指单位体积内孔隙的比例,渗透率是指地层岩石对液体和气体渗透的能力,孔隙结构是指孔隙的形状、大小及其分布状态,异质性是指储层岩石的非均质性。
3. 油田开发地质工程油田开发地质工程是指在地质勘探的基础上,对于储层地质进行进一步评价和开发的工程。
油田开发地质工程主要包括测井、射孔、油藏工程和油田开发规划等。
测井是指通过测井仪器,对井筒附近的地层进行测量和记录,了解地层的性质和构造。
射孔是指在井筒中钻孔,用来改善井眼与储集层的通透性,增加油气的产量。
油藏工程是指通过注水、注气和采用化学驱油等方法,提高原油开采的有效性和储量。
油田开发规划是指对于油田地质情况、油藏特性和现有设施等进行综合分析,确定最佳的油田开发方案,包括井网布置、注采工艺、生产规模等。
总的来说,地质知识是油田开发过程中的基础和重要组成部分。
深入了解地质情况,可以有效地指导油田勘探、开采、生产和管理,提高开采效率,降低成本,最大限度地利用地下资源。
油田开发知识点总结一、油田勘探1. 地质勘探技术地质勘探是油田开发的第一步,通过地质勘探可以找到潜在的石油储量。
常用的地质勘探技术包括地震勘探、电磁勘探、重磁测勘探和地层采样等。
通过这些技术手段可以找到地下蕴藏的石油和天然气资源。
2. 油田勘探工作油田勘探工作包括地质调查、地理勘探、测绘、地震勘探、地球物理勘探、岩心取样等。
这些工作在勘探阶段起到至关重要的作用,为后续的开采工作提供了数据支持。
二、油田开采1. 钻井技术钻井是油田开发的重要环节,通过钻井可以将地下的石油资源开采出来。
钻井技术涉及到钻井井位选择、井眼设计、井筒固壁、钻井液、钻井工具和钻井设备等。
钻井技术的进步对于提高石油开采效率具有重要意义。
2. 油藏开发油藏开发是指将地下的石油资源进行采收和生产。
常见的油藏开发技术包括常规油藏开采、水驱油藏开采、气驱油藏开采和聚合物驱油藏开采等。
油藏开发技术的不断创新能够提高油田的开采率和采收率。
3. 油井生产油井生产是指利用油井从地下的油藏中开采出石油。
生产技术包括人工提升、自然提升、水平井生产和压裂技术等。
通过生产技术的不断改进和创新可以提高油井的生产效率和采收率。
三、油田建设1. 油田基础设施建设油田基础设施建设是指在油田进行作业和生产所需要的设施和设备。
这些设施包括生产平台、输油管线、注水设备、注聚设备、压裂设备和采气设备等。
这些设施的建设和维护对于油田的生产和作业起到至关重要的作用。
2. 油田环保技术油田开发过程中会伴随着环境污染和生态破坏等问题,因此油田环保技术显得尤为重要。
常见的油田环保技术包括有害废弃物处理、废水处理、生物修复和环境监测等。
这些技术的应用可以最大限度地减少油田开发对环境的影响。
四、油田管理1. 油田生产管理油田生产管理是指对油田生产作业和生产设施进行规划、组织和控制。
生产管理包括生产计划、生产调度、生产监控、生产安全和生产技术等。
合理有效的生产管理能够提高油田的生产效率和生产效果。
中国⽯油⼤学(华东)油⽥开发地质学考试复习知识总结油⽥开发地质学复习重点总结(⽯⼯学院40学时)第⼀章:油⽓⽥地下流体的基本特征1、名词术语(1)⽯油:是储存于地下深处岩⽯孔隙和裂缝中的、天然⽣成的、以液态烃为主的可燃性有机矿产。
(2)油⽥⽔:油、⽓⽥区域内与油⽓藏有密切联系的地下⽔,⼀般指直接与油层连通的地下⽔。
(3)天然⽓:地质条件下⽣成、运移并聚集在地下岩层中、以烃类为主的⽓体。
(4)⽯油的荧光性:⽯油及其衍⽣物(⽆论其本⾝还是溶于有机溶剂中)在紫外线的照射下,产⽣荧光的特性。
(5)⽯油的旋光性:当偏振光通过⽯油时,使偏光⾯发⽣⼀定⾓度旋转的特性。
2、原油的主要元素和化合物、组分组成(1)主要元素:碳、氢、硫、氮、氧碳、氢占绝对优势,主要以烃类形式存在,是组成⽯油的主体;氧、氮、硫主要以化合物形式存在。
(2)化合物:烃类化合物(碳、氢)、⾮烃类化合物(碳、氢、硫、氮、氧)①烃类化合物(按结构分类):烷烃(正构烷烃、异构烷烃)、环烷烃、芳⾹烃②⾮烃类化合物:含硫化合物(元素硫、硫化氢、⼆硫化物、硫醇、硫醚等)、含氮化合物(吡啶、吡咯、喹啉、钒卟啉、镍卟啉等)、含氧化合物(环烷酸、脂肪酸、酚、醛、酮等)。
(3)组分组成:根据⽯油不同化合物对有机溶剂和吸附剂具有选择性溶解和吸附性能划分。
①油质:⽯油的主要组分,淡⾊粘性液体,由烃类化合物组成;溶解性强、可溶解的有机溶剂很多,不被硅胶吸附(评价⽯油质量的标志);②胶质:胶质—粘性玻璃状半固体或固体,淡黄、褐红到⿊⾊,由芳烃和⾮烃化合物组成。
溶于⽯油醚,能被硅胶吸附;③沥青质:沥青质—脆性固体,暗褐⾊到深⿊⾊,由稠环芳烃和⾼分⼦⾮烃化合物组成。
不溶于⽯油醚,能被硅胶吸附。
注意:(1)异构烷烃中类异戊⼆烯型烷烃可能来⾃叶绿素的侧链,卟啉同系物也存在于动物⾎红素和植物叶绿素中,均可作为⽯油有机成因的标志;(2)油质主要指烷烃、环烷烃和芳⾹烃等烃类物质,胶质和沥青质指含有氮、硫、氧的⾮烃物质及不饱和的芳⾹烃。
一、油气田开发地质学主要的研究内容:1、储层研究:包括油气层的储集类型、岩性、物性、厚度、分布、形态、沉积类型等;2、油层非均质性研究:包括对碎屑岩储层岩性、物性在纵向上、横向上的变化及其造成这种变化的原因;3、构造、断裂系统研究:包括构造的形态、成因,断层的性质、产状、分布特点、成因,发育时代,演化规律,对油气分布的控制作用和破坏作用;4、流体分布及流体性质研究:包括油气水的纵向、平面的分布规律,油气水的性质;5、油气储量研究:包括储量计算方法研究、储量计算参数的确定。
二、开发地质学研究手段:1、利用钻井资料:包括取心资料、化验分析资料;2、利用地球物理勘探资料:包括地球物理测井资料,二维地震、三维地震、井间地震等;3、利用试油、试采、矿场开发资料:包括产量、含水、含水变化率、地层压力、温度、化验分析资料等。
三、开发地质学的研究方法四、油藏描述的目的包括:1、真实、准确、定量化地展示出储层特征;2、最优化地提高采收率;3、提高可靠的油藏动态预测;5、降低风险及效益最大化一、美国常用API度表示石油的相对密度:二、动力粘度,运动粘度,相对粘度。
1动力粘度;面积各位1m^2并相距1m的两平板,以1m/s的速度作相对运动时,之间的流体相互作用所产生的内摩擦力。
原油粘度的单位是:mPa.s2运动粘度是动力粘度与同温度、压力下的流体的密度比值。
单位m^2/s3相对粘度,就是原油的绝对粘度与同温度条件下水的绝对粘度的比值。
三、国际稠油分类标准原油粘度的影响因素:与原油的化学组成、溶解气含量、温度、压力等因素关系密切。
四、气藏气气顶气煤层气五、油田水的赋存状态 1、超毛细管水(自由水2、毛细管水3、束缚水(吸附水 (1)边水 (2)底水 边水油藏 底水油藏 油田水通常划分为4类: 矿化度硫酸钠型,重碳酸钠型,氯化镁型,氯化钙型。
六、干酪根的性质、类型七、生成油气的地质及动力条件一、凡是能够储存和渗滤流体的岩石均称为储集岩。
储存流体主要由岩石的孔隙性决定,而渗滤流体则由岩石的渗透性决定。
储集层有两大特性:孔隙性和渗透性1、孔隙性1、孔隙类型 原生孔隙、次生孔隙;连通孔隙、孤立孔隙。
孔隙的直径的大小(1)超毛细管孔隙 (2)毛细管孔隙 (3)微毛细管孔隙孔隙度 绝对孔隙度、有效孔隙度、流动孔隙度 (岩石的孔隙壁表面常吸附着水膜和油膜,相对缩小了流体的流动空间,提出了流动孔隙度。
流体可以在岩石中流动的孔隙体积与岩石总体积的比值 岩石的流动孔隙度与作用压差有关,压差越大,流动孔隙度越大。
) 2、渗透性 储层的渗透性是指在一定压差下,储集岩本身允许流体通过的性能 渗透率又分为绝对渗透率、有效渗透率和相对渗透率。
(绝对渗透率只是岩石本身的一种属性,与流体性质无关;有效渗透率和相对渗透率,不仅与岩石性质有关而且与流体的性质和饱和度有关。
) 砂岩储层级别表二、碎屑岩的岩石类型:砾岩、含砾砂岩、粗砂岩、中砂岩、细砂岩粉砂岩都可以成为储层。
按成因类型划分为原生孔隙和次生孔隙 原生孔隙是指与岩石形成同时生成的孔隙。
凡是在沉积和成岩过程中形成的孔隙都叫原生孔隙。
包括原生粒间孔,粒内孔,填隙物和胶结物孔隙,成岩裂缝等 次生孔隙是岩石形成之后,在物理、化学生物等作用下,使岩石溶解、收缩和破裂而产生级别 孔隙度(%)渗透率(×10-3μm )特高 >30 >2000 高 25~30 500~2000 中 15~25 100~500 低 10~15 10~100 特低 <10<102的孔隙。
次生孔隙主要以溶蚀孔隙为主,构造应力作用下形成的岩石裂缝也是重要的次生储集空间孔喉类型碎屑的岩性:砂岩、砾岩碎屑岩的岩石类型:砾岩、含砾砂岩、粗砂岩、中砂岩、细砂岩粉砂岩都可以成为储层。
平面上多呈席状,带状、透镜状、树枝状。
剖面上常呈层状,透镜状、尖灭状。
1、上平下凸状2、下平上凸状3、楔状4、透镜状5、厚层连续状6、薄层连续状二、1、冲积扇其砂砾岩体是在山麓洪积环境中形成的以砂砾岩为主的沉积岩体。
平面上呈近扇体的轮廓,剖面上呈楔状,似层状,透镜状或不规则状。
冲积扇砂砾岩体多属陆上近源沉积,常沿山麓成裙带状分布,岩性以砾岩。
含砾砂岩,砂岩为主,粒度粗,成熟度低,圆度不好,分选差,储油物性变化大为主要特征。
在一个冲积扇上,常有多个砂砾岩体,岩体之间多被泥质岩层隔开。
2、河流其砂岩体是在河流环境中形成的,以含砾砂岩、粗砂岩、中砂岩、细砂岩为主的沉积岩体。
如由心滩,边滩及河道充填组成的河道砂岩体,由天然提,决口扇组成的河道边缘砂岩体以及泛滥平原砂岩体,废弃河道砂岩体。
河道砂岩体是河流砂岩体的主要部位,其形态极不规则,在平面上常呈弯曲的带状,树枝状。
河道砂岩体沿古河道蜿蜒曲折分布,延伸可达几十乃至几百公里,由于河流的侧向迁移,其横向分布也可达几十公里。
剖面上常呈顶平底凸的透镜体,底部常见冲刷,切割,充填等构造现象,具有独特的纵向层序,由下而上粒度由粗变细,呈明显的正韵律,在注水开发时,水常沿底部高渗透带推进。
砂岩体厚度变化较大,单一旋回河流砂岩体的厚度一般不超过最大洪水期的河流深度,其厚度常为几米或几十米,大厚度的砂岩体常是由多个单一旋回岩体垂向叠合而成。
该类砂岩体非均质性较强,孔隙度,渗透率变化较大,孔隙度一般为10%~25%,渗透率为(10-2000)×10-3μm2。
河道砂岩体中的边滩和心滩砂体,粒度适中,分布相对较好,孔隙度,渗透率较高,是河流砂岩体中储集物性最好的储层。
顺直河:河长大于河宽很多倍,弯度小,砂体呈条带状分布,沉积作用多表现为冲刷作用和废弃充填作用。
曲流河:河道呈弯曲状,弯度超过 1.5,单河道,一般分布在中下游平原地区,凹岸冲刷,凸岸堆积,侧积作用为主,曲流砂坝是主要的储集体。
辫状河:河道宽而浅,呈辫状特点,砂坝众多,沉积作用以冲刷充填作用为主,沿河道纵向分布的砂坝是比较好的储集体网状河:河道窄而深,弯曲多,呈网结状,多分布在中下游,河道稳定,具有比较小的宽厚比,垂向上多表现为冲刷叠置关系。
3、风成砂其岩体是在大陆表面,由风形成的沉积砂岩体。
岩性以细砂岩体为主,颗粒多呈圆状或半圆状,分选好,胶结物少,储集性质极佳,是很好的储集层。
4、湖泊砂岩体5、三角洲、滩坝、扇三角洲、水下扇、浊积砂体浊积砂体:浊积砂体是在深海或深湖环境下,由浊流所形成的砂岩体。
岩性以递变层理砂岩和具滑塌标志的砂岩为主,此外还有砾岩和粉砂岩。
平面上多为席状,扇状和透镜状三角洲砂岩体是在三角洲环境下形成的以砂岩为主的沉积岩体。
三角洲的类型:1、按河流、波浪、潮汐的相对作用强度,划分为:河控三角洲,浪控三角洲,潮控三角洲。
2、按沉积背景、沉积作用过程划分:正常河流三角洲,辫状三角洲,扇三角洲。
三、影响储集层储集性能的地质因素:1沉积环境沉积环境控制着储集层的岩石类型、粒度、分选、磨圆、韵律及分布范围等,是影响储集性质的重要因素,不同的沉积微相一般储集物性差异明显。
2成岩作用过程中的压实、胶结使储集层储集性能变差,而溶蚀作用使储集层储集性能得到改善。
3风化作用可能使储层物性变好,也可能使储层物性变差。
一般情况下,对于致密砂岩储层,风化后物性变化好,较松散储层分化后,物性变差。
4构造作用无论是张应力、压应力、剪应力作用的结果,都会导致岩石破裂,成为流体的储集空间和流体运移的通道,使储集层储集性能变好。
5岩石的性质颗粒的成分对储集性能有一定的影响,抗风化矿物组成的岩石物性好于抗风化能力弱的矿物组成的岩石,对流体吸附弱的矿物组成的岩石储油物性好。
随着杂基和胶结物含量的增加,储层物性变差,反之物性变好。
分选性和磨圆度一般与储集物性正相关。
在一定范围内随着粒度的增大,储集物性变好,但当粒度增大到一定程度后,随着粒度的增大,储集性能变差。
6孔隙结构一般喉道粗、孔隙大、连通好的储层,渗透率和孔隙度都比较高,储集性能好,反之储集性能差。
一、碳酸盐岩储集层是主要由方解石和白云石等碳酸盐矿物组成的沉积岩。
石灰岩和白云岩石灰岩的主要类型1、内碎屑灰岩2、生物碎屑灰岩3、鲕粒灰岩4、团粒灰岩5、藻灰岩6、泥晶灰岩7、泥灰岩二、碳酸盐岩孔隙类型按成因划分:1、原生孔隙2、溶蚀孔隙3、裂缝2 、溶蚀孔隙1)粒间溶孔。
指碳酸盐岩颗粒之间胶结物或基质被溶蚀后而形成的孔隙。
(2)粒内溶孔和铸模孔。
粒内溶孔是指各种碳酸盐岩颗粒内部,由于选择性溶解,颗粒被局部溶蚀而形成的孔隙。
当溶蚀作用扩展到整个颗粒,形成与原颗粒形状、大小完全一样的孔隙时,亦可称为铸模孔隙。
(3)晶间溶孔。
指晶体间的物质被溶蚀所形成的孔隙。
(4))晶内溶孔。
晶粒内部被溶蚀而形成的孔隙,若整个晶体被溶蚀,形成与原晶体粒形状、大小相同的孔隙时,可称为晶体铸模孔隙。
(5)溶孔、溶洞。
指不受岩石组构控制,由溶蚀作用形成的孔隙。
常呈不规则状,直径大于10cm称为溶洞。
溶孔、溶洞发育的储集层,在钻井过程中,常可见井喷、井漏和钻具放空等现象。
(6)窗格孔隙。
由选择性溶蚀作用而成。
孔隙多成扁平状平行于岩石的层面,在裂缝发育的层系中窗格孔隙亦可形成良好的储层。
裂缝1构造裂缝。
指在构造应力作用下,岩石发生破裂而形成的裂缝,一般延伸远,成组出现。
2、成岩裂缝。
指成岩过程中压实、失水收缩或重结晶等作用下形成的一些裂缝,裂缝多平行层面。
3、溶蚀裂缝。
由于水的溶蚀作用缩形成或改造的裂缝。
此类裂缝大小不均,形态各异。
4、压溶裂缝。
在压实作用下,富含CO2地下水沿成分不纯的灰岩或裂缝流动,经选择性溶蚀而形成的裂缝盖层1、定义?2、岩性?3、特征机理第四章油气运移及油气藏的形成油气初次运移?油气从烃源岩层向储集层的运移。
油气二次运移?油气进入储集层以后的一切运移。
动力一、圈闭是指储集层中能够阻止油气运移,并使油气聚集的场所。
有盖层、储集层、遮挡物三部分组成圈闭的大小?圈闭的度量1、闭合高度2、面积3、溢出点圈闭的类型1、构造圈闭2、地层圈闭3、岩性圈闭4、水动力圈闭5、复合圈闭有效的圈闭在同一个含油气盆地内,有些圈闭有油气分布,有些圈闭无油气分布,有些储量丰度高,有些储量丰度低,主要原因:圈闭的有效性所决定圈闭的有效性:1、圈闭的大小(圈闭的大小是指圈闭的有效容积,主要取决于闭合面积,储集层有效厚度和有效孔隙度);2、圈闭的形成时间;3、圈闭的位置。
有效的圈闭条件是:1、圈闭面积大;2、形成的时间早于或等于油气运移的时间;3、圈闭的位置距生油岩距离近。
必要的保存条件1、地壳运动2、水动力条件3、岩浆活动次生油藏的概念?第五章油气聚集类型及分布规律油气藏的概念形成油气藏最基本的条件是充足的油源,有利的生储盖组合,有效的圈闭,以及必要的保存条件。
构造油气藏地层油气藏岩性油气藏水动力油气藏复合油气藏在构造圈闭中聚集了油气藏,即构造油气藏1、背斜油气藏2、断层油气藏3、裂缝性油气藏4、刺穿接触油气藏背斜油气藏的概念,成因类型?及特点。