2020成安一中高二数学(文)12月份月考试卷【含答案】
- 格式:pdf
- 大小:303.29 KB
- 文档页数:8
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合要求的.AB .1 CD .2 2.已知等比数列{}n a 中,0n a >,且569a a =,则3132310log log log a a a ++⋅⋅⋅+=A .12B .10C .8D .32log 5+3.双曲线221x my +=的虚轴长是实轴长的2倍,则双曲线的渐近线方程为A .2y x =±B .12y x =± C.y = D.2y x =±4.已知数列{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,则{}n a 的前10项和为A .110-B .90-C .90D .1105.当0a >时,设命题p :函数()a f x x x=+在区间()1,2上单调递增,命题q :不等式210x ax ++>对任意x R ∈都成立.若“p ∧q ”是真命题,则实数a 的取值范围为A .(]0,1B .()1,2C .()0,2D .[)2,+∞6.若0,0a b >>,且4a b +=,则下列不等式恒成立的是A .112ab >B .111a b +≤ C2≥ D .22118a b ≤+ 7.设椭圆22221(0)x y a b a b +=>>的离心率为12,右焦点(,0)F c ,方程20ax bx c +-=的两个根分别为12,x x ,则点P (12,x x )在A .222x y +=上B .222x y +=内C .222x y +=外 D .以上三种情况都有可能 8.设D 是不等式210,23,04,1.x y x y x y +≤⎧⎪⎪+≥⎪⎨≤≤⎪⎪≥⎪⎩表示的平面区域,则D 中的点P (),x y 到直线10x y +=距离的最大值高二月考文科数学试题(B 卷)是A. B. C. D.9.已知点12,F F 是椭圆2222x y +=的两个焦点,点P 是该椭圆上一个动点,那么12PF PF +的最小值为A .0B .1C .2 D.10.在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,则“2cos a b C =”是“ABC ∆是等腰三角形”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 11.已知双曲线的顶点与焦点分别是椭圆22221(0)x y a b a b+=>>的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为A .13B .12C.3 D.2 12.已知实数,x y 满足60,0,3.x y x y x -+≥⎧⎪⎪+≥⎨⎪≤⎪⎩,若z a x y =+的最大值为39a +,最小值为33a -,则实数a的取值范围为A .[]1,1-B .[]1,2-C .[]2,3D .[]1,3-二.填空题:本大题共4小题,每小题5分. 13.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是12,F F ,过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为C 的方程为 .14.已知正项等比数列{}n a 中,23a =,则其前3项的和3S 的取值范围是 .15.在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,若22425a b a b +=+-,且222a b c bc =+-,则sin B 的值为 .16.已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知命题p :20,100.x x +≥⎧⎪⎨-≤⎪⎩命题q :11,0m x m m -≤≤+>.若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.18.(本小题满分12分)设正项等比数列{}n a 的前n 项和为n S ,且324,3a S ==.(1)求数列{}n a 的通项公式;(2)令*(21)()n n b n a n N =-∈,求数列{}n b 的前n 项和为n T .19.(本小题满分12分)已知a R ∈,解关于x 的不等式222ax x ax -≥-.20.(本小题满分12分) 设椭圆C :22221(0)x y a b a b +=>>过点(0,4),离心率为35. (1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截得线段的中点坐标. 21.(本小题满分12分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,已知cos C +(cos A-)cos A B =0.(1)求角B 的大小;(2)若1a c +=,求b 的取值范围.22.(本小题满分12分)设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线(0)y kx k =>与AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若6ED DF =,求k 的值;(2)求四边形AEBF 面积的最大值.高二数学12月考文科答案一.选择题:1.C ;2.B ;3.A ;4.D ;5.A ;6.D ; 7.B ;8.C ;9.C ;10.A ;11.D ;12.A二.填空题:13.2212x y +=;14.[)5,+∞;15;16.3-+三.解答题:17.[)9,+∞18.(1)12n n a -=;(2)(23)23n N T n =-+19.略.20.(1)2212516x y +=;(2)36,25⎛⎫- ⎪⎝⎭21.(1)B=3π;(2)1,12⎡⎫⎪⎢⎣⎭22.(1)23k =或38k =;(2)。
成安一中高二12月份月考数学试卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于A.3B.C. D.2、在△ABC中,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则S△ABC等于()A B 2 C 3 D 43、在△ABC中,内角A,B,C所对的边分别是a,b,c.若3a=2b,则的值为()(A)-(B)(C)1 (D)4、等差数列满足:,则=()A.— 2 B.0 C.1 D.25、在等比数列{a n}中,S4=1,S8=3,则a17+a18+a19+a20的值是()A.14 B.16 C.18 D.206、设变量、满足约束条件,则目标函数的最小值为()A.B. C. D.7、下列四个命题中,真命题是()A. B.C. D.a>b,c<da-c>b-d8、命题的否定A. B. C. D.9、已知p:2x-3<1,q:x(x-3)<0,则p是q的()A.充分而不必要条件B.必要而不充分条C.充分必要条件D.既不充分也不必要条件10、两数1、9的等差中项是,等比中项是,则曲线的离心率为()A.B.C.D.与11、设F1、F2分别是椭圆的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为()A.2 B.3 C.4 D.512、已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A.x=1 B.x=2 C.x=-1 D.x=-2二、填空题(本大题共4小题,每小题5分,共20分.)13、在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=ac,则角B的值为.14、已知数列的前项和,则其通项= ;15、命题“ax2-2ax+3>0恒成立”是假命题,则实数a的取值范围是______________.16、对于曲线C:=1,给出下面四个命题:①曲线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k<. 其中所有正确命题的序号为________.三、计算题(解答应写出文字说明、证明过程或演算步骤)。
成安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个2. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 3. 某三棱锥的三视图如图所示,该三棱锥的表面积是A 、28+B 、30+C 、56+D 、 60+4. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .() B .(,]C .() D .(]5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12-7. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .48. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D .9. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .410.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.11.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形12.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .203二、填空题13.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________. 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 14.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .15.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .16.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .17.命题p :∀x ∈R ,函数的否定为 .18.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).三、解答题19.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.20.已知a>b>0,求证:.21.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.22.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.23.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
一、选择题:本大题共12小题,每小题5分,共60分。
1、已知集合A={x|x2-4x-5>0},集合B={x|4-x2>0},则A∩B=( ) A. C.{x|-5<x<1} D.{x|-5<xb,则ac2>bc2 B.若>,则a>b C.若a3>b3且ab D.若a2>b2且ab>0,则0; (2)若不等式f(x)>b的解集为(-1,3),求实数a、b的值. 在ABC中,如果lg a-lg c=lg sin B=lg,且B为锐角,试判断此三角形的形状. 21(12分)、(本小题12分)、设数列{an}满足a1+3a2+32a3+…+3an=(nN*). (1)求数列{an}的通项; (2)设bn=,求数列{bn}的前n项和Sn. ,0),(,0),点C在x轴上方. (1)若点C坐标为(,1),求以A,B为焦点且经过点C的椭圆的方程. (2)过点P(m,0)作倾斜角为的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.文科答案: 19、解 lg sin B=lg,sin B=, B为锐角,B=45°. 又lg a-lg c=lg,=. 由正弦定理,得=, sin C=2sin A=2sin(135°-C), 即sin C=sin C+cos C,cos C=0,C=90°, 故ABC为等腰直角三角形.A. 解得m≥9. ∴满足条件的m的取值范围为m≥9. 22、解:(1)设椭圆方程为(a>b>0),c=, 2a=|AC|+|BC|=4, ∴a=2,得b=, 椭圆方程为 (2)直线l的方程为y=-(x-m), 令M(x1,y1),N(x2,y2), 联立方程解得3x2-4mx+2m2-4=0, 所以 若Q恰在以MN为直径的圆上, 则 即m2+1-(m+1)(x1+x2)+2x1x2=0,3m2-4m-5=0, 解得m=。
一、 选择题DDACA DCCDD BB二、填空题 13 14 15 16三、解答(ji ěd á)题17. 解:〔Ⅰ〕由,解得,所以 又,因为,解得,所以. 当时,,又为真,都为真,所以.……5分 〔Ⅱ〕由是的充分不必要条件,即,,其逆否命题为,由〔Ⅰ〕:25p x <<,:3q m x m <<, 所以,即 . ……10分18. 解:〔1〕因为, , 成等差数列, 所以, 所以,所以(suǒyǐ),因为数列是等比数列,所以,又,所以,所以数列{}n a的通项公式.………………6分〔2〕由〔1〕知,,,所以.故.…………………………………12分19. 〔1〕证明:连接是长方体,平面又平面ABCD,在长方形ABCD中,,又平面(píngmiàn)而平面BB D D,………………………………6分11〔2〕如图,以为坐标原点,以所在的直线为轴建立空间直角坐标系,那么,设平面的法向量为,那么令那么所以与平面AD E所成角的正弦值为………………………………12分120.解:〔Ⅰ〕∵圆G:经过(jīngguò)点.,∴,.∴.故椭圆的方程为.…………4分〔Ⅱ〕设直线的方程为.由消去得.设,,那么,,………6分∴.∵,……………………………8分∴=……………………10分∵点F在圆G的内部,∴,即,解得由△=,解得.又,∴.…………………………………12分21. 证明(zhèngmíng):〔Ⅰ〕取中点为,中点为,连接侧面为正三角形,平面平面ABCD且平面平面,平面ABCD,平面ABCD,,又,平面PAD,平面PAD,,,那么,又是中点,那么,,平面,AE 平面,平面平面PCD.………6分x y z轴建立空间直角坐〔Ⅱ〕如图,以O为坐标原点,以所在的直线为,,标系,那么令,那么.由〔Ⅰ〕知为平面的法向量,令为平面(píngmiàn)的法向量,由于,故即解得故,由,解得.…………10分故四棱锥的体积.…………………12分22.解:〔Ⅰ〕依题意可得,.设椭圆的方程为,因为椭圆M的离心率为,所以,即.所以椭圆M的方程为.……………………………………2分证法1:设点、〔,,〕,直线的斜率为〔〕,那么直线AP的方程为,联立方程组整理(zh ěngl ǐ),得,………………4分 解得或者.所以. 同理可得,…所以. ………………………………6分 证法2:设点11(,)P x y 、22(,)T x y 〔0i x >,0i y >,1,2i =〕, 那么,.因为, 所以,即. 因为点和点分别在双曲线和椭圆上,所以,. 即,.所以, 即.所以211x x =. …………………………………6分 〔Ⅱ〕解:设点11(,)P x y 、22(,)T x y 〔0i x >,0i y >,1,2i =〕,那么,.因为(y īn w èi),所以,即.因为点P 在双曲线上,那么221112y x -=, 所以,即.因为点P 是双曲线在第一象限内的一点 所以. …………………………………………………8分因为,,所以.由〔Ⅰ〕知, 211x x =.设,那么,.因为在区间上单调递增,.所以即当时, ………………………………………12分内容总结(1)选择题DDACA DCCDD BB二、填空题13 14 15 16三、解答题17. 解:〔Ⅰ〕由,解得,所以又,因为,解得,所以.当时,,又为真,都为真,所以.(2)6分∴.∵,(3)4分解得或者.所以.同理可得,(4)12分。
2019-2020年高二上学期12月月考数学试卷(承智班)含解析一、选择题1.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.若实数x、y满足,则Z=的取值范围为()A.(﹣∞,﹣4]∪[,+∞)B.(﹣∞,﹣2]∪[,+∞)C.[﹣2,]D.[﹣4,]3.若实数x,y满足条件,则z=2x+y的最大值是()A.10 B.8 C.6 D.44.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最少的那份有()个面包.A.4 B.3 C.2 D.15.已知O,N,P在△ABC所在平面内,且|=,且,则点O,N,P依次是△ABC的()A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心6.已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A.B.﹣C.D.﹣7.若方程x3﹣3x+m=0在[0,2]上只有一个解,则实数m的取值范围是()A.[﹣2,2]B.(0,2]C.[﹣2,0)∪{2} D.(﹣∞,﹣2)∪(2,+∞)8.设S n是等比数列{a n}的前n项和,S4=5S2,则此数列的公比q=()A.﹣2或﹣1 B.1或2 C.±1或2 D.±2或﹣19.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(3﹣x),且f(x)在[m,+∞)单调递增,则实数m的最小值为()A.﹣2 B.﹣1 C.2 D.110.已知函数是定义域上的单调增函数,则a的取值范围是()A.[3﹣,2)B.C.D.11.函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是()A.1,﹣1 B.1,﹣17 C.3,﹣17 D.9,﹣1912.公差不为0的等差数列{a n}的部分项a k1,a k2,a k3…,…构成等比数列{a kn},且k1=1,k2=2,k3=6,则k4为()A.20 B.22 C.24 D.28二、填空题13.关于下列命题①函数y=tanx在第一象限是增函数;②函数y=cos2(﹣x)是偶函数;③函数y=4sin(2x﹣)的一个对称中心是(,0);④函数y=sin(x+)在闭区间[﹣,]上是增函数;写出所有正确的命题的题号:.14.已知方程+=﹣1表示椭圆,求k的取值范围..15.已知函数f(x)=,则f(f(8))=.16.计算:(﹣lg4)÷的值为.三、解答题17.已知点H(﹣6,0),点P(0,b)在y轴上,点Q(a,0)在x轴的正半轴上,且满足⊥,点M在直线PQ上,且满足﹣2=,(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;(Ⅱ)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,线段AB的垂直平分线与x轴的交点为E(x0,0),设线段AB的中点为D,且2|DE|=|AB|,求x0的值.18.(1)焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.(2)已知双曲线的一条渐近线方程是x+2y=0,并经过点(2,2),求此双曲线的标准方程.19.滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.(1)求AC的长度;(2)记游客通道AD与CD的长度和为L,求L的最大值.20.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程6x﹣y+7=0.(1)求函数y=f(x)的解析式;(2)求函数g(x)=x2﹣9x+a+2与y=f(x)的图象有三个交点,求a的取值范围.2016-2017学年河北省保定市定州中学高二(上)12月月考数学试卷(承智班)参考答案与试题解析一、选择题1.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【考点】补集及其运算.【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.2.若实数x、y满足,则Z=的取值范围为()A.(﹣∞,﹣4]∪[,+∞)B.(﹣∞,﹣2]∪[,+∞)C.[﹣2,]D.[﹣4,]【考点】简单线性规划.【分析】由约束条件作出可行域,然后利用Z=的几何意义求解z的范围.【解答】解:作出不等式组对应的平面区域OBC.因为,所以z的几何意义是区域内任意一点(x,y)与点P(1,﹣2)两点直线的斜率.所以由图象可知当直线经过点P,C时,斜率为正值中的最小值,经过点P,O时,直线斜率为负值中的最大值.由题意知C(4,0),所以k OP=﹣2,,所以的取值范围为或z≤﹣2,即(﹣∞,﹣2]∪[,+∞).故选B.3.若实数x,y满足条件,则z=2x+y的最大值是()A.10 B.8 C.6 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解即可求最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(2,2),代入目标函数z=2x+y得z=2×2+2=6.即目标函数z=2x+y的最大值为6,故选:C.4.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最少的那份有()个面包.A.4 B.3 C.2 D.1【考点】等差数列的通项公式.【分析】设五个人所分得的面包为a﹣2d,a﹣d,a,a+d,a+2d,(其中d>0),则由条件求得a 和d的值,可得最少的一份为a﹣2d的值.【解答】解:设五个人所分得的面包为a﹣2d,a﹣d,a,a+d,a+2d,(其中d >0),则有(a﹣2d)+(a﹣d)+a+(a+d)+(a+2d)=5a=120,∴a=24.由a+a+d+a+2d=7(a﹣2d+a﹣d),得3a+3d=7(2a﹣3d);∴24d=11a,∴d=11.∴最少的一份为a﹣2d=24﹣22=2,故选:C.5.已知O,N,P在△ABC所在平面内,且|=,且,则点O,N,P依次是△ABC的()A.重心外心垂心 B.重心外心内心C.外心重心垂心 D.外心重心内心【考点】向量在几何中的应用.【分析】据O到三角形三个顶点的距离相等,得到O是三角形的外心,根据所给的四个选项,第一个判断为外心的只有③④两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P是三角形的垂心.【解答】解:∵||=||=||,∴O到三角形三个顶点的距离相等,∴O是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C,D两个选项,∴只要判断第三个条件可以得到三角形的内心或垂心就可以,∵,∴()=0,=0,∴,同理得到另外两个向量都与边垂直,得到P是三角形的垂心,故选C.6.已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A.B.﹣C.D.﹣【考点】平面向量数量积的运算.【分析】根据条件进行向量数量积的运算便可得出,从而得出向量夹角的余弦值.【解答】解:根据条件,=;∴.故选:C.7.若方程x3﹣3x+m=0在[0,2]上只有一个解,则实数m的取值范围是()A.[﹣2,2]B.(0,2]C.[﹣2,0)∪{2} D.(﹣∞,﹣2)∪(2,+∞)【考点】二分法求方程的近似解.【分析】令f(x)=x3﹣3x+m,则由题意可得函数f(x)在[0,2]只有一个零点,故有f(0)•f(2)≤0,并验证其结论,问题得以解决.【解答】解:设f(x)=x3﹣3x+m,f′(x)=3x2﹣3=0,可得x=1或x=﹣1是函数的极值点,故函数的减区间为[0,1],增区间为(1,2],根据f(x)在区间[0,2]上只有一个解,f(0)=m,f(1)=m﹣2,f(2)=2﹣m,当f(1)=m﹣2=0时满足条件,即m=2,满足条件,当f(0)f(2)≤0时,解得﹣2≤m≤0时,当m=0时,方程x3﹣3x=0.解得x=0,x=1,不满足条件,故要求的m的取值范围为[﹣2,0)∪{2}.故选:C.8.设S n是等比数列{a n}的前n项和,S4=5S2,则此数列的公比q=()A.﹣2或﹣1 B.1或2 C.±1或2 D.±2或﹣1【考点】等比数列的前n项和.【分析】对q分类讨论,利用等比数列的求和公式即可得出.【解答】解:q=1时不满足条件,舍去.q≠1时,∵S4=5S2,则=,∴1﹣q4=5(1﹣q2),∴(q2﹣1)(q2﹣4)=0,q≠1,解得q=﹣1,或±2.故选:D.9.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(3﹣x),且f(x)在[m,+∞)单调递增,则实数m的最小值为()A.﹣2 B.﹣1 C.2 D.1【考点】函数单调性的判断与证明.【分析】由f(x)的解析式便知f(x)关于x=a对称,而由f(1+x)=f(3﹣x)知f(x)关于x=2对称,从而得出a=2,这样便可得出f(x)的单调递增区间为[2,+∞),而f(x)在[m,+∞)上单调递增,从而便得出m的最小值为2.【解答】解:∵f(x)=2|x﹣a|;∴f(x)关于x=a对称;又f(1+x)=f(3﹣x);∴f(x)关于x=2对称;∴a=2;∴;∴f(x)的单调递增区间为[2,+∞);又f(x)在[m,+∞)上单调递增;∴实数m的最小值为2.故选:C.10.已知函数是定义域上的单调增函数,则a的取值范围是()A.[3﹣,2)B.C.D.【考点】分段函数的应用.【分析】利用分段函数以及指数函数与对数函数的性质,列出不等式组求解即可.【解答】解:函数是定义域上的单调增函数,可得,解得:a∈[3﹣,2).故选:A.11.函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是()A.1,﹣1 B.1,﹣17 C.3,﹣17 D.9,﹣19【考点】函数的最值及其几何意义.【分析】求导,用导研究函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的单调性,利用单调性求函数的最值.【解答】解:f′(x)=3x2﹣3=0,x=±1,故函数f(x)=x3﹣3x+1[﹣3,﹣1]上是增函数,在[﹣1,0]上是减函数又f(﹣3)=﹣17,f(0)=1,f(1)=﹣1,f(﹣1)=3.故最大值、最小值分别为3,﹣17;故选C.12.公差不为0的等差数列{a n}的部分项a k1,a k2,a k3…,…构成等比数列{a kn},且k1=1,k2=2,k3=6,则k4为()A.20 B.22 C.24 D.28【考点】等差数列的通项公式.【分析】设等差数列{a n}的公差为d,由a1,a2,a6成等比数列可求得等比数列a k1,a k2,a k3…的公比q=4,从而可求得a k4,继而可求得k4.【解答】解:设等差数列{a n}的公差为d,∵a1,a2,a6成等比数列,∴a22=a1•a6,即(a1+d)2=a1•(a1+5d),∴d=3a1.∴a2=4a1,∴等比数列a k1,a k2,a k3…的公比q=4,∴a k4=a1•q3=a1•43=64a1.又a k4=a1+(k4﹣1)•d=a1+(k4﹣1)•(3a1),∴a1+(k4﹣1)•(3a1)=64a1,a1≠0,∴3k4﹣2=64,∴k4=22.故选:B.二、填空题13.关于下列命题①函数y=tanx在第一象限是增函数;②函数y=cos2(﹣x)是偶函数;③函数y=4sin(2x﹣)的一个对称中心是(,0);④函数y=sin(x+)在闭区间[﹣,]上是增函数;写出所有正确的命题的题号:①③.【考点】正弦函数的图象.【分析】①由正切函数的图象可知命题正确;②化简可得f(x)=sin2x,由f(﹣x)=sin(﹣2x)=﹣sin2x=﹣f(x),可知命题不正确;③代入有0=4sin(2×﹣),可得命题正确;④由2k≤x+≤2k可解得函数y=sin(x+)的单调递增区间为[2k,2k]k∈Z,比较即可得命题不正确.【解答】解:①由正切函数的图象可知函数y=tanx在第一象限是增函数,命题正确;②f(x)=cos2(﹣x)=cos(﹣2x)=sin2x,f(﹣x)=sin(﹣2x)=﹣sin2x=﹣f(x),故命题不正确;③∵0=4sin(2×﹣),∴命题正确;④由2k≤x+≤2k可解得函数y=sin(x+)的单调递增区间为[2k,2k]k∈Z,故命题不正确.综上,所有正确的命题的题号:①③,故答案为:①③14.已知方程+=﹣1表示椭圆,求k的取值范围.(﹣∞,﹣3).【考点】椭圆的标准方程.【分析】化曲线方程为椭圆的标准方程,由分母大于0且不相等求得k的取值范围.【解答】解:由+=﹣1,得,∵方程+=﹣1表示椭圆,∴,解得k<﹣3.∴k的取值范围是(﹣∞,﹣3).故答案为:(﹣∞,﹣3).15.已知函数f(x)=,则f(f(8))=﹣4.【考点】函数的值.【分析】先求f(8),再代入求f(f(8)).【解答】解:f(8)=﹣log28=﹣3,f(f(8))=f(﹣3)=4﹣23=﹣4,故答案为:﹣4.16.计算:(﹣lg4)÷的值为﹣20.【考点】对数的运算性质.【分析】利用对数、指数的性质、运算法则直接求解.【解答】解::(﹣lg4)÷=lg()÷=lg=﹣2×10=﹣20.故答案为:﹣20.三、解答题17.已知点H(﹣6,0),点P(0,b)在y轴上,点Q(a,0)在x轴的正半轴上,且满足⊥,点M在直线PQ上,且满足﹣2=,(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;(Ⅱ)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,线段AB的垂直平分线与x轴的交点为E(x0,0),设线段AB的中点为D,且2|DE|=|AB|,求x0的值.【考点】抛物线的简单性质.【分析】(Ⅰ)设点M的坐标为(x,y),求得、、、的坐标,运用向量垂直的条件:数量积为0,向量共线的坐标表示,运用代入法,即可得到所求轨迹方程;(Ⅱ)由题意知直线l:y=k(x+1),设A(x1,y1),B(x2,y2),联立抛物线的方程,运用韦达定理和中点坐标公式,以及弦长公式,化简整理,解方程即可得到所求值.【解答】解:(Ⅰ)设点M的坐标为(x,y),则,,,,由⊥,得6a﹣b2=0.由﹣2=0,得,则由6a﹣b2=0得y2=x,故点M的轨迹C的方程为y2=x(x>0);(Ⅱ)由题意知直线l:y=k(x+1),设A(x1,y1),B(x2,y2),联立得k2x2+(2k2﹣1)x+k2=0(k≠0),由△=(2k2﹣1)2﹣4k4=1﹣4k2>0,解得﹣<k<,∴,∴,∴,,令y=0,解得,∴,∴,∴,∵,故有,则,化简得,此时.18.(1)焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.(2)已知双曲线的一条渐近线方程是x+2y=0,并经过点(2,2),求此双曲线的标准方程.【考点】双曲线的简单性质;椭圆的标准方程.【分析】(1)直接根据条件得到b=2,a=4,即可求出结论;(2)直接根据渐近线方程设出双曲线方程,再结合经过点(2,)即可求出结论.【解答】解:(1)由题可知b=2,a=4,椭圆的标准方程为:(2)设双曲线方程为:x2﹣4y2=λ,∵双曲线经过点(2,2),∴λ=22﹣4×22=﹣12,故双曲线方程为:.19.滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.(1)求AC的长度;(2)记游客通道AD与CD的长度和为L,求L的最大值.【考点】解三角形的实际应用.【分析】(1)利用正弦定理,求AC的长度.(2)求出AD,CD,可得出L关于θ的关系式,化简后求L的最大值.【解答】解:(1)由已知由正弦定理,得,又∠ACB=60°,∠ABC=45°,AB=12cm,所以AC==24m.(2)因为∠ADC=120°∠CAD=θ,∠ACD=60°﹣θ,在△ADC中,由正弦定理得到,所以L=CD+AD=16 [sin(60°﹣θ)+sinθ]=16 [sin60°cosθ﹣cos60°sinθ+sinθ]=16sin(60°+θ),因0°<θ<60°,当θ=30°时,L取到最大值16m.20.已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(﹣1,f(﹣1))处的切线方程6x﹣y+7=0.(1)求函数y=f(x)的解析式;(2)求函数g(x)=x2﹣9x+a+2与y=f(x)的图象有三个交点,求a的取值范围.【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.【分析】(1)由图象过点P(0,2)求出d的值,再代入求出导数,再由切线方程求出f(﹣1)、f′(﹣1),分别代入求出b和c的值;(2)将条件转化为=a有三个根,再转化为的图象与y=a图象有三个交点,再求出h(x)的导数、临界点、单调区间和极值,再求出a的范围即可.【解答】解:(1)由f(x)的图象经过点P(0,2),得d=2.∴f′(x)=3x2+2bx+c,由在M(﹣1,f(﹣1))处的切线方程是6x﹣y+7=0,∴﹣6﹣f(﹣1)+7=0,得f(﹣1)=1,且f′(﹣1)=6.∴,即,解得b=c=﹣3.故所求的解析式是f(x)=x3﹣3x2﹣3x+2.(2)∵函数g(x)与f(x)的图象有三个交点,∴方程x3﹣3x2﹣3x+2=x2﹣9x+a+2有三个根,即=a有三个根,令,则h(x)的图象与y=a图象有三个交点.接下来求h(x)的极大值与极小值,∴h′(x)=3x2﹣9x+6,令h′(x)=0,解得x=1或2,当x<1或x>2时,h′(x)>0;当1<x<2时,h′(x)<0,∴h(x)的增区间是(﹣∞,1),(2,+∞);减区间是(1,2),∴h(x)的极大值为h(1)=,h(x)的极小值为h(2)=2因此2<a<.2017年1月20日。
数学(文)试题一、选择题:本大题共12小题,每小题5分,共60分。
1、已知集合A={x|x 2-4x-5>0},集合B={x|4-x 2>0},则A ∩B= ( )A .{x|-2<x<1}B .{x|-2<x<-1}C .{x|-5<x<1}D .{x|-5<x<-1}2、已知{a n }为等差数列,若a 3+a 4+a 8=9,则S 9=( )A .24B .27C .15D .543、若点P 到直线1y =-的距离比它到点(03),的距离小2,则点P 的轨迹方程为( ) A. 212x y = B.212y x = C.24x y = D.26x y = 4、已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b5、在等比数列{a n }中,若a 2=9,a 5=243,则数列{a n }的前4项和为( )A .81B .120C .168D . 1926、在△ABC 中,已知sin(A -B )cos B +cos(A -B )sin B ≥1,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等边三角形9、设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数y x z-=3的取值范围是( A )A .⎥⎦⎤⎢⎣⎡-6,23 B. ⎥⎦⎤⎢⎣⎡--1,23 C .[]6,1- D. ⎥⎦⎤⎢⎣⎡-23,610、已知正项数列{}n a 中,11=a ,22=a , 222112(2)n n n a a a n +-=+≥,则6a 等于( )A .16B .8C .22D .4二、填空题(每题5分,共20分)13、若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m =__________.14、已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的递增等比数列,则m n=_______.15、若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是________.16、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为________. 三、解答题 17、(本小题10分)已知a , b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(Ⅰ) 求A ;(Ⅱ) 若a =2,△ABC 的面积为3,求b ,c .18(本小题12分)、已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 19(本小题12分)、在△ABC 中,如果lg a -lg c =lg sin B =lg 22,且B 为锐角, 试判断此三角形的形状.20(本小题12分)、已知p:-2≤x ≤10,q:x 2-2x+1-m 2≤0(m>0).若p 是q 的必要而不充分条件,求实数m 的取值范围.21(12分)、(本小题12分)、设数列{a n }满足a 1+3a 2+32a 3+…+3 n-1a n =n3(n ∈N *).(1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .22(本小题12分)、已知△ABC 中,点A,B 的坐标分别为(-错误!未找到引用源。
成安一中高二第二学期期末考试数学(文科)试卷一、选择题 (本大题共12小题,共60分)1.已知集合I={∈|-3<<3},A={-2,0,1},B={-1,0,1,2},则)(A C I ∩B 等于( ) A.{-1} B.{2} C.{-1,2} D.{-1,0,1,2}2.已知为实数,则“11<x ”是“>1”的( ) A.充分非必要条件 B.充要条件C.必要非充分条件D.既不充分也不必要条件3.下列函数中,在其定义域内既是增函数又是奇函数的是( )A.)1ln(2++=x x yB. )1(log 2-=x yC.⎩⎨⎧<-≥=-0,30,3x x y x x D.x y 1-= 4. 已知函数)(x f y =在定义域(-1,1)上是减函数,且)1()12(a f a f -<-,则实数a 的取值范围是( )A.),32(+∞B.)1,32( C.)2,0( D.),0(+∞5.函数3||x e y x -=的大致图象是( ) A. B. C. D.6.若函数f ()满足x x f x x f --=2/3)1(31)(,则)1(/f 的值为( ) A.0 B.2 C.1 D.-17.要得到函数)32cos(π+=x y 的图象,只需将函数x y 2cos =的图象( )A.向左平行移动3π个单位长度B.向右平行移动3π个单位长度 C.向左平行移动6π个单位长度 D.向右平行移动6π个单位长度 8.复数满足i i z 5)2)(3(=--(i 为虚数单位),则的共轭复数z 在复平面上所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限9.在等差数列{a n }中,153,a a 是方程01062=--x x 的根,则17S 的值是( )A.41B.51C.61D.6810.若,y 满足⎪⎩⎪⎨⎧≥≤+-≤+00224y x y y x ,若y x z 2+=,则的最大值是( )A.1B.4C.6D.811.已知,y 是正数,且191=+y x ,则y x +的最小值是( ) A.6 B.12 C.16 D.2412.由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( )A.各三角形内一点B.各正三角形的中心C.各正三角形的某高线上的点D.各正三角形外的某点二、填空题(本大题共4小题,共20分)13.已知||=||=2,与的夹角为60°,则+在方向上的投影为 ______ . 14.已知等比数列{a n }的前n 项和为S n ,且4=+n n S a ,则数列{a n }的公比为 ______ . 15.函数1+=x xe y 的单调减区间为 ______ .16. 已知函数⎩⎨⎧≥-<-=2,22,64)(2x ax x x x x f 是R 上的增函数,则实数a 的取值范围______。
高二数学(理科)试题一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、定义算a b ad bc c d =- ,则符合条件1142i i z z -=+ 的复数z 为( ) A.3i - B.13i + C.3i + D.13i -2、计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( ) (A ) 5544A A (B )554433A A A (C )554413A A A (D )554422A A A3观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第*()n n ∈N 个等式应为( )A.9(1)109n n n ++=+ B.9(1)109n n n -+=-C.9(1)101n n n +-=- D.9(1)(1)1010n n n -+-=- 4、曲线3πcos 02y x x ⎛⎫= ⎪⎝⎭≤≤与x 轴以及直线3π2x =所围图形的面积为( ) A.4 B.2C.52 D.3 5.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数A. 13(,)x xB. 24(,)x xC.46(,)x xD.56(,)x x6.已知直线kx y =是x y ln =的切线,则k 的值为( )(A )e 1 (B )e 1- (C )e 2 (D )e2-7.从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种8 有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点.以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确9从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种10在82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28- 11.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-12若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A .[0,π2)B .[0,π2)∪[2π3,π)C .[2π3,π) D.[0,π2)∪(π2,2π3] 二、填空题:(本大题共6小题,每小题5分,共30分)13、四封信投入3个不同的信箱,其不同的投信方法有_________种. 14=---⎰dx x x )2)1(1(10215.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答)165025001250(2),a a x a x a x =++++L 其中01250,,,a a a a L 是常数,计算220245013549()()a a a a a a a a ++++-++++L L =------------17由0,1,2,3,4,5这六个数字。
成安一中高二数学(文)12月份月考试卷及答案
一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)
1、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于
A.3 B. C. D.
2、在△ABC中,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则S△ABC等于( ) A B 2 C 3 D 4
3、在△ABC中,内角A,B,C所对的边分别是a,b,c.若3a=2b,则的值为( )(A)- (B)
(C)1 (D)
4、等差数列满足:,则=() A.— 2 B.0 C.1 D.2
5、在等比数列{a n}中,S4=1,S8=3,则a17+a18+a19+a20的值是( )
A.14 B.16 C.18 D.20
6、设变量、满足约束条件,则目标函数的最小值为()A. B. C. D.
7、下列四个命题中,真命题是()
A. B.
C. D.a>b, c<da-c>b-d
、命题的否定
A. B. C. D.
的等差中项是,等比中项是,则曲线的离心率为(. B. C. D.与
、设分别是椭圆的左、右焦点,
OM|=点到椭圆左焦点的距离为(
B=ac,、已知数列的前项和,则其通项=
:=
①曲线C不可能表示椭圆;②当1<k<4时,曲线C表示椭圆;
③若曲线C表示双曲线,则k<1或k>4;④若曲线C表示焦点在x轴上的椭圆,则1<k<.
其中所有正确命题的序号为________.
三、计算题(解答应写出文字说明、证明过程或演算步骤)。
17、 (本小题满分10分)
(1)点A(2,-4)在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程;
(2)已知双曲线经过点,它渐近线方程为,求双曲线的标准方程。
18、(本小题满分12分)解下列关于不等式:
19、(本小题满分12分)已知的周长为,且. (1)求边长的值;
(2)若,求的值.
20、(本小题满分12分)数列{}中,=3,已知点(,)在直线y=+2上.
(1)求数列{}的通项公式;
(2)若=·,求数列{}的前项和.
21、(本小题满分12分)给出命题p:方程表示双曲线;命题q:曲线
与轴交于不同的两点.如果命题“”为真,“”为假,求实数的取值范围.
22、(本小题满分12分)椭圆C:的两个焦点为F1,F2,点P在椭圆C上,
且
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过点M,交椭圆C于两点,且M恰是A,B中点,求直线l的方程.
答案
一、选择题
1、D
2、B 3 D. 4、B 5、B 6、B
7 D 8、D 9、D 10、D 11、C 12、C
二、填空题
13、或 14、; 15、 (-∞,0)∪[3,+∞) 16、③④
三、计算题
17、解:(1)设抛物线方程为或
将点A(2,-4)代入解得方程为:或
(2)解析:设双曲线的方程为,将点代入可得。
故答案为。
18、原不等式可以化为
(1)当即时,,
(2)当即时,
(3)当即时,
综上:当时,不等式的解集为;当时,不等式的解集为;
当时,不等式的解集为
19、解(1)根据正弦定理,可化为. ………3分
联立方程组,解得. ………6分
(2),. ………9分
又由(1)可知,,
由余弦定理得
∴
20.
、
21、
解:命题p为真, ……………………………………2分
命题q为真, …………………………… 4分命题“”为真,“”为假中一真一假, ………………… ………5分当p真q假时,,得, …………………………… 8分当p假q真时,,得, …………………………… 11分所以的取值范围是 ……zxxk…………… 12分
22、解法一:(Ⅰ)因为点P在椭圆C上,所以,a=3.
在Rt△PF1F2中,故椭圆的半焦距c=,
从而b2=a2-c2=4,
所以椭圆C的方程为=1.(6分)
(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).若直线l斜率不存在,显然不合题意。
从而可设过点(-2,1)的直线l的方程为y=k(x+2)+1, (8分)
代入椭圆C的方程得
(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
因为A,B关于点M对称.所以解得,
所以直线l的方程为
即8x-9y+25=0.
(经检验,所求直线方程符合题意)(12分)
解法二:(Ⅰ)同解法一.(Ⅱ)设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2且
①
②
由①-②得③
因为A、B关于点M对称,所以x1+ x2=-4, y1+ y2=2,
代入③得=,即直线l的斜率为,
所以直线l的方程为y-1=(x+2),即8x-9y+25=0.。