二次函数的图像与性质观课报告
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
二次函数的图像说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、条据文书、规章制度、心得体会、策划方案、祝福语、经典语录、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, normative documents, rules and regulations, personal experiences, planning plans, blessings, classic quotes, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!二次函数的图像说课稿二次函数的图像说课稿作为一名无私奉献的老师,通常会被要求编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。
二次函数的图像与性质观课报告《二次函数图象与性质复习课》观课报告通过学习清华附中张波老师的《二次函数图象与性质复习课》,张老师独特的教学方法,生动的语言深深吸引了我,我把学习体会总结如下:1、重视问题的设计。
本节课张老师设计的问题循序渐进,由易到难,让学生感到概念和结论的得出是水到渠成的,自然的,而不是强加于人的。
这有利于学生认识数学内容的实际背景,帮助学生理解二次函数模型。
2、重视知识间的纵向与横向联系的设计。
设计上注重体现知识之间的联系、知识与实际的联系、知识的广泛应用,以使学生能够感受到不同知识间的联系,从整体上把握所学的数学知识,加强学生的应用意识,提高学生的数学创造力。
本节大多数内容都是围绕实际问题的讨论而展开的,反映了函数与现实之间的关系,能提高学生对函数是解决现实问题的一种重要数学模型的认识.让学生体会运用函数观点解决实际问题的作用,让学生初步体验建立函数模型的过程和方法。
3、注重探究过程的设计。
本节课张老师精心设计了画图、猜想、验证的过程,引导学生一步步地进行探究。
4、注重自主学习。
本课中通过鼓励学生动手、动笔,让学生经历知识的形成过程。
比如:在画函数图象、归纳二次函数y=a(x-h)2+k图象的性质、平移规律,通过学生间的交流、小组讨论、同桌合作,引领学生通过自己的探索来获取知识,改变以往教师的教和学生的学的方式,我们看到的是“自主、探究、合作”的学习方式。
教学过程中,教师创设问题,让学生合作学习,在小组合作学习的基础上进行全班交流或全校交流。
在合作过程中,激发了学生的创造性,培养了学生的合作意识和合作技能;利于学生之间的交流沟通,利于培养团队精神,凝聚人心,增进认识与理解;教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。
5、突出数形结合思想。
本节课通过让学生画图,多次观察图象,分析列表,发现规律,从数动到形动,从形动到数动,在反复的过程中培养学生数形结合的意识和能力。
《二次函数的图像与一元二次方程》观课报告数学课程标准指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
”对于教材的内容不能全盘复制,而应该以学生的现实生活为背景,已有的知识积累、学习经验和思维方式为基础,随着课堂活动的不断深入而逐步形成的。
本节课的教学中,王田刚老师借助学生已有的判断一元二次方程和二次函数图象性质的知识基础,将图象与x轴交点的坐标,转化为已知函数值为零,求自变量的值的问题,即解一元二次方程。
由“图”过渡到“数”,直观形象,学生易于理解。
通过学生自己的思维方式进行自主探索、交流,去发现二次函数图像与x轴交点的个数和一元二次方程的根的情况的关系,能够实现课堂学习的自主化,调动学生深层思维的思考,让学生在“再创造”中学习新知,有利于知识的生成,提高课堂的教学效果,体现新课改中将学生作为课堂的主体、学习的主人的教育教学理念。
在知识生成的过程中,教师做好课堂的引导者和组织者,适时、科学的进行启发、点拨。
有以下几方面让我感触颇深:一、能充分把握教材,制定的基础知识和能力目标符合教学内容,也符合学生实际情况。
二、整节课留给学生思考和动笔的时间较充分;师生配合默契,成功为学生引导;教师提出的问题由易到难层层推进,并适时提出问题促进学生动手动脑能力的提高,在提出问题的同时让学生思考,促进较好的学生的进一步提高。
三、在教学中,主要渗透了“数形结合”思想,并对例题进行了变式设计;在问题解决中,让学生掌握通性、通法,用探究过的结论,来解决其他问题,对学生今后解决有关问题起到事半功倍的效果。
四、教学方法上,重视启发式教学,注重学生自主合作与主动探究。
个人认为学生课堂上在提出问题、发现问题与解决问题环节上有许多精彩之处,老师应给予恰当、多元化的评价。
另外小组合作的形式有所单一,课堂气氛略显沉闷,形式应再多样一些,让课堂增添活力。
《二次函数的图像和性质》说课稿尊敬的老师、亲爱的同学们:大家好!今天我说课的题目是《二次函数的图像和性质》,这是九年级下册第26章的内容。
下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。
一、教材内容分析:1、本节课内容在整个教材中的地位和作用。
概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。
一方面,本节课是对一次函数有关内容的推广,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
2、教学目标定位。
根据教学大纲要求、新课程标准精神和初中学生心理认知特征,我确定了三个层面的教学目标。
第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学重难点。
重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。
难点是图像的平移变换,关键是二次函数顶点式中k的正负取值对函数图像平移变换的影响。
二、教法学法分析:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
《二次函数的图像及性质(1)》教学实录和反思教学目标1.使学生会用描点法画二次函数y=ax 2的图象.2.使学生进一步理解二次函数和抛物线的有关知识.重点和难点重点:会用描点法画二次函数y=ax 2的图象,掌握它的性质.难点:渗透数形结合思想.教学过程一 、情境导入同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么?学生齐答:y=ax 2+bx+c(a,b,c 是常数,a 不为0)教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个)教师:黑板上这些二次函数大致有几个类型?学生:(讨论了3分钟)四大类!有y=ax 2+bx+c;y=ax 2+bx;y=ax 2+c;y=ax 2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax 2的图像及性质!教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x 2;y=-x 2;y=2x 2;y=-2x 2.(教师在这里让学生自己准备素材! 我们已经知道,一次函数12+=x y ,反比例函数x y 3=的图象分别是 直线、双曲线 ,那么二次函数2x y =的图象是什么呢?(1)描点法画函数2x y =的图象前,想一想,列表时如何合理选值?以什么数为中心?当x 取互为相反数的值时,y 的值如何?(2)观察函数2x y =的图象,你能得出什么结论?二、新课例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22x y = (2)22x y -=共同点:都以y 轴为对称轴,顶点都在坐标原点.不同点:22x y =的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22x y -=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思 :在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此要用平滑曲线按自变量从小到大或从大到小的顺序连接. 例3.已知正方形周长为Ccm ,面积为S cm 2.(1)求S 和C 之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm 2时,正方形的周长;(3)根据图象,求出C 取何值时,S ≥4 cm 2.分析 此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C 的取值应在取值范围内.解 (1)由题意,得)0(1612>=C C S . 列表:C 24 6 8 … 2161C S =411 494 … 描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm 2时,正方形的周长是4cm .(3)根据图象得,当C ≥8cm 时,S ≥4 cm 2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C 、S ,不要习惯地写成x 、y .(3)在自变量取值范围内,图象为抛物线的一部分.补充例题1.已知点M(k ,2)在抛物线y=x 2上,(1)求k 的值.(2)点N(k ,4)在抛物线y=x 2上吗?(3)点H(-k ,2)在抛物线y=x 2上吗?2.已知点A(3,a)在抛物线y=x 2上,(1)求a 的值.(2)点B(3,-a)在抛物线y=x 2上吗?三、小结1.抛物线y=ax 2(a ≠0)的对称轴是y 轴,顶点是原点.2.a >0时,抛物线y=ax 2的开口向上.3.a <0时,抛物线y=ax 2的开口向下.四、作业:1、已知函数72)3(--=m x m y 是二次函数,求m 的值.2、已知二次函数2ax y =,当x=3时,y= -5,当x= -5时,求y 的值.3、已知一个圆柱的高为27,底面半径为x ,求圆柱的体积y 与x 的函数关系式.若圆柱的底面半径x 为3,求此时的y .4、用一根长为40 cm 的铁丝围成一个半径为r 的扇形,求扇形的面积y 与它的半径x 之间的函数关系式.这个函数是二次函数吗?请写出半径r 的取值范围.五、小结:教学注意问题1.注意渗透分类讨论思想.比如在y=ax 2中a >0时,y=ax 2的图象开口向上;当a <0时,y=ax 2的图象开口向下,等等.2.注意训练学生对比联想的思维方法.[教学反思]这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)九年级数学下册《二次函数的图像与性质》教学篇1【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.九年级数学下册《二次函数的图像与性质》教学教案篇2 【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?九年级数学下册《二次函数的图像与性质》教学教案篇3 【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会.。
二次函数的图象和性质(1)分析报告这节课是北师大版九年级数学下册的一节探究课。
在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。
整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。
我的设计目的就上让学生在复习这些知识的过程中体会从函数图像来研究函数性质的。
应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。
第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。
探究活动一是让学生在课本32页坐标系上画出二次函数y=x2的图象。
画图的过程包括列表、描点、连线。
列表过程是我引导学生取点的,画出了函数的图象。
紧接着我让学生自主探讨当a>0时函数y=ax2的性质。
探究活动二是独立画出函数y=-x2的图象,然后是自主探讨当a<0时函数y=ax2的性质。
探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。
第三部分是课堂检测。
我的优点主要包括:1、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
2、能运用现代化的教学手段教学,突破重难点。
我的不足之处表现在:1、知识的生成过程体现的不够具体。
在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。
2、作图的过程没必要放到课堂上来。
可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。
有时候就是要让学生经历“错误”的过程,这样他们才会懂。
3、课堂上讲的太多。
二次函数的图象和性质说课稿说课稿:二次函数的图象与性质(一)娄底三中彭谷英一、教材的地位与作用《二次函数的图象与性质》是湘教版九年级下册的学习内容,是在已学过一次函数(包括正比例函数)、反比例函数的图象与性质,以及理解二次函数的有关概念、会建立二次函数模型的基础上进行的,它既是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《二次函数的应用》《二次函数与一元二次方程的联系》的预备知识,并且是高中阶段数学学习的基础知识。
因此,它在教材中起着非常重要的作用。
另外,本节课最大特点,是充分运用多媒体——几何画板辅助学习,这样充分调动了学生的学习积极性。
结合图形来研究二次函数的性质,充分体现了一个很重要的数学思想——数形结合,数学思想。
因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。
二、教学目标设计【知识目标】(1)能够运用描点法和几何画板作出二次函数y=a x2(a>0)的图象.(2)能根据图象认识和理解二次函数y=a x2(a>0)的性质.(3)初步建立二次函数表达式与图象之间的联系.【能力目标】(1)通过作图教学,培养学生的动手能力.(2)通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力.(3)经历探索二次函数的图象的作法和性质的过程,获得利用图象研究函数性质的经验.【情感目标】引导学生养成全面看问题、分类讨论的学习习惯,通过学生动手作图、分析和多媒体演示,激发学生学习数学的积极性。
三、教学重点、难点【重点】能够运用描点法和几何画板作出二次函数y=a x2(a>0)的图象;能根据图象认识和理解二次函数y=a x2(a>0)的性质.【难点】由图象概括出二次函数y=ax2(a>0)的性质,并结合图象理解性质.四、教学结构设计建立以“实施以学生为主体的主体性教学,培养学生自学、探究能力”为主的课堂教学结构模式。
结合学生的特点,课堂结构设计为“五个阶段”。
《二次函数图象与性质复习课》观课报告
通过学习清华附中张波老师的《二次函数图象与性质复习课》,张老师独特的教学方法,生动的语言深深吸引了我,我把学习体会总结如下:
1、重视问题的设计。
本节课张老师设计的问题循序渐进,由易到难,让学生感到概念和结论的得出是水到渠成的,自然的,而不是强加于人的。
这有利于学生认识数学内容的实际背景,帮助学生理解二次函数模型。
2、重视知识间的纵向与横向联系的设计。
设计上注重体现知识之间的联系、知识与实际的联系、知识的广泛应用,以使学生能够感受到不同知识间的联系,从整体上把握所学的数学知识,加强学生的应用意识,提高学生的数学创造力。
本节大多数内容都是围绕实际问题的讨论而展开的,反映了函数与现实之间的关系,能提高学生对函数是解决现实问题的一种重要数学模型的认识.让学生体会运用函数观点解决实际问题的作用,让学生初步体验建立函数模型的过程和方法。
3、注重探究过程的设计。
本节课张老师精心设计了画图、猜想、验证的过程,引导学生一步步地进行探究。
4、注重自主学习。
本课中通过鼓励学生动手、动笔,让学生经历知识的形成过程。
比如:在画函数图象、归纳二次函数y=a(x-h)2+k图象的性质、平移规律,通过学生间的交流、小组讨论、同桌合作,引领学生通过自己的探索来获取知识,改变以往教师的教和学生的学的方式,我们看到的是“自主、探究、合作”的学习方式。
教学过程中,教师创设问题,让学生合作学习,在小组合作学习的基础上进行全班交流或全校交流。
在合作过程中,激发了学生的创造性,培养了学生的合作意识和合作技能;利于学生之间的交流沟通,利于培养团队精神,凝聚人心,增进认识与理解;教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。
5、突出数形结合思想。
本节课通过让学生画图,多次观察图象,分析列表,发现规律,从数动到形动,从形动到数动,在反复的过程中培养学生数形结合的意识和能力。
6、教师教学基本功扎实,教态自然,板书合理,灵活使用多媒体。