江苏省南京鼓楼区育英二外2019-2020学年第二学期八年级数学期中考试数学试题(PDF版无答案)
- 格式:pdf
- 大小:596.96 KB
- 文档页数:9
江苏省2019-2020学年下学期期中测试卷八年级数学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.若把一个分式中的m、n同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A.2mm n+B.m nm n+-C.2m nm+D.m nm n-+5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.16.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,8AD=,3OE=,则线段OD的长为()A.5 B.6 C.8 D.10二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.若分式12020xx--有意义,则x的取值范围是.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是.9.方程11233xx x--=--的解是.10.如图,在Rt ABC∆中,90BAC∠=︒,且6BA=,8AC=,点D是斜边BC上的一个动点,过点D分别作DM AB⊥于点M,DN AC⊥于点N,连接MN,则线段MN的最小值为.第10题图第12题图11.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.第13题图第14题图14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是 .15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 .16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 .三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷--18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =.19.解方程:2533322 x xx x--+=--.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1),估计摸一次球能摸到黑球的概率是;袋中黑球的个数约为只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.21.如图,平行四边形ABCD中,8B∠=︒,G是CD的中点,E=,60BC cmAB cm=,12是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?25.如图,在由边长为1的小正方形组成的56∆的三个顶点均在格点上,⨯的网格中,ABC请按要求解决下列问题:(1)通过计算判断ABC∆的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出ABCDY 的面积.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是.性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD==的性质进行探究,以下判断正确的有(填序号).①AC BD⊥;②AC、BD互相平分;③AC平分BAD∠和BCD∠;④ABC ADC∠=∠;⑤180BAD BCD∠+∠=︒;⑥筝形ABCD的面积为12AC BD⨯.(3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由. 判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.【解答】A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况【解答】A、调查某航空公司飞行员实力的达标率是准确度要求高的调查,适于全面调查;B、调查乘坐飞机的旅客是否携带了违禁物品是准确度要求高的调查,适于全面调查;C、调查某品牌圆珠笔芯的使用寿命如果普查,所有笔芯都报废,这样就失去了实际意义,适宜抽样调查;D、调查你组6名同学对太原市境总面积的知晓情况,人数少,适宜全面调查.故选:C.3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球; ③13个人中至少有两个人的生日是在同一个月份; ④射击运动员射击一次,命中靶心; ⑤水中捞月; ⑥冬去春来.其中是必然事件的有( ) A .1个B .2个C .3个D .4个【解答】①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件; ③13个人中至少有两个人的生日是在同一个月份,是必然事件; ④射击运动员射击一次,命中靶心,是随机事件; ⑤水中捞月,是不可能事件; ⑥冬去春来,是必然事件; 故选:B .4.若把一个分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A .2m m n+B .m nm n+- C .2m nm + D .m nm n-+ 【解答】A 、22(3)333m m m n m n=++,故分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,故符合题意;B 、3333m n m nm n m n ++=--,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意; C 、2233(3)3m n m n m m ++=,把一个分式中的m 、n 同时扩大3倍,分式的值也扩大13倍,故不符合题意;D 、3333m n m nm n m n--=++,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意, 故选:A .5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A .0B .12C .34D .1【解答】掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是12; 故选:B .6.点O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8AD =,3OE =,则线段OD 的长为( )A .5B .6C .8D .10【解答】Q 在矩形ABCD 中,8AD =,3OE =,O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8BC AD ∴==,26AB OE ==,90B ∠=︒,22226810AC AB BC ∴=++=, Q 点O 为AC 的中点,90ADC ∠=︒,152OD AC ∴==, 故选:A .二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上) 7.若分式12020x x --有意义,则x 的取值范围是 2020x ≠ .【解答】由题意得:20200x -≠, 解得:2020x ≠, 故答案为:2020x ≠.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是 100 .【解答】为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是100. 故答案为:1009.方程11233x x x--=--的解是 6x = . 【解答】方程整理得:11233xx x --=--, 去分母得:12(3)1x x --=-, 去括号得:1261x x -+=-, 移项合并得:6x -=-, 解得:6x =,经检验6x =是分式方程的解, 故答案为:6x =10.如图,在Rt ABC ∆中,90BAC ∠=︒,且6BA =,8AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为245.【解答】90BAC ∠=︒Q ,且6BA =,8AC =,2210BC BA AC ∴+,DM AB ⊥Q ,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 245AB AC AD BC ∴==g , MN ∴的最小值为245; 故答案为:245. 11.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是扇形统计图.【解答】根据题意,得要反映出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,需选用扇形统计图.故答案为:扇形统计图.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为 3 cm.【解答】Q菱形ABCD的面积为26cm,BD的长为4cm,∴1462AC⨯⨯=,解得:3AC=,故答案为:3.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:66121.5x x+=.【解答】小明通过AB时的速度是x米/秒,根据题意得:66121.5x x+=,故答案为:66121.5x x+=.14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是13.【解答】51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是2163=, 故答案为:13.15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 34︒ .【解答】Q 四边形ABDE 是矩形, 90BAE E ∴∠=∠=︒, 62ADE ∠=︒Q , 28EAD ∴∠=︒, AC CD ⊥Q , 90C E ∴∠=∠=︒AE AC =Q ,AD AD =,Rt ACD Rt AED(HL)∴∆≅∆ 28EAD CAD ∴∠=∠=︒, 90282834BAF ∴∠=︒-︒-︒=︒,故答案为:34︒.16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 ( 1.5,0)-或( 3.5,0)-或(6.5,0) .【解答】Q 点Q 在x 轴上,点P 在直线AB 上,以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,当11A C 为平行四边形的边时, 112PQ AC ∴==,P Q 点在直线25y x =+上,∴令2y =时,252x +=,解得 1.5x =-,令2y =-时,252x +=-,解得 3.5x =-,∴点Q 的坐标为( 1.5,0)-,( 3.5,0)-,当11A C 为平行四边形的对角线时, 11A C Q 的中点坐标为(3,2),P ∴的纵坐标为4,代入25y x =+得,425x =+, 解得0.5x =-, (0.5,4)P ∴-,11A C Q 的中点坐标为:(3,2),∴直线PQ 的解析式为:42677y x =-+, 当0y =时,即426077x =-+,解得: 6.5x =,故Q 为( 1.5,0)-或( 3.5,0)-或(6.5,0). 故答案为( 1.5,0)-或( 3.5,0)-或(6.5,0).三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷-- 【解答】1(1)122xx x x ++÷-- (1)(1)12(1)1x x x x x+-+-=-g21121x x -+=g221x x=g 2x =.18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =. 【解答】原式211(1)(1)1(2)a a a a a --+-=--g22(1)(1)1(2)a a a a a -+-=--g12a a +=-, 当2020a =时,原式202012021202022018+==-. 19.解方程:2533322x x x x --+=-- 【解答】去分母,得:253(2)33x x x -+-=-, 去括号,得:253633x x x -+-=-, 移项,合并,得:28x =, 系数化为1,得:4x =,经检验,当4x =时,20x -≠,即4x =是原分式方程的解, 所以原方程的解是4x =.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近 (精确到0.1),估计摸一次球能摸到黑球的概率是 ;袋中黑球的个数约为 只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.【解答】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4,Q摸到黑球的频率会接近0.4,∴黑球数应为球的总数的25,∴估计袋中黑球的个数为250205⨯=只,故答案为:0.4,0.4,20;(2)设放入黑球x个,根据题意得:200.6 50xx+=+,解得25x=,经检验:25x=是原方程的根,故答案为:25;21.如图,平行四边形ABCD中,8AB cm=,12BC cm=,60B∠=︒,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:Q四边形ABCD是平行四边形,//AD BC∴,DEG CFG∴∠=∠,GDE GCF∠=∠.G Q 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆. ED FC ∴=. //ED CF Q ,∴四边形CEDF 是平行四边形.(2)①当8AE cm =时,四边形CEDF 是矩形.理由如下: 作AP BC ⊥于P ,如图所示: 8AB cm =Q ,60B ∠=︒, 30BAP ∴∠=︒, 142BP AB cm ∴==, Q 四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==, 8AE cm =Q , 4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆, 90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形; 故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下: 4AE cm =Q ,12AD cm =. 8DE cm ∴=.8DC cm =Q ,60CDE B ∠=∠=︒.CDE∴∆是等边三角形.DE CE∴=.∴平行四边形CEDF是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm=时,四边形CEDF是菱形;故答案为:4.22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?【解答】(1)这次调查的总人数是:5226%200÷=(人),故答案为:200;(2)选择B的学生有:2005234165840----=(人),补全的条形统计图如右图所示,扇形统计图中E所对应的圆心角是:58 360104.4200︒⨯=︒,故答案为:104.4;(3)341700289200⨯=(人),答:选择C有289人.23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.【解答】(1)如图1,ABCDY即为所求;(2)如图2,正方形AECF即为所求,其面积为222(26)40+=.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?【解答】设两种机器人需要x 小时搬运完成,9006001500kg kg kg +=Q ,A ∴型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:90060030x x -=, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.25.如图,在由边长为1的小正方形组成的56⨯的网格中,ABC ∆的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断ABC ∆的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出ABCD Y 的面积.【解答】(1)由题意可得,22125AB =+=,222425AC =+=,22345BC =+=, 222(5)(25)255+==Q ,即222AB AC BC +=,ABC ∴∆是直角三角形.(2)过点A 作//AD BC ,过点C 作//CD AB ,直线AD 和CD 的交点就是D 的位置,格点D 的位置如图,ABCD ∴Y 的面积为:52510AB AC ⨯=⨯=.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD ==的性质进行探究,以下判断正确的有 (填序号). ①AC BD ⊥;②AC 、BD 互相平分;③AC 平分BAD ∠和BCD ∠;④ABC ADC ∠=∠;⑤180BAD BCD ∠+∠=︒;⑥筝形ABCD 的面积为12AC BD ⨯. (3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由.判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .【解答】(1)因为两组邻边分别相等的四边形是筝形,所以菱形或正方形符合题意. 故答案是:菱形或正方形;(2)正确的有①③④⑥.故答案为:①③④⑥;(3)选①.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.选③.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.BAC DAC ∴∠=∠,BCA DCA ∠=∠.AC ∴平分BAD ∠和BCD ∠.选④.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.ABC ADC ∴∠=∠.选⑥.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.∴筝形ABCD 的面积为12AC BD ⨯. (4)当筝形ABCD 满足90ADC ∠=︒时,四边形PNDM 是正方形.理由如下: PM AD ⊥Q ,PN CD ⊥,90PMD PND ∴∠=∠=︒.又90ADC ∠=︒Q ,∴四边形MPND 是矩形.Q 在筝形ABCD 中,AB BC =,AD CD =,同(3)得:()ABD CBD SSS ∆≅∆,ADB CDB ∴∠=∠.又PM AD ⊥Q ,PN CD ⊥,PM PN ∴=.∴四边形MPND 是正方形.故答案为:90ADC ∠=︒;(5)一条对角线垂直且平分另一条对角线的四边形是筝形.理由如下:如图1:若AC 垂直平分BD ,则AB AD =,BD CD =,∴四边形ABCD 是筝形.故答案为:一条对角线垂直且平分另一条对角线的四边形是筝形.(答案不唯一)27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).【解答】(1)①延长FD 到G ,使得DG DF =,连接BG 、EG .(或把CFD ∆绕点D 逆时针旋转180︒得到)BGD ∆, CF BG ∴=,DF DG =,DE DF ⊥Q ,EF EG ∴=.在BEG ∆中,BE BG EG +>,即BE CF EF +>. ②若90A ∠=︒,则90EBC FCB ∠+∠=︒, 由①知FCD DBG ∠=∠,EF EG =, 90EBC DBG ∴∠+∠=︒,即90EBG ∠=︒, ∴在Rt EBG ∆中,222BE BG EG +=, 222BE CF EF ∴+=;(2):①F Q 是AD 的中点,AF FD ∴=,Q 在ABCD Y 中,2AD AB =,AF FD CD ∴==,DFC DCF ∴∠=∠,//AD BC Q ,DFC FCB ∴∠=∠,DCF BCF ∴∠=∠, 12DCF BCD ∴∠=∠,故此选项正确; ②延长EF ,交CD 延长线于M , Q 四边形ABCD 是平行四边形, //AB CD ∴,A MDF ∴∠=∠,F Q 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠, CE AB ⊥Q ,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =Q ,FC EF FM ∴==,故②正确; ③EF FM =Q ,EFC CFM S S ∆∆∴=,MC BE >Q ,2BEC EFC S S ∆∆∴<故2BEC CEF S S ∆∆=错误;④设FEC x ∠=,则FCE x ∠=, 90DCF DFC x ∴∠=∠=︒-, 1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒-, 90AEF x ∠=︒-Q ,3DFE AEF ∴∠=∠,故此选项正确. 故答案为①②④.。
2019-2020八年级数学第二学期期中考试试卷一 选择题(每题3分,共36分)1.2)8(-=( ) A 8 B -8 C 22 D -222.不能作为直角三角形三边长的数据是( ) A 1,1,2 B 1,2,5 C 1,2,3 D 2,3,13.下列运算结果是无理数的是( ) A 23×3 B 32×23 C 27÷3 D 22513-4.如图1,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若AC=12,BD=10,AB=7,则△DOC 的周长为( ) A 29 B 25.5 C 22 D 185.若x 化简后能与5合并,则x 的值可以是( ) A 0.5 B 50 C 125 D 256.如图2,从下列四个条件:①AB=BC ,②AC ⊥BD ,③∠ABC=900,④AC=BD 中选两个作为补充条件,使平行四边形ABCD 成为正方形,下列四种选法不正确的是( ) A ①④ B ①③ C ②③ D ①② 7.一个等腰三角形的腰长为10cm ,底边长为12cm ,则等腰三角形的面积为( )A 48cm 2B 96cm 2C 65cm 2D 60cm 28.如图3,直线AB ∥CD ,P 是AB 上的动点,当点P 的位置变化时,△PCD 的面积将( ) A 变大 B 变小 C 不变 D 随点P 的运动而变化9.如图4,已知大正方形的面积为75cm 2,从中剪去两个小正方形,若其中一个小正方形的面积为48cm 2,则图中阴影部分的面积为( ) A 10cm 2 B 12cm 2 C 13cm 2 D 16cm 210.如图5,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A ,B 的坐标分别为(-3,0),(2,0),点D 在y 轴上,则点C 的坐标是( ) A (4,5) B (5,4) C (4,4) D (5,3)11.如图6,甲以直角三角形的三边为边长作正方形,乙以直角三角形的三边为直径作半圆,面积分别记作S 1,S 2,S 3,则满足S 1+S 2=S 3的是( ) A 只有甲 B 只有乙 C 甲和乙 D 甲和乙都不满足12.如图7,在Rt △ABC 中,AC=3,BC=6,D 为斜边AB 上一动点,DE ⊥BC ,DF ⊥AC ,垂足分别为E ,F ,则线段EF 的最小值为( ) A23 B 3 C 22 D 2二 填空题(每小题3分,共18分)13.全等三角形的对应角相等”的逆命题是 . 14.比较大小:2221×18 (填“>” “<”或“=”) 15.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘处,另一只猴子爬到树顶后直接跃到池塘处(池塘看成一个点),距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 米.16.如图8,DE 为Rt △ABC 的中位线,点F 在DE 上,且∠AFC=∠BAC=900,若AB=12,AC=5,则DF 的长为 .17.如图9,AD=2,CD=1,BC=2,AB=3,∠ADC=900,则阴影部分的面积为 .18.如图10,先将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA 方向平移得到△A 1C 1D 1,连接AD 1,BC 1.若∠ACB=300, AB=1,CC 1=x,当x= 时,四边形ABC 1D 1是菱形.三 解答题19.(8分) 计算: (1)12+3(1-6)+221(2)(23+15)(15-23)20.(8分)如图11,正方形网格中有△ABC ,若每个小方格边长为1,请你根据所学的知识解答下列问题. (1)判断△ABC 的形状,并说明理由;(2)求△ABC 中边AC 上的高.21.(8分)如图12,在平行四边形ABCD 中,点E 在边BC 上,点F 在边DA 的延长线上,且AF=CE ,EF 与AB 交于点G.(1)求证:AC ∥EF ;(2)若G 是AB 的中点,BE=6,求边AD 的长.22.(10分)对实数x ,y 定义下列运算:x ★y=x 2-xy+y 2,x ☆y=y x +x y ,若x=21(7+5),y=21(7-5). (1)求x+y 和xy 的值;(2)求x ★y 和x ☆y 的值.23.(10分)如图13,0是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD.(1)求证:OE ⊥DC ;(2)若∠AOD=1200,DE=2,求矩形ABCD 的面积.24.(10分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺测算出学校旗杆的高度.嘉嘉和淇淇分别设计了一个方案.为了计算方便,测量数据均保留了整数,两人的最终结果可能出现误差,根据嘉嘉和淇淇两人的方案,分别求出旗杆的高度.25.(12分)如图15,在菱形ABCD中,AB=4,点H是边AD的中点,点E是边AB上一动点(不与A重合),连接EH 并延长交射线CD于点M,连接AM,DE.(1)求证:四边形AEDM是平行四边形;(2)若∠DAB=600.①当AE取何值时,四边形AEDM是矩形?②当AE取何值时,四边形AEDM是菱形?(3)若∠DAB=450,四边形AEDM有可能是正方形吗?如果可能,求出AE的值;如果不可能,说明理由.2019-2020八年级数学第二学期期中考试试卷参考答案1.A2.A3.B4.D5.C6.D7.A8.C9.B 10.B 11.C 12.D13. 对应角相等的两个三角形全等. 14.< 15. 15 16.4 17.5-1 18. 1 19.(1)33-22 (2)320.(1)直角三角形.AB=5,BC=25,AC=5,AB 2+BC 2=AC 2.(2)设AC 边上的高为h ,则S Rt △ABC =21AB ·BC , S Rt △ABC =21AC ·h ,21AB ·BC=21AC ·h ,h=2. 21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AF =CE ,∴四边形AFEC 是平行四边形,∴AC ∥EF ;(2)解:∵AD ∥BC ,∴∠F =∠GEB ,∵点G 是AB 的中点,∴AG =BG ,在△AGF 与△BGE 中,,∴△AGF ≌△BGE (AAS ),∴AF =BE =6,∵AF =CE =6,∴BC =BE+EC =12,∵四边形ABCD 是平行四边形,∴AD=BC =12.22.(1)x+y=7,xy=21;(2)x ★y=(x-y )2+xy=5+21=521,x ☆y=)57(21)57(21-++)57(21)57(21+-=)57()57(-++)57()57(+-=)57)(57()57()57(22-+-++=224=12. 23.(1)证明:∵DE ∥AC ,CE ∥BD ,∴DE ∥OC ,CE ∥OD ,∴四边形ODEC 是平行四边形,∵四边形ODEC 是矩形,∴OD =OC =OA =OB ,∴四边形ODEC 是菱形,∴OE ⊥DC ,(2)∵DE =2,且四边形ODEC 是菱形,∴OD =OC =DE =2=OA ,∴AC =4,∵∠AOD =120,AO =DO ,∴∠DAO =30°,且∠ADC =90°∴CD =2,AD =CD =2,∴S 矩形ABCD =2×2=424.嘉嘉:解:设旗杆长为x 米,则绳长为(x+1)米,则由勾股定理可得知: 52+x 2=(x+1)2,解得x=12,旗杆的高度为12米.淇淇:解:设旗杆长为x 米,则绳长为(x-1)米,则由勾股定理可得知: 52+x 2=(x-1)2,解得x=13,旗杆的高度为13米.25.(1)证明:∵四边新ABCD 是菱形,∴AB ∥CD ,∴∠DNE=∠AME ,∵点E 是AD 边的中点,∴AE=DE ,在△NDE 和△MAE 中,∠DNE=∠AME ,∠DEN=∠AEM ,DE=AE ,∴△NDE ≌△MAE (AAS ),∴NE=ME ,∴四边形AMDN 是平行四边形;(2)①当AE=2时,四边形AMDN 是矩形. 理由如下:∵AE=2=21AD=AH ,∠DAB=60°,∴∠AHE=∠AEH=60°,∴∠ADE=30°,∴∠AED=90°,∴平行四边形AEDM 是矩形;②当AE=4时,四边形AEDM 是菱形.理由如下:∵AE=4,∴AE=AD=4,∴△AED 是等边三角形,∴AE=DE ,∴平行四边形AEDM 是菱形. (3)存在.当AE=22时,四边形AEDM 是正方形.。
江苏省2019-2020八年级下学期期中考试数学试题 6精选资料江苏省 八年级放学期期中考试数学试题(满分: 100 分,时间: 120 分钟 )一、选择题 ( 本大题共8 小题,每题 2 分,共 16分,每题仅有一个答案正确)1.以下图形中,既是轴对称图形又是中心对称图形的是(▲ )A .角B .等边三角形C .平行四边形D .矩形2.以下检查中,合适采纳全面检查(普查 )方式的是 (▲)A .对某食质量量的检查.B .对数学课本中印刷错误的检查.C .对学校成立英语角见解的检查.D .对公民保护环境意识的检查 .3.以下各式正确的选项是 ( ▲ )n n ay y 2a x a 1n naA . m m aB .xx 2C . b x b 1aD . m ma4.以下命题中,正确的个数是 (▲)①13 个人中起码有2 人的诞辰是同一个月是必定事件②为认识我班学生的数学成绩,从中抽取 10名学生的数学成绩是整体的一个样本③一名篮球运动员投篮命中概率为 0.7,他投篮 10 次,必定会命中 7 次④ 小颖在装有 10 个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频次在 0.6 邻近颠簸,据此预计黑球约有6 个.A . 1B . 2C . 3D .45.四边形 ABCD 中,对角线 AC 、 BD 订交于点 O ,以下条件不可以判断这个四边形是平行四边形的是( ▲)A . AB//DC , AD//BCB .AB//DC ,AD=BCC . AO=CO , BO=DOD . AB=DC , AD=BCFAADEFOEBBDCC第 5 题第 6 题第 8 题6. 如图,在△ ABC 中, E 、D 、 F 分别是 AB 、BC 、CA 的中点,AB=AC= 5, BC=8 ,则四边形 AEDF ?的面积是 ( ▲ )A .10B . 12C .6D .207.在 500 个数据中,用合适的方法抽取50 个为样本进行统计,频次散布表中54.5~ 57.5 这一组的频次是 0.15,那么预计整体数 据在 54.5~57.5 之间的约有 (▲)A .150个B .75 个C .60 个D .15 个8.如图, E 、F 分别是正方形ABCD 的边 CD 、AD 上的点,且 CE=DF ,AE 、BF 订交于点 O ,以下结论:(1)AE=BF ; (2)AE ⊥BF ; (3)AO=OE ; (4) S AOBS 四边形 DEOF 中正确的有 (▲)A .4 个B .3个C .2 个D .1 个二、填空题 (此题共 10 小题,每题 2分,共 20 分)9.当 x = ___ ▲ ___时,分式x1无心义.x 1江苏省2019-2020八年级下学期期中考试数学试题6精选资料(2),10.y11y x y2(2)y2 2 y 1 ()11.若分式1的正数,x 的范是▲.x212.某班在大活中抽了10 名学生每分跳次数,获得以下数据(位:次 ):88,9l,93,102,108,117,121,130,146,188.跳次数在90~ 110 一的率是▲.AA E DDF第 14题第 16题B E C第H17 题B C来描绘数据 .13. 小明想认识自己一学期数学成的化,用▲14.如 Y ABCD中,∠ ABC 的均分交 AD 于 E,DC=4,DE=2, Y ABCD的周长_▲__.15. E、 F、 G、 H 分四形 ABCD 各的中点,增添_ ▲ _条件,四形EFGH 菱形。
精选资料江苏省 八年级放学期期中考试数学试题一、 (每小 3分,共 24分)1.民 剪 在我国有着悠长的 史,以下 案是中心 称 形的是()AB CD2.以下 方式,你 最适合的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()A . 市 上某种白酒的塑化的含量,采纳普 方式B .认识我市每日的流 人口数,采纳抽 方式C . 鞋厂生 的鞋底能蒙受的弯折次数,采纳普 方式D .游客上 机前的安 ,采纳抽 方式3、今日我 全区1500 名初二学生参加数学考 , 从中抽取300 名考生的数学成行剖析, 在 中, 本指的是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 300 名考生的数学成B . 300C .1500 名考生的数学成x 2y2D . 300 名考生4、以下各式:1 1 x , 4x , ,1 a, 5x 2 ,此中分式共有⋯⋯⋯⋯⋯⋯( )53 2b yA .5 个B .4 个C .3 个D .2 个5、 次 矩形四 的中点所得的四 形是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.矩形B. 菱形C. 正方形D . 以上都不6 、把分式 xy中的 x 和 y都 大 本来的 2 倍, 分式的··············()x3yA .不B . 大 本来的2 倍C . 小 本来的1 D . 大 本来的4 倍27、如 , □ABCD 中, EF 角 的交点 O 分 与 CD 、 AB 交于点 E 、F , AB=4,AD=3,OF=1.3 , 四 形 BCEF 的周()DECOAFB(第 7题)(第18 题)8.如 , 手操作:1, a 的 方形 片(<a<l ),如 那 折一下,剪下一个2等于 方形 度的正方形(称 第一次操作) ;再把剩下的 方形如 那 折一下,剪下一个 等于此 方形 度的正方形(称 第二次操作) ;这样频频操作下去.若在第n 此操作后, 剩下的 方形 正方形, 操作 止.当n = 3 , a 的 ( )A .2B .3或2C .3D .3或334 354 5二、填空(每空 2 分,共 26 分.)9、当 x _________时, 1存心义;若分式x 2- 4的值为零,则x 的值为 ______.x+1 x+210、 以下 4 个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.必定事件是 ,不行能事件是.(将事件的序号填上即可)11、若菱形的两条对角线分别为 2 和 3,则此菱形的面积是.1a 2- 2a12、计算 m ÷n · n=;化简2=.13、4- aABCD ,P 、R 分别是 BC 和 DC 上的动点, E 、 F 分别是 PA 、 PR 的中 如图,已知矩形 点.假如 DR=3 ,AD=4 ,则 EF 的长为 ________.14、 如图, □ ABCD 的对角 线订交于点 O ,且 AB ≠AD ,过 O 作 OE ⊥ BD 交 BC 于点 E .若□ ABCD 的周长为 10cm ,则 CDE 的周长为cm .A DEFR BPC第13题 第14题 第16题 第18题15、 x 2 3有增根,那么增根为 ________。
2019-2020学年第二学期南京鼓楼区育英二外八年级数学期中考试一、选择题(本题共6小题,每小题2分,共12分)1、下列四个图形分别是四届国际数学大会的会标,其中不属于中心对称图形的是()A.B.C.D.2、下列事件中,是必然事件的是()A.在标准大气压下,温度低于0℃时冰融化B.3天内将下雨C.小明乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来D.在同一年出生的13名学生中,至少有2人出生在同一个月3、在同一平面直角坐标系中,函数要y x k=+与kyx=(k为常数,k≠0)的图像大致是()A.B.C.D.4、为了研究特殊四边形,王老师制作了这样一个教具(如图1):钉子将四根木条钉成一个平行四边形的活动框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,王老师把DC沿着CB方向平行移动,当AB=BC时(如图2),观察所得到的四边形,下列判断正确的是()5、若关于x的方程3333x m mx x++=−−的解为正数,则m的取值范围是()A.92m≤B.9322m m<≠且C.94m>−D.9344m m>−≠−且图(1)DCBA AB CD图(2)6、若一个边长为3cm 的正方形与一个长、宽分别为5cm 、1.5cm 的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是( )A .B .C .D .二、填空题(本题共10小题,每空2分,共计20分)7x 的取值_____________.8、任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小往大排列为_____________.①面朝上的点数小于3;②面朝上的点数大于2;③面朝上的点数是偶数. 9、已知反比例函数ky x=的图像经过点A (3,a ),B (a +2,1),则k 的值等于_____________. 10、某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计图结果如下表所示:11、已知实数a 在数轴上的位置如图所示,则化简的1a −_____________.12、如图,在□ABCD 中,∠A =72°,将□ABCD 绕点B 顺时针旋转到□A 1BC 1D 1,当C 1D 1首次经过顶点C 时,旋转角∠ABA 1=_____________°.(第12题图) (第13题图)13、如图,矩形ABCD 的对角线AC 、BD 相较于点O ,DE ∥AC ,CE ∥BD ,若BD =5,则四边形DOCE 的周长为_____________.14、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)都在反比例函数21k y x+=(k 为常数)的图像上,则y 1、y 2、y 3的大小关系为_____________(用“<”连接).15、如图,正方形ABCD ,点E 、F 在对角线BD 上,四边形AECF 是菱形,且∠F AE =60°,AF =2,则BE 的长为_____________.(第15题图) (第16题图)16、如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P ,若∠A =60°,2AB =,则四边形ABCD 的面积是_____________.三、解答题(本题共计11题,共68分) 17、(6分)计算⑴+⑵(22+18、(6分)先化简 212111x xx x +−−−−,并回答下列问题⑴ 上式化简的结果的值是否为0_____________(是或否);简要叙述你的理由_______________________________________. ⑵ 请你判断分式方程:212111x xx x +−=−−是否有解_____________(是或否). 19、(4分)解方程 34211242x x x x ++=−−−.20、(5分)先化简:()35222a a a a a −⎛⎫−+÷⎪++⎝⎭,再选择合适的数a 代入求值.PDCB A21、(7分)⑴为了解某校在“抗疫新型冠状病毒”自愿捐款活动的情况,你认为以下哪种调查方式比较合理_____________ A. 调查八年级全体学生 B. 调查七、八、九三个年级(1)班的学生 C. 调查七、八、九三个年级各10%的学生通过调查,得到一组数据,然后将数据安组整理统计如下(图中信息不完整):请结合以上信息解答下列问题.⑵本次调查样本的容量是_____________, a =_____________; ⑶先求出C 组的人数,再补全“捐款人数分组统计图1”;⑷根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在10至30元之间. 22、(6分)如图,在菱形ABCD 中,过点D 作DE AB ⊥,点F 在边CD 上,且CF AE =,连接BF .⑴求证:四边形DEBF 是矩形;⑵已知2, 4DF DE ==,求菱形ABCD 的面积.捐款人数分组统计图2B AC 40%8% E D28%23、(6分)如图,一次函数(0)y kx b k=+≠与反比例函数myx=的图象有公共点A(1,)a,()2,1D−−.直线l与x轴垂直于点N(3,0),与一次函数图象、反比例函数图象分别交于点B、C.⑴求反比例函数与一次函数的表达式;⑵求△CON的面积;⑶结合图象直接写出不等式kxmbx+>的解集.24、(5分)列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作,开通后从香港到珠海的车程由原来的180千米缩短到50千米.港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16,求港珠澳大桥的设计时速是多少.25、(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.⑴ 如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,求证:中点四边形EFGH 是平行四边形;⑵ 如图2,点P 是四边形ABCD 外一点,且满足P A =PD ,PB =PC ,APB CPD ∠=∠,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.26、(8分)⑴模型建立:如图⑴,如果l 1∥l 2,点A 、B 在l 2上,点C 、D 在l 1上,依据平行线间的距离处处相等,我们很容易得到ABC ABD S S =△△.(无需证明)反之,如图⑵,点A 、B 在l 2上,点C 、D 是直线l 2同侧两点,且都在直线l 1上,若ABC ABD S S =△△,求证:l 1∥l 2图(1)H G F EDCBAA EBFCG DH 图(2)P图(1)AE BF CDl 2l 1l 1l 2DCBA图(2)⑵模型应用:如图⑶,直线y kx b =+与双曲线ay x=在第一象限内交于A 、B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点BF ⑶灵活运用:如图⑷,直线y kx b =+与双曲线ay x=分别交于一、三象限内的A 、B 两点,过点A 作AH ⊥y 轴,垂足为H ,过点B 作BG ⊥x 轴,垂足为G ,直线AB 分别交y 轴、x 轴于点E 、F ,求证:AE =BF .O 图(4)BF EAH Gxy27、(9分)⑴如图⑴,将正方形OBAD 放置在平面直角坐标系中,使得点O 与坐标原点重合,点B 、D 分别在y 轴、x 轴的正半轴上,点P (a ,0)是x 轴上一点,连接BP ,将线段BP 以点P 为中心顺时针旋转90度,得到线段PC ,过点C 作CE ⊥x 轴于点E .当a <0时,求证:DE =OP .⑵若点P 在x 轴上运动,则∠PDC 的大小是否变化?如果不变化,请说明理由;如果变化,请直接写出a 的取值范围及相应的∠PDC 的大小.正方形边长为2.⑶如图⑵,过点C 作CG ∥x 轴,过点D 作DG ∥PC ,CG 、DG 交于点G ,N 为DC 的中点,M 为线段BP 的中点,正方形边长为2,请直接写出:在点P 运动过程中,线段MN 长度的最小值是多少?并指出此时的a 值.EO图(1)PC ABD xy y xD BA备用图Oy xD BA备用图ON M Gy xDB AC P图(2)O2020【育英二外】八年级(下)数学期中(答案)二、填空题(本题共10小题,每空2分,共计20分)三、解答题(本题共计11题,共68分) 17、(6分)⑴解:原式=+=−.⑵解:原式43=++7=+7=+ 18、(6分)解:原式()2221211x x x x +−−+=−222212+11x x x x x ++−−=−221x =−.⑴否,理由:分式的分子为常数,不等于0,分式不可能为0 ⑵否19、(4分)解:两边同时乘24x −:()()3422124x x x +=+−− 344224x x x +=+−+ 3426x x +=+ 2x = 将2x =代入24=0x −,∴2x =是增根∴原方程无解.20、(5分)解:原式()()()225322a a a a a a −++−=÷++()245223a a a a a −++=⨯+−()()()33223a a a a a a +−+=⨯+−3a a+=−要使分式有意义则:20a +≠且()30a a −≠,∴2a ≠−,0,3 可取1a =,代入上式得:1341+−=−.(答案不唯一) 21、(7分)解:⑴C⑵样本容量500,20a =;解析:已知E 组有40人,占总人数8%,样本容量为408%=500÷; B 组有100人,占总人数100100%=20%500⨯; 故A 组占1-20%-40%-28%-8%=4%,5004%20a =⨯=. ⑶C 组人数:200解析:50040%200⨯=⑷据统计情况,捐款在10至30元之间的占总人数20%40%60%+=, 4500名学生中约有450060%2700⨯=名学生在此区间. 22、(6分)⑴ 证明:∵四边形ABCD 是菱形∴AB CD =,AB ∥CD ∵AE CF =∴AB AE CD CF −=−,即BE DF =. 在四边形DEBF 中,BE ∥DF 且BE DF = ∴四边形DEBF 是平行四边形. ∵DE AB ⊥ ∴90DEB ∠=°∴四边形DEBF 是矩形.⑵ 解:设菱形的AB x =∵四边形ABCD 是菱形 ∴AB BC CD DA x ==== ∵2DF =∴2CF AE x ==−在Rt △ADE 中,222AD DE AE =+ 即:2224(2)x x =+−解得:5x = ∴5AB =∴菱形ABCD 的面积S DE AB =⨯=20.23、(6分)⑴ ∵反比例函数图象经过()2,1D −−∴代入解析式得:12m−=−,即2m = ∴反比例函数的表达式为:2y x= ∵反比例函数上有点()1,A a ∴解得2a = ∴A 点坐标为()1,2∵一次函数(0)y kx b k =+≠经过()1,2A 和()2,1D −−∴221k b k b +=⎧⎨−+=−⎩,解得11k b =⎧⎨=⎩ ∴一次函数的表达式为:1y x =+.⑵ ∵直线l 与x 轴垂直于(3,0)N 且与反比例函数交于点C ,∴2(3,)3C∴112=31223CON S ON CN ⨯⨯=⨯⨯=△⑶ 20x −<<或1x >.24、(5分)解:设港珠澳大桥的设计时速是x 千米/时,则按原来路程形式的平均时速是(40)x −千米/时.根据题意,得501180640x x ⋅−= 解得:100x =经检验,100x =是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米/时.25、(6分)⑴证明:连接BD在△ABD 中,∵E 、H 分别为边AB 、AD 的中点 ∴EH ∥BD ,12EH BD =在△CBD 中,∵F 、G 分别为边CB 、CD 的中点 ∴FG ∥BD ,12FG BD =∴EH ∥FG ,EH =FG∴中点四边形EFGH 是平行四边形.⑵答:中点四边形EFGH 是菱形 理由如下:连接AC 、BD ∵APB CPD ∠=∠∴APB BPC CPD BPC ∠+∠=∠+∠,即APC BPD ∠=∠ 在△APC 和△DPB 中, PA PD APC DPB PC PB =⎧⎪∠=∠⎨⎪=⎩∴△APC ≌△DPB (SAS ) ∴AC =DB在△DAC 中,∵H 、G 分别为边DA 、DC 的中点 ∴12HG AC =由⑴得:12EH BD =∴HG =EH由⑴得:中点四边形EFGH 是平行四边形 ∴中点四边形EFGH 是菱形. 26、(8分)⑴ 证明:过点C 、D 作CE 、DF 垂直于2l ,垂足分别为E 、F∴∠CEF =∠DFB =90°, ∴CE ∥DF∵12ABC S AB CE =⋅△,12ABD S AB DF =⋅△又∵ABC ABD S S =△△∴CE =DF∴四边形CEFD 是平行四边形 ∴CD ∥EF ,即1l ∥2l .P 图(2)HD G CF BE A l 1l 2DCF B E A图(2)ABCD E F G H 图(1)⑵ 证明:连接AD 、∵AC ⊥x ∴∠HDC =∴四边形 ∴12ADC S =△ 设()11,A x y ∵A 、B ∴11x y a =由图可得:2BD x =,11122ADC a S x y ==△,22122BDC aS x y ==△∴ADC BDC S S =△△由⑴可得:CD ∥AB ,即CD ∥BF ∵BD ⊥y 轴∴BD ∥CF∴四边形BDCF 是平行四边形.⑶ 证明:连接AG 、BH 、AO 、BO ∵AH ⊥y 轴,BG ⊥x 轴∴AH ∥x 轴,BG ∥y 轴由⑴可得:AHG AHO S S =△△,BGH BGO S S =△△ 设()11,A x y ,()22,B x y∵A 、B 在双曲线a y x=上 ∴11x y a =,22x y a =由图可得:11,HO y AH x ==;22,GO x BG y =−=− ∴AHO BGO S S =△△,∴AHG BGH S S =△△由⑴可得:GH ∥AB ,即GH ∥BE ,GH ∥AF 又∵BG ∥HE ,AH ∥GF∴四边形BGHE 、四边形AHGF 是平行四边形 ∴BE =GH =AF ∴AE =BF .O图(4)BF EAH Gxy27、(9分)⑴ 证明: 当a <0时,P 点在O 点左侧,且∠BOP =90° 由旋转可知PB =PC ,∠BPC =90°,即∠1+∠2=90°, ∵CE ⊥x 轴,∴∠CEP =90° ∴Rt △PCE 中,∠2+∠C =90° ∴∠1=∠C , 在△BOP 和△PEC 中1BOP PECCBP PC =∠⎧⎪∠=∠⎨⎪=⎩∠ ∴△BOP ≌△PEC (AAS ) ∴BO =PE∵正方形OBAD 中,OB=OD ∴OD=PE ,即OP +OE =DE +OE ∴OP =DE . ⑵变化.a <0时,∠PDC =45°;(如图①)a =0时,∠PDC 不存在(C 与D 重合); 0<a <2时,∠PDC =135°;(如图②) a =2时,∠PDC 不存在(P 与D 重合); a >2时,∠PDC =45°;(如图③)①a <0时,C (a +2,a )、D (2,0),∴CD 中点N (2a +1,2a ); ②a =0时,C 与D 重合,舍去;③0<a <2时,C (a +2,a )、D (2,0)不变,∴N (2a +1,2a ); ④2a ≥时,C (a +2,a )、D (2,0)不变,∴N (2a +1,2a );综上,MN =a =2时,线段MN 长度的最小值是1.21y xD BAC P图(1)OE。
南京市 2019-2020 学年八年级下学期期中数学试题(II)卷姓名:________班级:________成绩:________一、单选题1 . 二次根式在实数范围内有意义,则 的取值范围是( )A.B.C.D.2 . 方程 A.有两个不等的实数根,则 的取值范围是( ).B.C.D.且3 . 若关于 x 的方程 x2+2x-3=0 与有一个解相同,则 a 的值为( )A.1B.1 或-3C.-1D.-1 或 34 . 三角形的三边长分别为 6,8,10,则它的最长边上的高为( )A.4.8B.8C.6D.2.45 . 将代数式化成的形式为( )A.B.C.D.6 . 已知方程 A.的一次项系数是B.3C.D.17 . 下列二次根式中,可与 进行合并的二次根式为( )A.B.C.D.8 . 如图,在四边形中,,,,,且的面积是( )第1页共4页,则四边形A.B.C.D.9 . 如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情 况的面积关系满足 S1+S2=S3 的图形有( )A.1 个B.2 个C.3 个D.4 个10 . 有两棵树,一棵高 6 米,另一棵高 3 米,两树相距 4 米,一只小鸟从一棵树的树梢飞到另一棵树的树梢, 至少飞了( )米.A.3B.411 . 下面说法中,错误的是( )C.5D.6A.当时,根式在实数范围内有意义B.分母有理化的结果是C.当时,D.与不是同类二次根式12 . 某商品的进价为每件 元.当售价为每件 元时,每星期可卖出 件,现需降价处理,为占有市场份额,且经市场调查:每降价 元,每星期可多卖出 件.现在要使利润为元,每件商品应降价( )元.第2页共4页A.3B.2.5C.2D.5二、填空题13 . 如图,△ABO 的边 OB 在数轴上,AB⊥OB,且 OB=2,AB=1,OA=OC,那么数轴上点 C 所表示的数是_____. 14 . 计算: × =______.15 . 对于两个实数 a、b,定义运算@如下:a@b= ,例如 3@4= .那么 15@x2=4,则 x 等于______. 16 . 某农户种植花生,原来种植的花生亩产量为 200 千克,出油率为 50%(即每 100 千克花生可加工成花生 油 50 千克).现在种植新品种花生后,每亩收获的花生可加工成花生油 132 千克,其中花生出油率的增长率是亩产 量的增长率的二分之一.则新品种花生亩产量的增长率为________. 17 . 若(m+3)2+|n﹣2|=0,则﹣mn=_____ 18 . 已知方程 x2﹣5x+2=0 的两个解分别为 x1、x2,则 x1+x2﹣x1•x2 的值为______.三、解答题19 . 已知:关于 x 的方程 (1)求证:m 取任何值时,方程总有实根.(2)若二次函数的图像关于 y 轴对称.a、求二次函数 的解析式b、已知一次函数 立.,证明:在实数范围内,对于同一 x 值,这两个函数所对应的函数值均成(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于 x 的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.第3页共4页20 . “一路一带”倡议 6 岁了!到日前为止,中国已与 126 个国家和 29 个国际组织签署 174 份合作文件,共 建“一路一带”国家已由亚欧延伸至非洲、拉美、南太等区域.截止 2019 年一季度末,人民币海外基金业务规模约 3000 亿元,其投资范围覆盖交通运输、电力能源、金融业和制造业等重要行业,投资行业统计图如图所示.(1)求投资制造业的基金约为多少亿元?(2)按照规划,中国将继续对“一路一带”基金增加投入,到 2019 年三季度末,共增加投入 630 亿元,假设平均每季度的增长率相等,求平均每季度的增长率是多少? 21 . 某班数学兴趣小组在学习二次根式时进行了如下题目的探索研究:(1)填空:;;(2)观察第(1)题的计算结果回答: 一定等于;(3)根据(1)、(2)的计算结果进行分析总结的规律,计算: 22 . 解方程: (1).x2﹣5=4x(2).23 . 如 图 , 在中 , ∠ACB=90° , D 为 AB 的 中 点 , 若 ∠A=30° , CD=2 , 求 AC 的长.第4页共4页。
八年级下学期期中考试数学试题【含答案】一.选择题(共10题,每小题3分)1.下列式子中,属于最简二次根式的是( )A. 9B. 7C. 20D. 312.有意义,的取值范围是( )3. 下列几组数中,不能作为直角三角形三边长度的是( );A 、1.5,2,2.5B 、3,4,5C 、20,30,40D 、5,12,13 4.下列计算正确的是( ) A . B . C .D .5.如图,在平行四边形ABCD 中,下列各式一定正确的是( ) A.AC =BD B.AC ⊥BD C.AB =CD D.AB =BC6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4 B .3 C .2 D .17.直角三角形两直角边边长分别为6cm 和8cm ,则斜边的中线为( ) A .10cm B .3cm C .4cm D .5cm 8.矩形具有而菱形不一定具有的性质是( ) A .两组对边分别平行 B .对角线相等C .对角线互相平分D .两组对角分别相等9.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m10.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2, AD =4,则图中阴影部分的面积为 ( ) A .8 B .6 C .4 D .3二.填空题(每小题4分,共24分) 11.=-2)2(__________x12.菱形的两条对角线长分别为6和8,则这个菱形的周长为13、若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为.14.顺次连接任意四边形的各边中点,所得图形一定是 .15.如图,△ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=________.16.若0)1(32=++-nm,则m-n的值为三.解答题(每小题6分,共18分)17.(6分)241221348+⨯-÷18.我校要对如图所示的一块地进行绿化,已知AD=4m,CD=3m, AD⊥DC,AB=13m,BC=12m,求这块地的面积.19.如图所示,▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:AE=CF.四.解答题(每小题7分,共21分)20.先化简,再求值:1121222--÷+++xxxxx,其中x=.21、如图,四边形ABCD是一个矩形,BC=10cm,AB=8cm。
江苏省南京市鼓楼区育英外校八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列调查中,适宜采用普查方式的是()A.调查市场上酸奶的质量情况B.调查我市中小学生的视力情况C.调查某品牌圆珠笔芯的使用寿命D.调查乘坐飞机的旅客是否携带危禁物品2.(2分)为了了解某校八年级1000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是()A.1 000名学生是总体B.抽取的50名学生是样本容量C.每位学生的身高是个体D.被抽取的50名学生是总体的一个样本3.(2分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成4.(2分)如图,平行四边形ABCD的对角线BD的长为4cm,将平行四边形ABCD 绕其对角线的交点O旋转180°,则点B所经过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm5.(2分)如果把分式中的m和n都扩大3倍,那么分式的值()A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.(2分)如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.B.3C.4D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)“a是实数,|a|≥0”这一事件是事件.8.(2分)若分式的值为零,则x=.9.(2分)已知﹣=﹣4,则的值等于.10.(2分)一组数据分成了五组,其中第三组的频数是10,频率为0.05,则这组数据共有个数.11.(2分)已知菱形两条对角线的长分别为12和16,则这个菱形的周长为,面积为.12.(2分)某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用统计图来描述数据.13.(2分)点E、F、G、H分别为任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.14.(2分)某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)15.(2分)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.16.(2分)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE 绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)17.(16分)计算:(1)÷(2)﹣x+1(3)+(4)(+)÷.18.解方程(1)﹣=1(2)=﹣1.19.(8分)先化简,,再选择一个你喜欢的x代入求值.20.(6分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别是A(1,3),B(3,1).(1)画出△AOB绕点O逆时针旋转180°后得到△A′OB′;(2)点A关于点O中心对称的点A′的坐标为;(3)连接AB′、BA′,四边形ABA′B′是什么四边形:.21.(6分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.22.(6分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证明:FD=AB.23.(6分)某项工程如果由乙单独完成比甲单独完成多用6天;如果甲、乙先合做4天后,再由乙单独完成,那么乙一共所用的天数刚好和甲单独完成工程所用的天数相等.求甲单独完成全部工程所用的时间.24.(6分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.(8分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.江苏省南京市鼓楼区育英外校八年级(下)期中数学试卷参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.D;2.C;3.C;4.C;5.B;6.C;二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.必然;8.﹣3;9.;10.200;11.40;96;12.折线;13.AB =CD;14.0.6;15.3;16.135;三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)17.;18.;19.;20.(﹣1,﹣3);矩形;21.;22.;23.;24.;25.;。
2019-2020学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列分式中是最简分式的是()A.B.C.D.3.下列各式从左到右的变形正确的是()A. =B.C.D.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①; ②. 25.先化简,再从﹣3<a <3中选取一个你喜欢的整数a 的值代入求值. 26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min ),绘制成如下统计表(其中A 表示0~10min ;B 表示11~20min ;C 表示21~30min ,时间取整数):a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min 的学生人数.27.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO=CO ,BO=DO ,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF :∠FDC=3:2,DF ⊥AC ,则∠BDF 的度数是多少?28.如图,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC+∠EAD=180°,△ABC 不动,△ADE 绕点A 旋转,连接BE 、CD ,F 为BE 的中点,连接AF .(1)如图①,当∠BAE=90°时,求证:CD=2AF ;(2)当∠BAE ≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2019-2020学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD 面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,∴原式==2.【点评】本题考查了分式的化简求值,掌握因式分解以及分式的约分、通分是解题的关键.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),。