小学数学典型应用题8--追及问题
- 格式:doc
- 大小:16.00 KB
- 文档页数:6
精心整理追及问题解决追及问题的基本关系式是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,【例1150÷(【例2】60【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速度差。
解:(1)两车路程差为:54×2=108(千米)(2)第二辆车追上所用时间:108÷(63-54)=12(小时)答:第二辆车追上第一辆车所用的时间为12小时。
【小结】这道追及问题是不同时的,要先算出追及路程。
【及时练习】1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?2分钟出发,【例4】250跑18【及时练习】两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?【例5】在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?【分析与解】此题属于追及问题,首先明确路程差和速度差,开始甲、乙在圆径的两端,其路程差为圆周长的一半,400÷2=200(米),当甲追上乙后,如果再想追上乙必须比乙多行圆的一周的路程,即一周400米为路程差,根据不同的路程差,我们可以求出甲追上乙一次,所用的时间,在总时间中去掉第一次的追及时间再看剩下的时间里包含几个“甲追上乙所用的时间”就可以求出2小时内甲追上乙的次数。
相遇问题应用题专项练习30题1、甲城到乙城的公路长470千米。
快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。
两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。
两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。
两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。
甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。
相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。
五年级追及问题练习题列方程解答1、甲乙两人从 A 地到 B 地,乙每分走 65 米,先走了300 米后甲才出发,甲每分走 80 米。
甲追上乙需要多少时间?2 、甲乙两人从 A 地到 B 地,乙每分走 65 米,先走了300 米后甲才出发, 20 分钟后甲追上乙。
求甲的速度。
3 、甲乙两人从 A 地到 B 地,甲以每分 80 米的速度去追先出发的乙,乙每分走65 米。
甲用 20 分钟追上乙。
乙比甲先出发多少米?4、师徒两人加工同一种零件,师傅每小时加工120个,徒弟每小时加工90 个,徒弟先加工 2 小时后,师傅才开始工作,师傅工作几小时后两人做的零件数相等?5、两辆汽车都从甲地开往乙地,甲车每小时行60 千米,乙车每小时行80 千米。
甲车出发行了50 千米后,乙车才出发。
乙车行多少小时后追上甲车?6、AB两地相距600 米,甲乙两人同时分别从A、B 两地向同一个方向行走,甲前乙后。
甲每分行40 米, 6 分钟后乙追上甲,求乙的速度。
五年级奥数练习题:追及问题例 1:两辆汽车从 A 地到 B 地,第一辆汽车每小时行54 千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发几小时追上第一辆汽车?1、甲、乙两人相距150 米,甲在前,乙在后,甲每分钟走 60 米,乙每分钟走 75 米,两人同时向南出发,几分钟后乙追上甲?2 、骑车人与行人同一条街同方向前进,行人在骑自车人前面450 米处,行人每分钟步行60 米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?例 2:双胞胎姐妹在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚 10 分钟出发,为了不迟到,她以每分钟 150 米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?1 、哥哥和弟弟在同一所学校读书,哥哥每分钟走 60 米,弟弟每分钟走 40 米,有一天弟弟先走 5 分钟后,哥哥才从家出发,当弟弟到达学校时,哥哥正好追上弟弟也到达学校,问他们家离学校有多远?2 、小明以每分钟 80 米的速度步行上学,他走后 20 分钟爸爸发现忘带作业本,立即骑摩托车去送,爸爸骑摩托车每分钟行驶 480 米,追上小明时距离学校还有 200 米的路程,求学校离小明家的路程。
小学数学典型应用题8:追及问题(含解析)追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】★追及时间=追及路程÷(快速-慢速)★追及路程=(快速-慢速)×追及时间解题思路和方法简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例1:某警官发现前方100米处有一匪徒,匪徒正以每秒2米的速度逃跑。
警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。
解:1、从警官追开始到追上匪徒,这就是一个追及过程。
根据公式:路程差÷速度差=追及时间。
2、路程差为100米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。
所以追及的时间为100÷1=100(秒)。
例2:甲乙二人同时从400米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。
那么甲乙二人出发后()秒第一次相遇?解:1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲。
所以,乙的路程=甲的路程+一周跑道长度,即追及路程为400米。
2、由追及时间=总路程÷速度差可得:经过400÷(8-6)=200(秒)两人第一次相遇。
例3:小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
那么甲、乙两地相距多远?解:1、根据题意,将较复杂的综合问题分解为若干个单一问题。
首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。
最后通过大客车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。
追及问题课时一初步理解追及问题一、导入今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,下面我们就通过一个例子来给大家讲叙怎样解决追及问题。
例:兔子在狗前面150米,一步跳2米,狗更快,一步跳3米,狗追上兔子需要跳多少步?我们知道,狗跳一步要比兔子跳一步远3—2=1(米),也就是狗跳一步可以追上兔子1米,现在狗与兔子相距150米,因此,只要算出150米中有几个1米,那么就知道狗跳了多少步追上兔子的。
不难看出150÷1=150(步),这是狗跳的步数。
这里兔子在前面跳,狗在后面追,它们一开始相差150米,这150米叫做“追及距离”;兔子每步跳2米,狗每步跳3米,它们每步相差1米,这个叫“速度差”;狗追上兔子所需的步数叫做“追及步数”有时是以秒、分钟、小时计算,则叫“追及时间”,像这种包含追及距离、速度差和追及时间(追及步数)三个量的应用题,叫做追及问题。
二、新课讲授1、速度差:快车比慢车单位时间内多行的路程。
即快车每小时比慢车多行的或每分钟多行的路程。
追及时间:快车追上慢车所用的时间。
路程差:快车开始和慢车相差的路程。
2.熟悉追及问题的三个基本公式:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差3.解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。
三、例题分析例1 甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?思路分析:这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速度差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。
例2 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?思路分析这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:速度差:450÷3=150(米)自行车的速度:150+60=210(米)答:骑自行车的人每分钟行210米。
小学数学典型应用题(一)小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题.1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。
追及问题是行程问题中的另一种典型应用题,是同向运动问题。
一般的追及问题:甲、乙两个人同时行走,甲的速度快,乙的速度慢,当乙在甲前面时,甲经过一段时间后就可以追上乙。
这就产生了“追及问题”。
要计算走得快的人在某一段时间内比走得慢的人多走的路程,也就是要计算两人走的路程之差即追及路程。
追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间重点·难点追及问题中也涉及到三个量之间关系的转化:路程差=速度差×追及时间速度差=路程差÷追及时间追及时间=路程差÷速度差这里的追及时间是指共同使用的同一段时间。
在追及问题中还会涉及到环形跑道和列车问题。
都可以根据具体条件转化成普通的追及问题。
学法指导把握基本公式:路程差=速度差×追及时间。
路程差是指在相同时间内速度快的比速度慢的多行的距离,速度差是单位时间内速度快的与速度慢的路程差,追及时间是从出发到追上所经历的时间。
在理解以上概念时要从具体的追及问题入手,掌握好公式中的数量关系,不被表面现象所迷惑,才能正确解题。
经典例题[例1]甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。
求:甲、乙二人的速度各是多少?思路剖析如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差;甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。
如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差:2×9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。
解答(1)甲、乙两人的速度差:40÷20=2(米/秒)(2)乙速:2×9÷6=3(米/秒)甲速:3+2=5(米/秒)答:甲、乙二人的速度分别为5米/秒和3米/秒。
小学数学应用题典型详解追及问题学习教案教案:小学数学应用题典型详解——追及问题教学内容:本节课我们学习的是小学数学应用题中的追及问题。
追及问题是指在运动过程中,两个或多个物体相互追赶的问题。
本节课我们以人教版小学数学五年级下册第87页的例题和练习题为例进行学习。
教学目标:1. 学生能理解追及问题的概念,并能正确列出追及问题的数量关系式。
2. 学生能运用基本的数学运算方法解决追及问题。
3. 学生在解决追及问题的过程中,培养逻辑思维能力和解决问题的能力。
教学难点与重点:难点:学生对追及问题数量关系式的理解和运用。
重点:学生能正确列出追及问题的数量关系式,并能运用基本的数学运算方法解决问题。
教具与学具准备:教具:黑板、粉笔、多媒体教学设备学具:练习本、笔教学过程:一、实践情景引入(5分钟)教师通过讲解一个实际生活中的追及问题,引导学生思考和理解追及问题的实质。
二、例题讲解(10分钟)教师在黑板上写出例题,引导学生一起分析问题,讲解解题思路和方法。
三、随堂练习(10分钟)教师给出几道类似的追及问题练习题,学生独立完成,教师挑选几份作业进行讲解和分析。
五、板书设计(5分钟)教师根据本节课的内容,设计板书,突出追及问题的数量关系式和解题步骤。
六、作业设计(5分钟)小明和小华同时从同一地点出发,小明每分钟走50米,小华每分钟走60米,5分钟后小华追上了小明,问小华一共走了多少米?答案:小华一共走了300米。
2. 请结合生活实际,自己设计一个追及问题,并列出数量关系式和解答过程。
课后反思及拓展延伸:教师在课后反思本节课的教学效果,针对学生的掌握情况,进行针对性的辅导和讲解。
同时,教师可以给学生推荐一些相关的学习资源,拓展学生的知识面。
重点和难点解析:一、实践情景引入(5分钟)补充和说明:在实践情景引入环节,教师可以通过讲述一个发生在校园里的追及故事,例如:两名同学在学校的操场上进行跑步比赛,其中一名同学起步晚,但速度快,另一名同学起步早,但速度慢。
相遇问题应用题专项练习30题1、甲城到乙城的公路长470千米。
快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。
两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。
两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。
两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。
甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。
五年级数学思维训练《追及问题》应⽤题及答案五年级数学思维训练《追及问题》应⽤题及答案,家长给孩⼦做⼀做!【经典习题1】AB两地相距80⽶,甲在A地,⼄在B地,他们同时同向出发,甲每秒跑5⽶,⼄每秒跑3⽶,甲追上⼄要⽤⼏秒?利⽤公式:追及距离÷(速度差)=追及时间,可知:80÷(5+3)=10(秒)答:甲追上⼄要⽤10 秒。
【经典习题2】⼩王和⼩李都在甲地,准备去⼄地,⼩王每分钟⾏120⽶,⼩李每分钟⾏150⽶。
⼩王先⾏5分钟,⼩李才出发,经过⼏分钟后⼩李追上⼩王?这道题最关键的地⽅是要求出追及距离,隐藏在这句话中“⼩王先⾏5分钟”。
说明两⼈的追及距离是120×5= 600(⽶),然后利⽤公式计算:606÷(150-120)=20(分)答:经过20分钟后,⼩李追上⼩王。
【经典习题3】⼀辆汽车每⼩时⾏60千⽶的汽车去追⼀辆先⾏96千⽶的汽车,已知⾏了480千⽶后追上,那么先⾏的汽车每⼩时⾏多少千⽶?后⾯的这辆汽车追了480千⽶追上前⾯的车,总共追的时间是:480÷60=8(⼩时),⽽前⾯的汽车在这8⼩时中⾏驶的路程是480-96=384(千⽶),因此384÷8=48 (千⽶)答:先⾏的汽车每⼩时⾏48千⽶。
【经典习题4】:甲每分钟⾏80⽶,⼄每分钟⾏60⽶,两⼈同时从A地到B地,结果甲⽐⼄早到5分钟,求两地的路程有多少⽶?甲⽐⼄早到5分钟,说明甲到终点的时候,⼄距离终点还有60×5=300 (⽶),把线段图倒过来看,可以看作⼄先⾏5分钟,然后甲开始追,最后在A点追上。
因此,这300⽶可以看作两⼈的追及路程,300÷(80-60)=15(分),这15分是甲从A地到达B地时间,那么甲⼄之间的距离是80×15=1200 (⽶)答:两地的路程有1200⽶。
【经典习题5】:甲⼄两⼈分别从相距18千⽶的西城和东城向东⽽⾏,甲骑⾃⾏车每⼩时⾏14 千⽶,⼄步⾏每⼩时⾏5千⽶,⼏⼩时后甲可以追上⼄?18÷(14-5) =2 (⼩时)答:2⼩时后甲可以追上⼄.【经典习题6】:哥哥和弟弟去⼈民公园参观菊花展,弟弟每分钟⾛50⽶,⾛了10分钟后,哥哥以每分钟70⽶的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50) =25 (分钟)答:经过25分钟以后哥哥可以追上弟弟。
小学数学典型应用题8
8 追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马
解(1)劣马先走12天能走多少千米 75×12=900(千米)
(2)好马几天追上劣马 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。
又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。
由此推知
追及时间=[10×(22-6)+60]÷(30-10)
=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解这道题可以由相遇问题转化为追及问题来解决。
从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]
=88×4
=352(千米)
答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远
解要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。
如果从家一开始就
跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以
步行1千米所用时间为 1÷[9-(10-5)]
=(小时)
=15(分钟)跑步1千米所用时间为 15-[9-(10-5)]=11(分钟)
跑步速度为每小时 1÷11/60=(千米)
答:孙亮跑步速度为每小时千米。