分子轨道理论简介
- 格式:ppt
- 大小:940.50 KB
- 文档页数:25
分子轨道理论1 分子轨道理论分子轨道是由2个或多个原子核构成的多中心轨道。
分子轨道的波函数也是Schrödinger方程的解。
分子轨道分为成键分子轨道与反键分子轨道,前者是原子轨道同号重叠(波函数相加)形成,核间区域概率密度大,其能量比原子轨道低;后者是原子轨道异号重叠(波函数相减)形成的,核间区域概率密度小,两核间斥力大,系统能量提高,如图所示:2 同核双原子分子1).氢分子氢分子是最简单的同核双原子分子。
两个氢原子靠近时,两个1s原子轨道(AO),组成两个分子轨道(MO):一个叫成键轨道,另一个叫反键轨道。
氢分子的两个电子进入成键轨道电子构型或电子排布式为。
电子进入成键轨道,使系统能量降低,进入反键轨道将削弱或抵消成键作用。
2).分子轨道能级图与分子轨道形状第二周期元素原子组成分子时,用2s,2p 原子轨道组成的分子轨道,示于图9-3-2由图可见,分子轨道的数目等于用于组合原子轨道数目。
两个2s原子轨道组成两个分子轨道和,6个2p原子轨道组成6个分子轨道,其中两个是σ分子轨道(和)4个是π分子轨道(两个和两个)。
相应的原子轨道及分子轨道的形状如图下所示。
由图可见:●成键轨道中核间的概率密度大,而在反键轨道中,则核间的概率密度小。
●一对2p z 原子轨道以“头碰头”方式组合形成分子轨道,时,电子沿核间联线方向的周围集中;一对2p x(2p y)原子轨道以“肩并肩”方式组合形成分子轨道,时,电子分布在核间垂直联线的方向上。
3).氧分子O2共有16个电子,O2的电子构型:O2分子有两个自旋方式相同的未成对电子,这一事实成功地解释了O2的顺磁性。
O2中对成键有贡献的是(σ2p)2和(π2p)4这3 对电子,即是一个σ键和两个π键。
O2的两个π键是三电子π键,反键轨道中的一个电子削弱了键的强度,一个三电子π键相当于半个键,故O2的叁键实际上与双键差不多。
4).氮分子N2的分子轨道能级图与O2比较,只是在和的相互位置有区别。
分子轨道理论及基态与激发态分子轨道理论基本概念一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。
分子轨道由原子轨道线性组合而成。
二、成键三原则:能量相近、最大重叠、对称性匹配。
只有对称性相同的两个原子轨道才能组成分子轨道。
σ对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号不变。
如S,Px,d x2-y2为σ对称。
π对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号改变。
Py,Pz,d xy是π对称。
由σ对称的原子轨道组成的键——σ键由π对称的原子轨道组成的键——π键三、成键轨道与反键轨道分子轨道与原子轨道的联系:轨道守恒——2个原子轨道线性组合,产生2个分子轨道;能量守恒——2个分子轨道的总能量等于2个原子轨道的总能量;能量变化——每个分子轨道的能量不同于原子轨道的能量组合结果—定会出现能量高低不同的两个分子轨道。
——这是原子轨道线性组合的方式不同所致。
波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各原子轨道能量都低,成为成键分子轨道。
波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各原子轨道能量都高,成为反键分子轨道。
四、电子填入分子轨道时服从以下原则:1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。
2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。
3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道基态与激发态当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。
通常情况下,分子处于基态。
激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。
第五章分子轨道理论5.1 Hatree-Fock 方程Hatree-Fock 近似,也就是分子轨道近似,是量子化学中心之一,分子中的电子占据轨道,这是化学家头脑中很容易想到的。
首先,我们推导一下Hatree-Fock 方程。
由于绝大多数分子都是闭壳层的,因此我们都可以用单slater 行列式作为其波函数,即12N C f f f ψ=设我们有正交集i j ij f f δ= 则一、二阶约化密度矩阵为:'*'11111''111112''21212''112122(,)()()(,)(,)1(,;,)2(,)(,)i i ix x f x f x x x x x x x x x x x x x ρρρρρρ∧∧∧∧∧∧==∑改写一下(Dirac ):*'*'11122*'*'2122''1212()()()()12()()()()1[()()()()]2NNi i i i iiNNj j j j jjN i j i j i jj i i jf x f x f x f x f x f x f x f x f x f x f x f x f f f f ρ∧≠==-∑∑∑∑∑12(1)(1,2)1(1)[(1,2)(1,2)]2(1,2)(1,2)1[]2r r Ni i i j i j i j j i ii ji i i ii i i i Ni i i j i j i j j i iijE T h T g f h f f f g f f f f g f f f f g f f f f g f f E f h f f f g f f f f g f f ρρ∧∧∧∧≠=+=+--=+-∑∑∑∑因为i=j 时,=0不影响上式因此现在就是要利用变分法,看在限制i j ij f f δ=下,什么样i f 的会使E 最小,所以要利用Lagrange 乘子法:**()Nij i j ij ij iji ij ij Nij i jij ij iji j i j j i ij ij ji ij L E f f f L E f f L f f f f f f εεδεδεεεεεεε=--=-=∴=∑∑ 对变分,为常数,可不管。
化学中的分子轨道理论化学是一门研究物质性质、组成及变化的科学,其中一个重要的方面是了解分子的构成和化学键的形成。
分子轨道理论是一个用于解释分子结构和化学键形成的重要理论。
在本文中,我们将深入探讨分子轨道理论的基本概念和应用。
分子轨道理论的基本概念分子轨道理论将分子看作是由原子轨道之间形成的新的轨道而构成。
原子轨道是一种描述电子位置的数学函数,它们描述了单个原子中电子的可能位置和能量。
但是,在两个或多个原子共同存在的分子中,原子轨道就发生了重叠,而由此形成了新的分子轨道。
有两种类型的分子轨道:成键分子轨道和反键分子轨道。
成键分子轨道是由原子轨道之间重叠形成的,这种重叠是化学键形成的原因。
反键分子轨道是由原子轨道不重叠的区域形成的,它们和成键分子轨道几乎具有相等的能量,但是它们的电子不会在化学键形成过程中参与,因此它们被称为反键分子轨道。
分子轨道理论的应用分子轨道理论可以用于解释分子的性质和化学反应。
让我们以氢分子为例,探讨分子轨道理论是如何解释氢分子的存在和相互作用的。
氢原子的电子结构是1s,其中一个s轨道中有一个电子。
当两个氢原子形成一个分子时,它们的s轨道相互重叠并形成了两个新的分子轨道:成键分子轨道和反键分子轨道。
成键分子轨道比原子轨道更稳定,因为它们的波函数符号相同,从而促进电子的互相吸引。
相反,反键分子轨道比成键分子轨道更不稳定,因为它们的波函数符号相反,在这种情况下,电子之间会互相排斥。
由于成键分子轨道比反键分子轨道更稳定,氢分子的所有电子都处于成键分子轨道中。
这样,它们就形成了共价键,并达到了更稳定的电子结构。
这就解释了为什么氢分子是存在的,而单个氢原子不会稳定存在。
分子轨道理论还可以用于预测化学反应的速率和化学键的强度。
它可以通过计算分子轨道重叠的程度来预测键的稳定性和长度。
此外,在有机化学中,分子轨道理论可以解释的许多现象,如亲电性、电子云和取代反应。
总结分子轨道理论是一个重要的化学理论。
什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。
该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。
分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。
在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。
以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。
分子轨道理分子轨道是描述分子中电子运动状态的波函数。
主要有4种类型的分子轨道:σ轨道、π轨道、非键轨道和反键轨道。
这些轨道的形状和能量级别决定了分子中电子的排布和化学性质。
下面将详细介绍这几种分子轨道的特征和相关理论。
首先是σ轨道。
σ轨道是分子中电子云最密集的轨道,具有球对称的形状。
它沿着化学键的轴向分布,所以也被称为轴向轨道。
σ轨道可以由两个原子轨道叠加而成,每个原子提供一个电子。
根据平面对称性的不同,σ轨道可以分为σ-s和σ-p轨道,前者为电子密度在分子中心沿轴向对称的轨道,后者为电子密度在分子平面中的两个方向上对称的轨道。
σ轨道主要参与形成化学键,是稳定的分子轨道。
接下来是π轨道。
π轨道具有两个相互垂直的环面,分别在化学键的上、下两侧。
与σ轨道不同,π轨道是运动在较大空间范围内的,所以也被称为侧向轨道。
π轨道可以由两个平行的原子轨道叠加而成,每个原子提供一个电子。
根据能级的不同,π轨道可以细分为π-s和π-p轨道,两者的电子密度在平面内的分布形式不同。
π轨道在化学键的形成中起到重要作用,决定了分子的共轭结构和反应性质。
非键轨道是分子中存在于原子之间的轨道。
它们是离域的电子轨道,不通过化学键与特定原子相关联。
非键轨道的能量相对较高,电子密度较低。
由于非键轨道的存在,分子可以吸收外部能量激发电子至非键轨道,从而进行各种光化学和电化学反应。
反键轨道与化学键中的σ和π轨道相对应,具有相同的空间分布形式,但电子的运动方向相反。
反键轨道的能级相对较高,电子密度较低。
它们主要参与分子中电子的排斥和共振现象,以及反应中的电荷转移。
分子轨道理论是通过量子力学的计算方法和原理来描述分子中电子的分布和运动状态,为解释分子光谱和化学反应提供了依据。
根据分子轨道理论,可以计算分子轨道的能级、形状和电子密度,并预测分子的化学性质。
分子轨道理论的成功应用包括描述分子的电子结构、解释分子间相互作用、预测分子的稳定性和反应性,以及设计新的功能分子。
分子轨道理论的基本概念分子轨道理论是描述分子内电子结构的理论框架,它是理解分子化学和化学反应的重要工具。
在分子轨道理论中,分子中的电子被认为存在于由原子核构成的分子轨道中,这些分子轨道是原子轨道的线性组合。
通过分子轨道理论,我们可以更好地理解分子的稳定性、反应性以及光谱性质。
本文将介绍分子轨道理论的基本概念,包括分子轨道的构成、分子轨道的类型以及分子轨道的能级顺序等内容。
1. 分子轨道的构成在分子轨道理论中,分子轨道是由原子轨道线性组合而成的。
原子轨道可以是原子的1s、2s、2p等轨道,它们在形成分子时会相互叠加、重叠并形成新的分子轨道。
分子轨道的构成可以通过线性组合原子轨道(Linear Combination of Atomic Orbitals,LCAO)方法来描述。
在LCAO方法中,原子轨道的波函数被线性组合,从而形成分子轨道的波函数。
通过适当的线性组合系数,可以得到不同类型的分子轨道,如σ轨道、π轨道等。
2. 分子轨道的类型根据分子轨道的对称性和能量特征,可以将分子轨道分为不同类型。
其中,σ轨道是沿着两原子核之间轴向的对称轨道,具有较高的电子密度;π轨道则是垂直于两原子核之间轴向的对称轨道,电子密度主要集中在两原子核之间的区域。
此外,还有δ轨道、φ轨道等其他类型的分子轨道,它们在不同的分子结构中扮演着重要的角色。
这些不同类型的分子轨道在分子的形成和反应中起着至关重要的作用。
3. 分子轨道的能级顺序分子轨道的能级顺序是指不同类型的分子轨道在能量上的排布顺序。
一般来说,σ轨道的能量较低,π轨道的能量次之,而δ轨道、φ轨道等能级较高。
这种能级顺序的排布对于分子的稳定性和反应性具有重要影响。
例如,在烯烃分子中,π轨道的能级较低,因此烯烃具有较高的反应活性;而在芳香烃中,芳香环中的π轨道形成了稳定的共轭体系,使得芳香烃具有较高的稳定性。
4. 分子轨道的叠加和排斥在分子轨道理论中,分子轨道之间存在叠加和排斥的相互作用。
分子轨道理
分子轨道理论是一种解释分子化学性质的理论,主要应用于复杂化学物质的计算和设计。
该理论结合量子力学和分子对称性理论,通过对分子中原子轨道的组合和相互作用的分析,得出分子轨道能级和电子分布,进而预测分子性质及其反应活性。
其主要内容包括:
1. 原理:分子轨道理论的核心原理是“波函数线性组合原理”,即分子轨道是由原子轨道按照一定的线性组合方式组成的。
线性组合系数称为“分子轨道系数”。
2. 能级:分子轨道能级是由原子轨道相互作用而形成的,其数目等于参与组合的原子轨道数目。
能级顺序和大小与分子轨道系数及原子轨道能级之间的相互作用有关。
3. 分子轨道类型:根据分子轨道能级和分子轨道系数的不同,分子轨道可分为sigma(σ)轨道、pi(π)轨道、delta(δ)轨道等。
4. 分子轨道的对称性:分子对称性对分子轨道的能级和分子性质有很大影响。
相同对称性的原子轨道组合会形成对称性相同的分子轨道。
5. MO图解:MO图是分子轨道理论的重要表述方式,用于描述分子中电子的能级和分布情况。
其结构为横坐标为分子轨道能级,纵坐标为分子轨道系数的坐标轴。
6. 应用:分子轨道理论可应用于物理、化学、生物等领域,如
化学反应机理、分子光谱学、药物设计等。
7. 限制和局限:分子轨道理论适用于与原子轨道相似的分子,但对于复杂分子和高能态的描述有一定局限性。
分子轨道理论2011级弘毅学堂化学班2011301040014 田健吾分子轨道理论(又称MO法)是建立在量子力学理论体系基础之上的理论,以薛定谔波动方程为基础。
通过对原子轨道的线性组合(LCAO,linear combination of atomic orbitals)来确定其组合而成的分子轨道的形状以及能量高低。
分子轨道理论与现有的其他几种理论的比较现有的常用分析分子构型与能量的理论有路易斯结构理论,VESPER theory,VB法,杂化轨道理论与MO法。
此外还有建立于VB法上的共振理论,这些理论在各自适用范围内对分子进行处理各有其优点:路易斯结构理论最为简单,仅需考虑最外层电子数为8(氢为2)来调整共用电子对数即可,但是局限性也相对较大,仅能粗略分析共用电子对情况,不能预测与解释分子构型与能量;VESPER理论也是较为简单的理论,但是在处理很多的分子中都取得了非常好的结果,如对甲烷、六氟化硫等分子的构型,都能很成功的预测与解释,使用起来十分方便。
缺点也比较明显:过于强调价层电子的排斥效应而忽略了其内层电子以及轨道之间相互作用对构型的影响,特别是涉及到过渡金属配合物的John-Taller效应的时候,就完全无法解释,由于没有考虑到具体中心离子与配体轨道的作用,这是可想而知的结果;经典VB 法基于自旋反平行的两电子波函数符号一致,通过组合使得体系能量降低而形成稳定分子。
有单电子原子轨道与另一原子上填充单电子的原子轨道相结合形成共价键或带成对电子的轨道与另一原子中的空轨道重叠形成配位键两种。
经典VB法也是较为朴素的理论之一,因此局限性也是较大的,只能得出与参与成键的AO形状及伸展方向相同的分子构型,对于甲烷等分子的构型就完全不能解释,此时则需要引入杂化轨道理论,杂化轨道理论总体思想是通过两个或多个原子轨道的组合变形,使得达到成键轨道重叠最大的目的,从而使得体系能量达到较低的值。
但是Pauling对于杂化轨道理论的解释特别是对电子的激发与轨道杂化的能量来源的解释比较牵强,用薛定谔波动方程来理解其杂化过程可能可以用原子接近时对其各自波动方程的势能项有影响,从而改变了其原子轨道的形状来解释,但是如此也并不能解释电子的激发是如何进行的,除此之外,是否势能项的变化真的总是朝着使得轨道变形后趋向于与其他原子轨道重叠更充分的方向进行,这还是一个很大的问题。
分子轨道理论及基态与激发态分子轨道理论基本概念一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。
分子轨道由原子轨道线性组合而成。
二、成键三原则:能量相近、最大重叠、对称性匹配。
只有对称性相同的两个原子轨道才能组成分子轨道。
σ对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号不变。
如S,Px,d x2-y2为σ对称。
π对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号改变。
Py,Pz,d xy是π对称。
由σ对称的原子轨道组成的键——σ键由π对称的原子轨道组成的键——π键三、成键轨道与反键轨道分子轨道与原子轨道的联系:轨道守恒——2个原子轨道线性组合,产生2个分子轨道;能量守恒——2个分子轨道的总能量等于2个原子轨道的总能量;能量变化——每个分子轨道的能量不同于原子轨道的能量组合结果—定会出现能量高低不同的两个分子轨道。
——这是原子轨道线性组合的方式不同所致。
波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各原子轨道能量都低,成为成键分子轨道。
波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各原子轨道能量都高,成为反键分子轨道。
四、电子填入分子轨道时服从以下原则:1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。
2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。
3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道基态与激发态当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。
通常情况下,分子处于基态。
激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。
有机化学中的分子轨道理论在有机化学中,分子轨道理论是一种重要的理论工具,用于解释有机分子的化学性质和反应机理。
分子轨道理论基于量子力学的原理,通过计算和描述分子中电子的运动状态,从而揭示了分子中化学键的形成和断裂、化学反应的进行等重要现象。
本文将介绍有机化学中的分子轨道理论的基本概念、应用以及研究进展。
一、分子轨道理论的基本概念分子轨道理论是基于原子轨道的概念,原子轨道是描述单个原子中电子运动状态的函数。
在一个分子中,原子之间通过共价键形成连接。
根据量子力学的原理,分子中的电子不再局限于单个原子,而是在整个分子中运动。
因此,分子的电子状态需要用一组轨道来描述,这组轨道被称为分子轨道。
分子轨道可以通过线性组合原子轨道(Linear Combination ofAtomic Orbitals,简称LCAO)的方法得到。
LCAO方法假设分子中的分子轨道是由原子轨道线性组合而成的,即每个原子轨道会形成分子轨道的一部分。
通过线性组合的过程,得到的分子轨道既保留了原子轨道的主要特征,又反映了分子中电子的运动状态。
分子轨道可以分为成键轨道和反键轨道。
成键轨道是由原子轨道线性组合形成的,对分子中的共价键的形成起着积极的作用;而反键轨道则是在原子轨道的基础上得到的,它们对共价键的形成没有帮助,反而会削弱共价键。
在分子中,成键轨道和反键轨道总是呈成对存在,它们之间通过分子中的原子核进行相互作用,形成了稳定的分子。
二、分子轨道理论的应用分子轨道理论在有机化学中有着广泛的应用。
它可以通过分析分子轨道的能级和电子分布,预测有机分子的性质和反应行为。
1. 能级结构分子轨道理论可以帮助确定分子中的能级结构。
不同的分子轨道具有不同的能级,电子会填充在低能级的轨道中。
通过计算和实验,可以确定分子中各个分子轨道的能级顺序,从而预测有机分子的稳定性、光谱性质等重要特性。
2. 共价键的形成和断裂分子轨道理论解释了共价键的形成和断裂过程。