同余定义和性质
- 格式:ppt
- 大小:95.00 KB
- 文档页数:14
小升初数学复习知识点:余数、同余与周期余数、同余与周期一、同余的定义:①若两个整数a、b除以m的余数相同,则称a、b对于模m 同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m 同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d (mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d (mod m);⑥乘方性:若a≡b(mod m),则an≡bn(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方的预备知识:①若A=a×b,则MA=Ma×b=(Ma)b②若B=c+d则MB=Mc+d=Mc×Md四、被3、9、11除后的余数特征:①一个自然数M,n表示M的各个数位上数字的和,则M≡n (mod 9)或(mod 3);②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
以上是数学网为小升初的考生们整理的小升初数学总复习知识点,希望能够关注到同学们。
更多内容请关注数学网小升初频道。
第三章 同余§1 同余的概念及其基本性质定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作()\mod a b m ≡.甲 ()mod .a a m ≡(甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.)乙 若()mod ,a b m ≡则()mod .b a m ≡丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡⇔-证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是,()12,|.a b m q q m a b -=--反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是,()()1221.r r m q q a b -=-+-故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡±证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-戊 若()()1122mod ,mod ,a b m a b m ≡≡则()1212mod .a a bb m ≡ 证 因()()1122mod ,mod a b m a b m ≡≡,故1122|,|.m a b m a b --又因()()()1212111212211122,a a bb a b b a bb a a b b a b -=-+-=-+-故()12121212|,mod .m a a bb a a bb m -≡ 定理2 若()()11mod ,mod ,1,2,,,kki i A B m x y m i k αααα≡≡=则()11111111,,,,mod .k k k kkkk k A xx B y y m αααααααααααα≡∑∑特别地,若()mod ,0,1,,i i a b m i n ≡=,则()111010mod .n n n n n n n n a x a x a b x b x b m ----+++≡+++证 因()mod ,1,2,,i i x y m i k ≡=故,1,2,,iii i x y i k αα≡=,从而()1111mod .k k k k x x y y m αααα≡又因()11mod kkA B m αααα≡,故()()111111111111111,,,,mod ,mod .k k kk k k kkkk k k k A xx B y y m A xx B y y m αααααααααααααααααααα≡≡∑∑己 若()()mod ,,1,ka kb m k m ≡=则()mod .a b m ≡证 因()mod ka kb m =,故()|.m ka kb k a b -=-又因(),1k m =,故()|,mod .m a b a b m -≡庚 (ⅰ)若()mod ,0,a b m k ≡>则()mod .ka kb km ≡ (ⅱ)若()mod ,|,|,|,0,a b m d a d b d m d ≡>则mod .a b m d d d ⎛⎫≡ ⎪⎝⎭证 (ⅰ)因()mod ,0a b m k ≡>,故()()|,|,mod .m a b km k a b ka kb ka kb km --=-≡(ⅱ)因()mod ,a b m ≡故|,.m a b a b mq --=又因|,|,|,0d a d b d m d >111111,,,0,0,0a da b db m dm a b m ===>>>. 于是()111111111,,mod ,mod .a b m da db dm q a b m q a b m d d d ⎛⎫-=-=≡≡ ⎪⎝⎭辛 若()mod ,1,2,,i a b m i k ≡=,则[]()12mod ,,,.k a b m m m ≡证 因()mod ,1,2,,i a b m i k ≡=,故|,1,2,,.i m a b i k -=于是,[][]()1212,,,|,mod ,,,.k k m m m a b a b m m m -≡附记 最小公倍数的一个常用性质是,若12|,|,,|k m a m a m a ,则[]12,,,|.k m m m a证 由带余除法,设[][]1212,,,,0,,,k k a m m m q r r m m m =+≤<,则12|,|,,|k m a m a m a 及12|,|,,|k m a m a m a 得, |,1,2,,.i m r i k =但[]12,,,k m m m 是12,,,k m m m 的最小公倍数,故[]120,,,,|.k r m m m a =壬 若()mod ,|,0,a b m d m d ≡>则()mod .a b d ≡证 因()mod ,a b m ≡故|.m a b -又因|,0d m d >,故()|,mod .d a b a m d -≡ 癸 若()mod a b m ≡,则()(),,.a m b m =证 因()mod a b m ≡,故|.m a b -于是,存在整数t 使得.a b mt -=故.a mt b =+故()(),,.a m b m =例 一个整数0a >被9整除的充分必要条件是n 的各位数字(十进制)的和倍9整除.证 设1101010,010n n n n i a a a a a --=+++≤<.因()101mod9≡,故()()101mod9,10mod9,0,1,,.i i i i a a i n ≡≡=于是,()010mod 9.n nii i i i a a a ===≡∑∑故9|a 的充分必要条件是09|.ni i a =∑作业 P53:2,3,4,5.习题选解2.设正整数1101010,010,n n n n i a a a a a --=+++≤<证明11整除a 的充分必要条件是11整除()01.niii a =-∑证 因为()101mod11≡-,故()()()()101mod11,101mod11,0,1,,.i ii i i i a a i n ≡-≡-=.于是,()()0101mod11.n nii iii i a a a ===≡-∑∑由此可得,11|a 的充分必要条件是()0111.nii i a =-∑3.找出能被37,101整除的判别条件来.解 (ⅰ)因()10001mod37≡,故()()10001mod370.ii ≡≥设11010001000,01000.n n n n i a a a a a --=+++≤<则由()10001mod37i≡得()1000mod37,0,1,,ii i a a i n ≡=,故()01000mod 37.n nii i i i a a a ===≡∑∑由此可得,37|a 的充分必要条件是037.ni i a =∑(ⅱ)因()1001mod101≡-,故()()()1001mod1010.iii ≡-≥ 设110100100,0100,n n n n i a a a a a --=+++≤<则由()()1001mod101ii ≡-得()()1001mod101,0,1,,ii i i a a i n ≡-=,故()01001.n niii i i i a a a ===≡-∑∑由此可得,101|a 的充分必要条件是()01011.niii a =-∑4.证明52641|2 1.+ 证 因()()8163222256,265536154mod 641,2154237166401mod 641,==≡≡=≡≡-故52641|2 1.+5.若a 是任一奇数,则()()221mod 21.nn a n +≡≥证 对n 作数学归纳法.当1n =时,因a 为奇数,故可设121a a =+,则()()2221111112114441a a a a a a -=+-=+=+.而()111a a +是两个连续两个整数的积,一定是2的倍数,从而()122128|1,1mod 2,a a +-≡即1n =时结论正确.假设对()12n n -≥结论正确,即()12121mod 2.n n -+≡下面说明在此假设下,对n 结论正确.因()()()111222221111nn n n a aa a ----=-=-+,而由归纳假设得121n a--是12n +的倍数,又因a 为奇数,故121n a -+也为奇数,于是()()112211n n a a ---+是22n +的倍数,故()221mod 2.nn a +≡。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除.(2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数. ⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;⑸ 整数N 被11除的余数等于N 的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当 加11的倍数再减);⑹ 整数N 被7,11或13除的余数等于先将整数N 从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.模块一、两个数的同余问题【例 1】 有一个整数,除39,51,147所得的余数都是3,求这个数.例题精讲知识点拨教学目标5-5-3.同余问题【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【例 3】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 4】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【例 5】两位自然数ab与ba除以7都余1,并且a b⨯.>,求ab ba【例 6】现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,(12,108)12-=,14739108=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。
性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。
性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。
性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。
(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。
性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。
性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。
性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。
性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。
性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。
在数论中,同余运算是指两个整数在给定的模数下具有相同的余数。
同余运算有一些重要的性质和法则。
假设a、b 和 c 是整数,n 是正整数。
1. 反身性(Reflexive Property):a ≡ a(mod n)任何整数与自身在模n 下都是同余的。
2. 对称性(Symmetric Property):如果a ≡ b(mod n),则b ≡ a(mod n)如果两个整数在模n 下是同余的,那么它们可以互换位置。
3. 传递性(Transitive Property):如果a ≡ b(mod n)且b ≡ c(mod n),则a ≡ c(mod n)如果两个整数在模n 下与同一个整数是同余的,并且它们之间也是同余的,那么它们之间也是同余的。
运算法则:1. 加法法则:如果a ≡ b(mod n)且c ≡ d(mod n),那么a + c ≡ b + d(mod n)在模n 下,同余的整数的和仍然是同余的。
2. 减法法则:如果a ≡ b(mod n)且c ≡ d(mod n),那么a - c ≡ b - d(mod n)在模n 下,同余的整数的差仍然是同余的。
3. 乘法法则:如果a ≡ b(mod n)且c ≡ d(mod n),那么a * c ≡ b * d(mod n)在模n 下,同余的整数的乘积仍然是同余的。
4. 乘方法则:如果a ≡ b(mod n),那么a^k ≡ b^k(mod n)对于任意正整数k在模n 下,同余的整数的乘方仍然是同余的。
这些法则对于解决同余方程、证明数论中的定理以及在密码学中的应用非常有用。
同余运算也被广泛用于构建哈希函数、加密算法和随机数生成器等领域。