电磁场的应用----高中物理模块典型题归纳(含详细答案)
- 格式:docx
- 大小:221.57 KB
- 文档页数:15
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)一、单选题1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D.线框消耗的电功率先减小后增大2.如图表示,矩形线圈绕垂直于匀强磁场磁感线的固定轴O以角速度w逆时针匀速转动时,下列叙述中正确的是()A.若从图示位置计时,则线圈中的感应电动势e=E m sinwtB.线圈每转1周交流电的方向改变1次C.线圈的磁通量最大时感应电动势为零D.线圈的磁通量最小时感应电动势为零3.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
一根与导轨接触良好、有效阻值为的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BLvC.a端电势比b端电势高D.外力F做的功等于电阻R上产生的焦耳热4.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则()A.环中产生的感应电动势均匀变化B.环中产生的感应电流均匀变化C.环中产生的感应电动势保持不变D.环上某一小段导体所受的安培力保持不变5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示。
在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d。
下列判断正确的是()A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U c=U dD.U b<U a<U d<U c6.如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经画出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法正确的是()A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势点C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点D.当金属棒向左加速运动时,b点电势高于a点,d点电势高于c点7.在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示。
第三章电磁场与电磁波初步3电磁感应现象及其应用基础过关练题组一电磁感应现象的发现1.(2022湖北鄂州期末改编)下列现象属于电磁感应的是( )A.磁场中某点小磁针N极受力的方向与磁感应强度的方向相同B.闭合电路的一部分导体在磁场中做切割磁感线运动,导体中产生电流C.一些物体在磁体或电流的作用下会显现磁性,如插在通电螺线管中的软铁棒被磁化D.通电导线周围和永磁体周围一样都存在磁场2.(多选题)(2023山东枣庄期末)从1822年至1831年的近十年时间里,英国科学家法拉第心系“磁生电”。
在他的研究过程中有两个重要环节:(1)敏锐地觉察并提出“磁生电”的闪光思想;(2)通过大量实验,将“磁生电”(产生感应电流)的情况概括为五种:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
结合你学过的相关知识,试判断下列说法正确的是( )A.环节(1)提出“磁生电”思想是受到了奥斯特的“电流磁效应”的启发B.环节(1)提出“磁生电”思想是为了对已经观察到的“磁生电”现象提供合理解释C.环节(2)中五种“磁生电”条件都可以概括为“穿过闭合导体回路的磁通量发生变化”D.环节(2)中“在磁场中运动的导体”这种情况不符合“穿过闭合导体回路的磁通量发生变化”这一条件题组二感应电流产生的条件3.(经典题)(多选题)(2022黑龙江哈尔滨期中)如图所示,线圈两端接在电流表上组成闭合电路。
在下列情况中,电流表指针发生偏转的是( )A.磁铁和线圈相对移动时B.磁铁插在线圈内不动C.线圈不动,磁铁拔出线圈时D.线圈不动,磁铁插入线圈时4.(2024四川南充段考)如图所示,直导线MN竖直放置并通以向上的电流I,矩形金属线框abcd与MN在同一平面内,边ab与MN平行,则( )A.线框向左平移时,线框中有感应电流B.线框竖直向上平移时,线框中有感应电流C.线框以MN为轴转动时,线框中有感应电流D.MN中电流突然变小时,线框中没有感应电流题组三实验:探究感应电流产生的条件5.(2024四川雅安天立中学入学考试)如图是探究电磁感应产生条件的实验器材。
高中物理专题复习—带电粒子在电磁场中的运动(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN带电粒子在电磁场中的运动[P 3.]一、考点剖析:带电粒子在电场中的运动比物体在重力场中的运动要丰富得多,它与运动学、动力学、功和能、动量等知识联系紧密,加之电场力的大小、方向灵活多变,功和能的转化关系错综复杂,其难度比力学中的运动要大得多。
带电粒子在磁场中的运动涉及的物理情景丰富,解决问题所用的知识综合性强,很适合对能力的考查,是高考热点之一。
带电粒子在磁场中的运动有三大特点:①与圆周运动的运动学规律紧密联系②运动周期与速率大小无关③轨道半径与圆心位置的确定与空间约束条件有关,呈现灵活多变的势态。
因以上三大特点,很易创造新情景命题,故为高考热点,近十年的高考题中,每年都有,且多数为大计算题。
带电粒子在电磁场中的运动: 若空间中同时同区域存在重力场、电场、磁场,则使粒子的受力情况复杂起来;若不同时不同区域存在,则使粒子的运动情况或过程复杂起来,相应的运动情景及能量转化更加复杂化,将力学、电磁学知识的转化应用推向高潮。
该考点为高考命题提供了丰富的情景与素材,为体现知识的综合与灵活应用提供了广阔的平台,是高考命题热点之一。
[P 5.]二、知识结构[P 6.]三、复习精要:d UUL v L md qU at y 加4212122022=⨯⨯==Ly dU UL mdv qUL v at v v tan y 222000=====加φ1、带电粒子在电场中的运动(1) 带电粒子的加速 由动能定理 1/2 mv 2=qU (2) 带电粒子的偏转带电粒子在初速度方向做匀速运动 L =v 0t t=L/ v 0 带电粒子在电场力方向做匀加速运动F=q E a =qE/m带电粒子通过电场的侧移偏向角φ(3)处理带电粒子在电场中的运动问题的一般步骤:①分析带电粒子的受力情况,尤其要注意是否要考虑重力、电场力是否是恒力等 ②分析带电粒子的初始状态及条件,确定粒子作直线运动还是曲线运动 ③建立正确的物理模型,进而确定解题方法④利用物理规律或其它解题手段(如图像等)找出物理量间的关系,建立方程组 2、带电粒子在磁场中的运动带电粒子的速度与磁感应线平行时,能做匀速直线运动;当带电粒子以垂直于匀强磁场的方向入射,受洛伦兹力作用,做匀速圆周运动。
1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。
一质量为m ,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。
⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。
求入射粒子的速度。
解:qB mv =v由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间t=d /v 0,在电场中竖直位移221tan 2t mqE d h ⋅⋅==φ,由以上各式可得3、如图所示,在第一象限有一均强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一均强磁场,磁场方向与纸面垂直。
一质量为m 、电荷量为-q(q>0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场。
粒子在磁场中的运动轨迹与y 轴交于M 点。
已知OP=l ,l OQ 32=。
不计重力。
求(1)M 点与坐标原点O 间的距离;(2)粒子从P 点运动到M 点所用的时间。
【解析】(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为0v ,粒子从P 点运动到Q 点所用的时间为1t ,进入磁场时速度方向与x 轴正方向的夹角为θ,则qEa m=① 012y t a=② 001x v t =③ 其中0023,x l y l ==。
又有1tan at v θ= ④ 联立②③④式,得30θ=︒因为M O Q 、、点在圆周上,=90MOQ ∠︒,所以MQ 为直径。
从图中的几何关系可知。
23R l = ⑥ 6MO l = ⑦(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为2t , 则有0 cos v v θ=⑧ 2Rt vπ= ⑨ 带电粒子自P 点出发到M 点所用的时间为t 为12+ t t t = ⑩联立①②③⑤⑥⑧⑨⑩式,并代入数据得32+ 1mlt qE π⎛⎫= ⎪ ⎪⎝⎭⑾4、如图所示,在0≤x≤a 、o≤y≤2a 2a范围内有垂直手xy 平面向外φOyEB A φC φd h xxy OP QMv 0的匀强磁场,磁感应强度大小为B 。
高中物理电磁学常考题总结(带答案解析)姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、综合题(共60题;共0分)1.如图所示,厚度不计的圆环套在粗细均匀、长度为0.8m的圆柱顶端。
圆环可在园柱上滑动,同时从静止释放,经0.4s圆柱与地相碰,圆柱与地相碰后速度瞬间变为0,且不会倾倒。
(1)求静止释放瞬间,圆柱下端离地的高度(2)若最终圆环离地的距离为0.6m,则圆环与圆柱间的滞动摩擦力是圆环重力的几倍?(3)若圆环速度减为0时,恰好到达地面,则从静止释放时圆环离地的高度为多少?2.如图所示,ABCD是游乐场中的滑道,它位于竖直平面内,由两个半径分别为R1=10m和R2=2m的1/4光滑田弧,以及长L=10m、动摩擦因数=0.1的水平滑连组成,所有滑道平滑连接,D点恰好在水面上。
游客(可视为质点)可由AB弧的任意位置从静止开始下滑,游客的质量为m=50kg。
(1)若到达AB弧的末端时速度为5m/s,此时游客对滑道的压力多大?(2)若要保证游客能滑入水中,开始下滑点与B点间网弧所对应的圆心角要足什么条件。
(可用三角函数表示)(3)若游客在C点脱离滑道,求其落水点到D点的距离范围。
3.如图1所示是某质谱仪的模型简化图,P点为质子源,初速度不计的质子经电压加速后从O点垂直磁场边界射入,在边界OS的上方有足够大的垂直纸面的匀强磁场区域,B=0.2T。
a、b间放有一个宽度为L ab =0.1cm的粒子接收器S,oa长度为2m。
质子的比荷,质子经电场、磁场后正好打在接收器上。
(1)磁场的方向是垂直纸面向里还是向外?(2)质子进入磁场的角度范围如图2所示,向左向右最大偏角,所有的质子要打在接收板上,求加速电压的范围(结果保留三位有效数字,取cos80=0.99, )。
(3)将质子源P换成气态的碳I2与碳14原子单体,气体在P点电离后均帯一个单位正电(初速度不计),碳12的比荷C/kg,碳14的比荷保持磁感应强度不变,从O 点入射的角度范围不变,加速电压可以在足够大的范围内改变。
高二物理电磁场练习题讲解电磁场是高中物理的重要内容之一,也是学生在学习物理过程中常常会遇到的难点之一。
为了帮助高二学生更好地理解和掌握电磁场的相关知识,以下是一些电磁场的练习题及其详细讲解。
1. 题目:一根长直导线通以电流I,求离导线距离为r处的磁感应强度B的表达式。
解析:根据比奥-萨伐尔定律,通过一条长直导线所产生的磁场大小与距离这条导线的距离成反比。
所以根据比奥-萨伐尔定律,可以得到以下的表达式:B = (μ₀I)/(2πr)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,r为距离导线的距离。
2. 题目:两根平行的长直导线之间的间距为d,两根导线通以相反方向相等的电流,求两导线之间的磁感应强度B的表达式。
解析:根据比奥-萨伐尔定律,两根平行的长直导线之间的磁感应强度大小可以用以下公式来计算:B = (μ₀I)/(2πd)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,d为两根导线之间的间隔距离。
3. 题目:一个长直导线与一个长方形回路(边长为a和b)垂直放置,长方形回路的一条边与长直导线平行。
长直导线通以电流I,求回路中的电动势ε。
解析:根据法拉第电磁感应定律,当导线中的磁场发生变化时,会在回路中产生感应电动势。
对于这个题目,长直导线中电流I的存在会产生一个磁场,而由于长方形回路边长与导线平行,所以回路中感应电动势的大小可以通过以下公式计算:ε = B * L其中,ε为感应电动势,B为磁感应强度,L为回路边的长度。
4. 题目:一根半径为R的无限长细导线通以电流I,求与导线距离为r处的磁感应强度B。
解析:这是一个经典的安培环路定律的应用题。
根据安培环路定律,可以推导出以下公式:B = (μ₀I)/(2R)其中,B为磁感应强度,μ₀为真空磁导率,I为电流强度,R为导线的半径。
通过对以上练习题的详细讲解,相信大家对电磁场的相关知识有了更深入的理解。
掌握了这些基本的公式和定律,对于后面的学习和解题将会起到很大的帮助。
电磁波-----高中物理模块典型题归纳(含详细答案)一、单选题1.在LC电路中发生电磁振荡时,以下说法正确的是()A.电容器的某一极板,从带最多的正电荷放电到这一极板充满负电荷为止,这一段时间为一个周期B.当电容器放电完毕瞬间,回路中的电流为零C.提高充电电压,极板上带更多的电荷时,能使振荡周期变大D.要提高振荡频率,可减小电容器极板间的正对面积2.下列说法正确的是()A.电磁波是一种横波B.空间有变化的电场(或磁场)存在,一定能形成电磁波C.微波的频率高于可见光D.当物体以接近光速的速度运动时,物体的质量变化才明显,因此牛顿运动定律不仅适用于低速运动,而且适用于高速运动3.下列有关电磁波的说法正确的是()A.伽利略预言了电磁波的存在B.雷达利用电磁波只能测距不能定位C.移动电话利用电磁波传送信号D.电磁波不能在介质中传播4.关于电磁场和电磁波,下列说法不正确的是()A.变化的电场能够产生磁场,变化的磁场能够产生电场B.麦克斯韦第一次通过实验验证了电磁波的存在C.无线电波、红外线、可见光、紫外线、x射线、γ射线都是电磁波D.紫外线是一种波长比紫光更短的电磁波,能够灭菌消毒5.关于电视信号的发射,下列说法中正确的是()A.摄像管输出的电信号可以直接通过天线向外发射B.摄像管输出的电信号必须加在高频等幅振荡电流上,才能向外发射C.伴音信号和图象信号不是同步向外发射的D.电视台发射的是带有信号的长波6.LC振荡电路中,某时刻磁场方向如图所示,则下列说法正确的是()A.若磁场正在减弱,则电容器上极板带正电B.若电容器正在放电,则电容器上极板带负电C.若电容器上极板带正电,则自感电动势正在减小D.若电容器正在充电,则自感电动势正在阻碍电流减小7.如图1甲所示的振荡电路中,电容器极板间电压随时间变化的规律如图1乙所示,则电路中振荡电流随时间变化的图象是图2中的(回路中振荡电流以逆时针方向为正)()A. B. C. D.二、多选题8.要接收到载有信号的电磁波,并通过耳机发出声音,在接收电路中必须经过下列过程中的()A.调幅B.调频C.调谐D.解调9.在LC振荡电路中,和时电感线圈中的磁感线和电容器中的极板带电情况如图所示,若,则下列说法中正确的是A.在时刻电容器正在充电B.在时刻电容器正在充电C.在时刻电路中的电流处在增大状态D.在时刻电路中的电流处在增大状态10.如果表中给出的是LC电路中电容器里电场强度E或振荡电流i与各时刻的对应关系,TTA.若甲表示电场强度E,则丙表示相应的振荡电流iB.若乙表示电场强度E,则甲表示相应的振荡电流iC.若丙表示电场强度E,则甲表示相应的振荡电流iD.若丁表示电场强度E,则丙表示相应的振荡电流i11.下列关于电磁波谱各成员说法正确的是()A.最容易发生衍射现象的是无线电波B.紫外线有明显的热效应C.X射线穿透能力较强,所以可用来检查工件D.明朗的天空看起来是蓝色是光散射的结果12.如图所示,一个闭合导线圈静止于磁场中,由于磁场强弱的变化,而使电路中产生了感生电动势.下列说法正确的是()A.磁场变化时,会在空间激发一种电场B.使电荷定向移动形成电流的力是磁场力C.使电荷定向移动形成电流的力是电场力D.从上向下看,当磁场增强时,线圈中有逆时针电场13.下列对无线电广播要对电磁波进行调制的原因的说法正确的是()A.经过调制后的高频电磁波向外辐射能量的本领更强B.经过调制后的电磁波在空间传播得更快C.经过调制后的电磁波在空间传播波长不变D.经过调制后的电磁波在空间传播波长改变14.用一平行板电容器和一个线圈组成LC振荡电路,要增大发射电磁波的波长,可采用的做法是()A.增大电容器两极板间的距离B.减小电容器两极板间的距离C.减小电容器两极板的正对面积D.在电容器两极板间加入电介质三、综合题15.由自感系数为L的线圈和可变电容器C构成收音机的调谐电路.该收音机能接收到f1=550kHz至f2=1650kHz范围内的所有电台.求:(1)该收音机能接收到的电磁波的波长范围;(2)可变电容器与f1对应的电容C1和与f2对应的电容C2的比值.16.如果中央广播电台向外发射500kHz的电磁波,若距该台6000km处有一台收音机,求:(1)此电磁波的波长是多大?(2)从电台发出的信号经过多长时间可以到达收音机?17.车载Mp3可以把Mp3中储存的音乐,以无线发射方式发射到车载调频立体声收音设备中,车主只需将汽车收音机的频率设定为车载Mp3的频率,或让收音机搜索到该频率即可进行播放.如图为某种型号的车载Mp3 ,若其设置频率为87.5MHz,试求:(1)所发射的无线电波的波速是多少?(2)所发射的无线电波的波长是多少?18.质量为m、长度为L的通电技术杆ab水平搁置在两压力传感器上(杆与传感器绝缘).处于磁感应强度为B ,垂直纸面向里的匀强磁场中,金属与磁场垂直.如图所示.金属杆中的电流大小和方向均可以改变,但金属杆一直处于静止状态,两压力传感器度数时刻保持一致,重力加速度为g ,则:(1)若电流大小为I、方向由b到a ,试求此时压力传感器的读数;(2)若压力传感器的度数均为F ,求通入的电流的大小和方向.答案一、单选题1.【答案】D【解析】【解答】电容器某一极板从带最多的正电荷到带最多的负电荷这段时间,电容器完成了放电和反向充电过程,时间为半个周期,A错误;电容器放电完毕瞬间,电路中电场能最小,磁场能最大,故电路中的电流最大,B错误;振荡周期仅由电路本身决定,与充电电压等无关,C错误;提高振荡频率,就是减小振荡周期,可通过减小电容器极板正对面积来减小电容C,达到增大振荡频率的目的,D正确.【分析】理解LC振荡电路充放电的过程,根据相关内容解答。
1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
高中物理电磁场综合计算模块考试卷+答案详解(人教版)一、单选题(36分)1.(6分)当前,电磁炉已走进千家万户,电磁炉是利用电流通过线圈产生的磁场,该磁场会使锅底产生涡流,自行发热,从而加热锅内的食物,下列材料中,可用来制作电磁炉的锅的是()A.玻璃B.大理石C.不锈钢D.绝缘地胶2.(6分)如图所示,水平直导线中通有向右的恒定电流I,一电子从导线的正下方以水平向右的初速度进入该通电导线产生的磁场中,不计重力,此后电子将()A.沿直线运动B.向上偏转C.向下偏转D.向纸外偏转3.(6分)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示,粒子源S产生一个质量为m,电荷量为q 的带正电的粒子,粒子产生出来时的速度很小,可以看作是静止的,粒子产生出来后经过电压U加速,进入磁感强强度为B的匀强磁场,沿着半圆运动而达到记录它的照相底片P,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是()A.对于给定的带电粒子,当磁感应强度B不变时,加速电压U越大,粒子在磁场中运动的时间越长B.对于给定的带电粒子,当磁感应强度B不变时,加速电压U越大,粒子在磁场中运动的时间越短越大C.加速电压U和磁感应强度B一定时,x越大,带电粒子的比荷qm越小D.加速电压U和磁感应强度B一定时,x越大,带电粒子的比荷qm 4.(6分)如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中不可行的是()A.将线框向左拉出磁场B.以bc边为轴转动(小于60°)C.以ab边为轴转动(小于90°)D.以ad边为轴转动(小于60°)5.(6分)一个矩形线圈在匀强磁场中转动,产生的感应电动势按正弦规律变化,其瞬时值的表达式为e=220√2sin100πtV,下列说法中正确的是()A.频率是100HzB.当t=0时,线圈平面与中性面重合6.(6分)随着社会的发展,磁记录已深入到各个领域,进入千家万户。
高三物理电磁学试题答案及解析1.如图甲所示,空间存在一有界匀强磁场,磁场的左边界如虚线所示,虚线右侧范围足够大,磁场方向竖直向下.在光滑绝缘水平面内有一长方形金属线框,线框质量m=0.1kg,在水平向右的外力F作用下,以初速度v=1m/s一直做匀加速直线运动,外力F大小随时间t变化的图线如图乙所示.以线框右边刚进入磁场时开始计时,求:(1)线框cd边刚进入磁场时速度v的大小;=0.27J,则在此过程中线框产生的焦耳热Q为多少?(2)若线框进入磁场过程中F做功为WF【答案】(1)2m/s (2)0.12J【解析】(1)当后,对线框:解得:又解得:(2)根据功能关系得:解得:【考点】功能关系;牛顿定律的应用.2.如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。
第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。
在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。
不计空气阻力,重力加速度为g。
求:(1)在-x轴上有质子到达的坐标范围;(2)垂直于y轴进入电场的质子,在电场中运动的时间;(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
【答案】(1)(2)(3)【解析】(1)设-x轴的第一个坐标点为x1(2)质子垂直进入电场时距x轴的距离:(3)在磁场中运动情景如图所示。
由牛顿定律可知:由动能定理:【考点】带电粒子在磁场中的运动;动能定理.3.如图在xoy坐标系第Ⅰ象限,磁场方向垂直xoy平面向里,磁感应强度大小为B=1.0T;电场方向水平向右,电场强度大小为E=N/C.一个质量m=2.0×10﹣7kg,电荷量q=2.0×10﹣6C的带射入第Ⅰ象限,恰好在xoy平面中做匀速直线运动.0.10s后改正电粒子从x轴上P点以速度v变电场强度大小和方向,带电粒子在xoy平面内做匀速圆周运动,取g=10m/s2.求:大小和方向;(1)带电粒子在xoy平面内做匀速直线运动的速度v(2)带电粒子在xoy平面内做匀速圆周运动时电场强度E′的大小和方向;(3)若匀速圆周运动时恰好未离开第Ⅰ象限,x轴上入射P点应满足何条件?【答案】(1)2m/s,方向斜向上与x轴正半轴夹角为60°;(2)1N/C,方向竖直向上.(3)0.27m【解析】(1)如图粒子在复合场中做匀速直线运动,设速度v与x轴夹角为θ,依题意得:解得所以:θ=60°即速度v大小2m/s,方向斜向上与x轴正半轴夹角为60°(2)带电粒子在xOy平面内做匀速圆周运动时,电场力F电必须与重力平衡,洛伦兹力提供向心力:解得E′=1N/C,方向竖直向上.(3)如图带电粒子匀速圆周运动恰好未离开第1象限,圆弧左边与y轴相切N点;PQ匀速直线运动,PQ=vt="0.2" m洛伦兹力提供向心力:,得R=0.2m由几何知识得:OP=R+Rsin60°-PQcos60°OP==0.27m故:x轴上入射P点离O点距离至少为0.27m【考点】带电粒子在复合场中的运动;4.图中L为自感系数足够大的理想电感,C是电容量足够大的理想电容,R1、R2是阻值大小合适的相同电阻,G1、G2是两个零刻度在中央的相同的灵敏电流表,且电流从哪一侧接线柱流入指针即向哪一侧偏转,E是可以不计内阻的直流电源.针对该电路下列判断正确的是( )A.电键S闭合的瞬间,仅电流计G1发生明显地偏转B.电键S闭合的瞬间,两电流计将同时发生明显的偏转C.电路工作稳定后,两电流计均有明显不为零的恒定示数D.电路工作稳定后再断开电键S,此后的短时间内,G1的指针将向右偏转,G2的指针将向左偏转【答案】BD【解析】电路接通瞬间,由于自感系数足够大,所以有电流通过R1,直流电不能通过电容器,则有电流通过R2,所以电键S闭合的瞬间,两电流计将同时发生明显的偏转,故A错误,B正确;L为理想电感,电路温度后,R1被短路,则没有电流通过,示数为零,故C错误;电路工作稳定后再断开电键S,此后的短时间内,电容器放电,电流从右端通过R1,从左端通过R2,则G1的指针将向右偏转,G2的指针将向左偏转,故D正确.故选BD.【考点】自感现象.【名师】此题考查自感以及电容器问题;解决本题的关键知道电感器对电流的变化有阻碍作用:当电流增大时,会阻碍电流的增大,当电流减小时,会阻碍其减小,而电阻没有此特点,当K断开电阻、电容构成一回路,电容器可以储存电荷。
第八章电场一、三种产生电荷的方式:1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;4、电荷的基本性质:能吸引轻小物体;二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。
1、e=1.6×10-19c; 2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。
电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2 (k=9.0×109N.m2/kg2) 2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力;五、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。
高三物理第一轮专题复习——电磁场 例1. (高考题)在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少?例2.(调研)电子自静止开始经M 、N 板间(两板间的电压为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m ,电量为e )例3.(高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0υ=80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少? 例4.(北京市西城区)在高能物理研究中,粒子回旋加速器起着重要作用,如图甲为它的示意图。
它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
课题功能关系在电磁场中的综合应用1.静电力做功与 无关.若电场为匀强电场,则W =Fl cos α=Eql cos α;若是非匀强电场,则一般利用W = 来求,静电力做功等于 的变更,即W AB =-ΔE p 2.安培力可以做正功、负功,还可以不做功.3.电流做功的实质是电场 做功.即W =UIt = .4.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做 功,使机械能转化为 能. 1.功能关系在电学中应用的题目,一般过程困难且涉及多种性质不同的力,因此,通过审题,抓住 和运动过程的分析是关键,然后依据不同的运动过程各力做功的特点来选择规律求解. 2.力学中的动能定理和能量守恒定律在处理电学中能量问题仍旧是首选的方法.题型1 用功能关系解决带电粒子在电场中运动问题例1 如图所示,在光滑绝缘水平面两端有两块平行带电金属板A 、B ,其间存在着场强E =200 N/C 的匀强电场,靠近正极板A 处有一薄挡板S .一个带负电小球,质量为m =1×10-2kg 、电荷量q =2×10-3C ,起先时静止在P 点,它与挡板S 的距离为l =20 cm ,与B 板距离为L =45 cm.静止释放后小球在电场力的作用下向左运动,与挡板S 相碰后电量削减到碰前的k 倍,k =56,碰后小球的速度大小不变.(1)设匀强电场中挡板S 所在位置的电势为零,则电场中P 点的电势φP 为多少?小球自静止起先从P 点运动到挡板S 时,电势能是增加还是削减?变更的电势能Δε为多少?(2)小球第一次与挡板S 碰撞时的速度多大?第一次碰撞后小球能运动到离B 板多远的地方? (3)小球从P 点动身第一次回到最右端的过程中电场力对小球做了多少功?1.电势能的变更应通过电场力做功来求解.2.电场力做功与路径无关.因此在本题第(3)问的求解中只要我们留意到水平方向只有电场力做功,且全程的初末速度为零,全程列式W =0-0=0,特别简洁. 3.动能定理仍是解决静电力做功问题的有效方法.预料演练1 如图所示,空间存在着电场强度E =2.5×102N/C,方向竖直向上的匀强电场,在电场内一长为L =0.5 m 的绝缘细线一端固定于O 点,另一端拴着质量m =0.5 kg ,电荷量q =4×10-2C 的小球.现将细线拉至水平位置,将小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断开,取g =10 m/s 2.求: (1)小球的电性;(2)细线能承受的最大拉力值;(3)当小球接着运动到与O 点水平方向的距离为L 时,小球速度多大?题型2 应用功能关系解决电磁感应问题例2 如图1所示,两根与水平面成θ=30︒角的足够长光滑金属导轨平行放置,导轨间距为L=1m,导轨两端各接一个电阻,其阻值R1=R2=1Ω,导轨的电阻忽视不计。
高中物理竞赛习题之电磁场经典例题一、选择题1. 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )dεq V E 0π4,0==(B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4== 解析: 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
2、在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 解析:由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).3、对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理解析:位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).4.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).二、计算题5、如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.解析:由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.6、在一半径为R 1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2=8.0 cm ,R 3 =10.0 cm .设球A 带有总电荷Q A =3.0 ×10-8C ,球壳B 带有总电荷Q B =2.0×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.解析:(1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V A A A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电3.0 ×10-8C ,球壳B 内表面带电-3.0 ×10-8C ,外表面带电5.0 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V A A A A A V 105.4π4330⨯=+=R εQ Q V B A B (2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V A A A A A 30π4R εq Q V A A B +-= 解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q A A 即球A 外表面带电2.12 ×10-8C ,由分析可推得球壳B 内表面带电-2.12 ×10-8C ,外表面带电-0.9 ×10-8C .另外球A 和球壳B 的电势分别为0A V =27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表面的电荷将重新分布,以建立新的静电平衡.7、如图所示球形金属腔带电量为Q >0,内半径为ɑ,外半径为b ,腔内距球心O 为r 处有一点电荷q ,求球心的电势.解析:导体球达到静电平衡时,内表面感应电荷-q ,外表面感应电荷q ;内表面感应电荷不均匀分布,外表面感应电荷均匀分布.球心O 点的电势由点电荷q 、导体表面的感应电荷共同决定.在带电面上任意取一电荷元,电荷元在球心产生的电势Rεq V 0π4d d = 由于R 为常量,因而无论球面电荷如何分布,半径为R 的带电球面在球心产生的电势为R εq R εq V s 00π4π4d ==⎰⎰由电势的叠加可以求得球心的电势. 解 导体球内表面感应电荷-q ,外表面感应电荷q ;依照分析,球心的电势为bεQ q a εq r εq V 000π4π4π4++-= 8、有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .解析:电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dS εC 00= 充电后,极板上的电荷和极板间的电场强度为U dS εQ 00= d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd S εQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSU εεU C C r r -+==011 介质内电场强度 ()δd εδU S εεQ E r r -+=='011 空气中电场强度 ()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd S εC -=02 U δd S εQ -=02 导体中电场强度 02='E 空气中电场强度δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.9、如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。
1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。
当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。
答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。
2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。
一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。
现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。
设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。
则此过程 ( BD )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量解析:当杆达到最大速度v m 时,022=+--r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式()()rR BdLr R S B r R q +=+=+=∆∆Φ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:K f F E W W W ∆=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。
高三物理电磁场的基础练习题及答案一、选择题1. 以下哪个选项描述了电磁场正确的特性?a) 只有电荷会在电磁场中产生力b) 只有磁铁会在电磁场中产生力c) 电荷和磁铁都会在电磁场中产生力d) 只有电流会在电磁场中产生力答案:c2. 磁场的单位是:a) 牛顿/库仑b) 度c) 汤d) 物质/秒答案:c3. 以下哪个选项描述了一个正确的电磁场图案?a) 经过两个平行电容板的电场线是平行的b) 磁铁的磁场线从南极向北极c) 磁铁的磁场线从北极向南极d) 磁铁的磁场线是闭合环路答案:b4. 静止电荷周围产生的电场是:a) 仅由正电荷产生b) 仅由负电荷产生c) 由正负电荷共同产生d) 不产生电场答案:c5. 假设有两个相同大小的电荷,一个带正电,一个带负电。
将它们靠近一起时,它们之间的作用力是:a) 斥力b) 引力c) 中和d) 无法确定答案:b二、简答题1. 什么是电场?答:电场是一种存在于空间中的物理场,由电荷产生。
它是描述电荷周围电力相互作用的物理量,可以使带电粒子受到电场力的作用。
2. 什么是磁场?答:磁场是一种存在于空间中的物理场,由磁铁或电流产生。
它是描述磁力相互作用的物理量,可以使带电粒子或其他磁性物体受到磁场力的作用。
3. 电场力和磁场力之间有什么区别?答:电场力和磁场力都是电磁场中的力,但它们有一些区别。
电场力是由电荷产生的,作用在电荷上,大小与电荷的量和距离有关;而磁场力由磁铁或电流产生,作用在带电粒子或其他磁性物体上,大小与磁场的强度、带电粒子的速度和磁场的方向有关。
4. 什么是洛伦兹力?答:洛伦兹力是带电粒子在电磁场中所受的力,包括电场力和磁场力的合力。
它的大小和方向由带电粒子的电荷、速度、电场和磁场的强度决定。
5. 电磁感应定律和法拉第定律之间有什么关系?答:电磁感应定律是由法拉第定律推导而来的一个具体应用。
电磁感应定律指出,当磁通量通过一个线圈发生变化时,该线圈中将会产生感应电动势。
磁场综合--高中物理模块典型题归纳(含详细答案)一、单选题1.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A.2cosθB.sinθC.cosθD.tanθ2.如图,由均匀的电阻丝组成的等边三角形导体框,垂直磁场放置,将AB两点接入电压恒定的电源两端,通电时电阻丝AB段受到的安培力为F,则此时三根电阻丝受到的合安培力大小为()A.FB.1.5FC.2FD.3F3.如图所示,在充电的平行金属板间有匀强电场和方向垂直纸面向里的匀强磁场。
一带电粒子以速度v从左侧射入,方向垂直于电场方向和磁场方向,当它从右侧射出场区时,动能比射入时小,若要使带电粒子从射入到射出动能是增加的,可采取的措施有(不计重力)()A.可使电场强度增强B.可使磁感应强度增强C.可使粒子带电性质改变(如正变负)D.可使粒子射入时的动能增大4.两个大小不同的绝缘金属圆环如图叠放在一起,小圆环有一半面积在大圆环内,当大圆环通上顺时针方向电流的瞬间,下列叙述正确的是()A.小圆环中产生顺时针方向的感应电流B.小圆环中产生逆时针方向的感应电流C.小圆环中不产生感应电流D.小圆环有向左运动的趋势5.如图所示为研究平行通电直导线之间相互作用的实验装置。
接通电路后发现两根导线均发生形变,此时通过导线M和N的电流大小分别为I1和I2,已知I1> I2,方向均向上。
若用F1和F2分别表示导线M与N受到的磁场力,则下列说法正确的是()A.两根导线相互排斥B.为判断F1的方向,需要知道I l和I2的合磁场方向C.两个力的大小关系为F1> F2D.仅增大电流I2,F1、F2会同时都增大6.如图所示,虚线所围矩形区域abcd内充满磁感应强度为B、方向垂直纸面向外的匀强磁场。
高考物理新电磁学知识点之磁场单元汇编及答案解析一、选择题1.如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m、带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场(图示方向)中.设小球带电荷量不变,小球由棒的下端以某一速度上滑的过程中一定有()A.小球加速度一直减小B.小球的速度先减小,直到最后匀速C.杆对小球的弹力一直减小D.小球受到的洛伦兹力一直减小2.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。
一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60 角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则()A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1C.t1∶t2=1∶1D.t1∶t2=2∶13.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
如图为直线通道推进器示意图。
推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。
空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以电流I=1.0×103A,方向如图。
则下列判断正确的是()A.推进器对潜艇提供向左的驱动力,大小为4.0×103NB.推进器对潜艇提供向右的驱动力,大小为5.0×103NC.超导励磁线圈中的电流方向为PQNMP方向D.通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能4.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( )A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于tC.轨迹为pa,至屏幕的时间将大于tD.轨迹为pb,至屏幕的时间将等于t5.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。
电磁场的应用----高中物理模块典型题归纳(含详细答案)一、单选题1.回旋加速器是加速带电粒子的装置,其主体部分是两个D形金属盒.两金属盒处在垂直于盒底的匀强磁场中,并分别与高频交流电源两极相连接,从而使粒子每次经过两盒间的狭缝时都得到加速,如图所示.现要增大带电粒子从回旋加速器射出时的动能,下列方法可行的是()A.减小磁场的磁感应强度B.减小狭缝间的距离C.增大高频交流电压D.增大金属盒的半径2.质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理如图示.离子源S产生的各种不同正离子束(速度可视为零),经MN间的加速电压U加速后从小孔S1垂直于磁感线进入匀强磁场,运转半周后到达照相底片上的P点.设P到S1的距离为x,则()A.若离子束是同位素,则x越大对应的离子质量越小B.若离子束是同位素,则x越大对应的离子质量越大C.只要x相同,对应的离子质量一定相同D.x相同,对应的离子的比荷可能不相等3.如图所示,在充电的平行金属板间有匀强电场和方向垂直纸面向里的匀强磁场。
一带电粒子以速度v从左侧射入,方向垂直于电场方向和磁场方向,当它从右侧射出场区时,动能比射入时小,若要使带电粒子从射入到射出动能是增加的,可采取的措施有(不计重力)()A.可使电场强度增强B.可使磁感应强度增强C.可使粒子带电性质改变(如正变负)D.可使粒子射入时的动能增大4.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响,则下列说法正确的是()A.质子被加速后的最大速度可能达到光速B.所加高频交流电频率为f=C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为:1D.若A处粒子源产生的为中子,中子也可被加速且最大动能为E k=5.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是()A.质子的回旋周期为B.增大加速电场间的电压可使质子的最大速度超过2πfRC.增大D形金属盒的半径可提高质子射出金属盒时的速度D.不改变B和R,该回旋加速器加速α粒子获得的最大动能是加速质子时的两倍6.图是质谱仪工作原理的示意图.带电粒子a、b经电压U加速(在A点初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处.图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则()A.a的质量一定大于b的质量B.a的电荷量一定大于b的电荷量C.a运动的时间大于b运动的时间D.a的比荷()大于b的比荷()7.如图是回旋加速器示意图,其核心部分是两个D形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核(q1、m1)和氦核(q2、m2)。
已知q2=2q1,m2 =2m1,下列说法中正确的是()A.它们的最大速度相同B.它们的最大动能相同C.仅增大高频电源的电压可增大粒子的最大动能D.仅增大高频电源的频率可增大粒子的最大动能8.电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度B的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为()A. B. C. D.9.如图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E。
平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
下列表述正确的是()A.只有带正电的粒子能通过速度选择器沿直线进入狭缝PB.速度选择器中的磁场方向垂直纸面向里C.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越大D.能通过的狭缝P的带电粒子的速率等于10.回旋加速器是获得高能带电粒子的装置,其核心部分是分别与高频交流电源的两极相连的两个D形盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,关于回旋加速器的下列说法正确的是()A.用同一回旋加速器分别加速不同的带电粒子,一般要调节交变电场的频率B.磁场对带电粒子的洛仑兹力对粒子不做功,因此带电粒子从D形盒射出时的动能与磁场的强弱无关C.带电粒子做一次圆周运动,要被加速两次,因此交变电场的周期应为圆周运动周期的二倍D.狭缝间的电场对粒子起加速作用,因此加速电压越大,带电粒子从D形盒射出时的动能越大二、多选题11.日本福岛核电站的核泄漏事故,使碘的同位素131被更多的人所了解.利用质谱仪可分析碘的各种同位素,如图所示,电荷量均为+q的碘131和碘127质量分别为m1和m2,它们从容器A下方的小孔S1进入电压为U的加速电场(入场速度忽略不计),经电场加速后从S2小孔射出,垂直进入磁感应强度为B的匀强磁场中,最后打到照相底片上.下列说法正确的是()A.磁场的方向垂直于纸面向里B.碘131进入磁场时的速率为C.碘131与碘127在磁场中运动的时间差值为D.打到照相底片上的碘131与碘127之间的距离为(﹣)12.回旋加速器在科学研究中得到了广泛应用,其原理如图所示.D1和D2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在电压为U、周期为T的交流电源上.位于D1圆心处的质子源A能不断产生质子(初速度可以忽略),它们在两盒之间被电场加速.当质子被加速到最大动能E k后,再将它们引出.忽略质子在电场中的运动时间,则下列说法中正确的是()A.若只增大交变电压U,则质子的最大动能E k会变大B.若只增大交变电压U,则质子在回旋加速器中运行时间会变短C.若只将交变电压的周期变为2T,仍可用此装置加速质子D.质子第n次被加速前后的轨道半径之比为(n﹣1):n13.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图.现利用这种质谱议对氢元素进行测量.氢元素的各种同位素从容器A下方的小孔S无初速度飘入电势差为U的加速电场.加速后垂直进入磁感强度为B的匀强磁场中.氢的三种同位素最后打在照相底片D上,形成a,b,c三条“质谱线”.关于三种同位素进入磁场时速度的排列顺序以及a,b,c三条“质谱线”的排列顺序,下列判断正确的是()A.进入磁场时速度从大到小排列的顺序是氕、氘、氚B.进入磁场时速度从大到小排列的顺序是氚、氘、氕C.a,b,c三条质谱线依次排列的顺序是氕,氘、氚D.a,b,c三条质谱线依次排列的顺序是氚、氘、氕14.去年底,我省启动“263”专项行动,打响碧水蓝天保卫战.暗访组在某化工厂的排污管末端安装了如图所示的流量计,测量管由绝缘材料制成,其长为L、直径为D,左右两端开口,匀强磁场方向竖直向下,在前后两个内侧面a、c固定有金属板作为电极.污水充满管口从左向右流经测量管时,a、c两端电压为U,显示仪器显示污水流量Q(单位时间内排出的污水体积).则()A.a侧电势比c侧电势高B.污水中离子浓度越高,显示仪器的示数将越大C.若污水从右侧流入测量管,显示器显示为负值,将磁场反向则显示为正值D.污水流量Q与U成正比,与L、D无关三、综合题15.如图所示,回旋加速器的两个D型盒之间接有如图所示的交变电源,电源电压为U.上方D型盒中央为质子源,质量为m电荷量为e的质子由静止开始经电场加速后,进入下方的D型盒.回旋加速器的最大轨道半径为R,磁场的磁感应强度为B.(1)质子第一次进入下方D型盒的动能E k0=________;(2)质子经回旋加速器加速最后得到的动能E km=________;(3)交变电源的周期T=________.16.如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场.带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E的大小;(2)粒子从电场射出时速度v的大小;(3)粒子在磁场中做匀速圆周运动的半径R.17.回旋加速器是用来加速带电粒子的装置,如图为回旋加速器的示意图.D1、D2是两个中空的铝制半圆形金属扁盒,在两个D形盒正中间开有一条狭缝,两个D形盒接在高频交流电源上.在D1盒中心A处有粒子源,产生的带正电粒子在两盒之间被电场加速后进入D2盒中.两个D形盒处于与盒面垂直的匀强磁场中,带电粒子在磁场力的作用下做匀速圆周运动,经过半个圆周后,再次到达两盒间的狭缝,控制交流电源电压的周期,保证带电粒子经过狭缝时再次被加速.如此,粒子在做圆周运动的过程中一次一次地经过狭缝,一次一次地被加速,速度越来越大,运动半径也越来越大,最后到达D形盒的边缘,沿切线方向以最大速度被导出.已知带电粒子的电荷量为q,质量为m,加速时狭缝间电压大小恒为U,磁场的磁感应强度为B,D形盒的半径为R,狭缝之间的距离为d.设从粒子源产生的带电粒子的初速度为零,不计粒子受到的重力,求:(1)带电粒子能被加速的最大动能E k;(2)带电粒子在D2盒中第n个半圆的半径;(3)若带电粒子束从回旋加速器输出时形成的等效电流为I,求从回旋加速器输出的带电粒子的平均功率.18.如图所示为质谱仪的示意图.速度选择器部分的匀强电场场强E,匀强磁场的磁感应强度为B1;偏转分离器的磁感应强度为B2.一质量为m,电荷量为+q的带电微粒进入速度选择器.不计带电微粒的重力.求:(1)能通过速度选择器的粒子速度有多大?(2)微粒进入偏转分离器后,在磁场中运动的半径为多大?答案一、单选题1.【答案】D【解析】【解答】带电粒子从D形盒中射出时的动能(1)带电粒子在磁场中做匀速圆周运动,则圆周半径(2),由(1)(2)可得显然,当带电粒子q、m一定的,则E km∝R2B2,即E km随磁场的磁感应强度B、D形金属盒的半径R的增大而增大,与加速电场的电压和狭缝距离无关,故答案为:D.【分析】回旋加速度是利用磁场偏转,电场加速,最终粒子的动能表达式为,结合该表达式和选项分析即可。