应力波基础简明教程
- 格式:docx
- 大小:3.65 KB
- 文档页数:2
第一章绪论物体在爆炸/冲击载荷下的力学响应往往与静载荷下的有显著不同。
例如,飞石打击在窗玻璃上时往往首先在玻璃的背面造成碎裂崩落.碎甲弹对坦克装甲的破坏正类似于此.又如,对一金属杆端部施加轴向静载荷时,变形基本上是沿杆均匀分布的,但当施加轴向冲击载荷时(如打钎,打桩……),则变形分布极不均匀,残余变形集中于杆瑞。
子弹着靶时,变形呈蘑菇状也正类似于此。
固体力学的动力学理论的发展正是与解决这类力学问题的需要分不开的。
为什么在爆炸/冲击载荷下会发生诸如此类的特有现象呢?为什么这些现象不能用静力学理论来给以说明呢?固体力学的动力学理论与静力学理论的主要区别是什么呢?首先,固体力学的静力学理论研究处于静力平衡状态下的固体介质,以忽略介质微元体的惯性作用为前提。
这只是在载荷强度随时间不发生显著变化的时候,才是允许和正确。
而爆炸/冲击裁荷以载荷作用的短历时为其特征,在以毫秒(ms)、微秒(μs)甚至毫微秒纳秒(ns)计的短暂时间尺度上发生了运动参量的显著变化。
例如核爆炸中心压力可以在几μs内突然升高到107 ~108 大气压(103~104GPa)量级;炸药在固体表面接触爆炸时的压力也可在几微秒内突然升高到105大气压(10 GPa)量级;子弹以102~103 m/s的速度射击到靶板上时,载荷总历时约几十μs,接触面上压力可高达104~105大气压(1~10 GPa)量级。
在这样的动载荷条件,介质的微元体处于随时间迅速变化着的动态过程中,这是一个动力学问题.对此必须计及介质微元体的惯性,从而就导致了对应力波传播的研究。
事实上,当外载荷作用于可变形固体的某部份表面上时,一开始只有那些直接受到外载荷作用的表面部份的介质质点离开了初始平衡位置.由于这部分介质质点与相邻介质质点之间发生了相对运动(变形),当然将受到相邻介质质点所给予的作用力(应力),但同时也给相邻介质质点以反作用力,因而使它们也离开了初始平衡位置而运动起来。
第三章 弹性波的相互作用3-3 已知两种材质的弹性杆A 和B 的弹性模量、密度和屈服极限分别为:E A =60GPa , ρA =2.4g/cm 3,Y A =120MPa ,E 1A =E A /5; E B =180GPa ,ρB =7.2g/cm 3,Y B =240MPa ,E 1B =E B /5。
试对Ⅵ-10所示四种情况分别画出X -t 及σ—v 图,并确定撞击结束时间、两杆脱开时间以及分离之后各自的整体飞行速度。
解:两种材料的参数计算如下:s m E C AAA /500010104.210606390=⨯⨯⨯==-ρs m C C A A /10005/01==,s m C v A yA yA/10500010004.210120)(600-=⨯⨯⨯-=-=ρσs m E C BBB /500010102.7101806390=⨯⨯⨯==-ρs m C C B B /10005/01==,s m C v B yB yB/667.6500010002.710240)(600-=⨯⨯⨯-=-=ρσA C )(00ρ=2.4×10-3×106×5000=12×106kg/(sm )BC )(00ρ=7.2×10-3×106×5000=36×106kg/(sm )(1):v.撞击结束时间:0.02μs 。
两杆脱开时间即接触到脱开时间:0.02μs 。
短杆整体飞行速度:-4 m/s (3区)。
长杆整体飞行速度:2m/s (5区速度)。
(2)撞击结束时间:0.04μs。
两杆脱开时间即接触到脱开时间:0.04μs。
短杆整体飞行速度:2 m/s(7区)。
长杆整体飞行速度:9m/s(6,10区)。
(3)v撞击结束时间:A点:0.02μs;B点:0.04μs。
左短杆整体飞行速度:3区速度,-4 m/s。
右短杆整体飞行速度:7区速度,6 m/s。
第三章 弹性波的相互作用3-3 已知两种材质的弹性杆A 和B 的弹性模量、密度和屈服极限分别为:E A =60GPa , ρA =2.4g/cm 3,Y A =120MPa ,E 1A =E A /5; E B =180GPa ,ρB =7.2g/cm 3,Y B =240MPa ,E 1B =E B /5。
试对Ⅵ-10所示四种情况分别画出X -t 及σ—v 图,并确定撞击结束时间、两杆脱开时间以及分离之后各自的整体飞行速度。
解:两种材料的参数计算如下:s m E C AAA /500010104.210606390=⨯⨯⨯==-ρs m C C A A /10005/01==,s m C v A yA yA/10500010004.210120)(600-=⨯⨯⨯-=-=ρσs m E C BBB /500010102.7101806390=⨯⨯⨯==-ρs m C C B B /10005/01==,s m C v B yB yB/667.6500010002.710240)(600-=⨯⨯⨯-=-=ρσA C )(00ρ=2.4×10-3×106×5000=12×106kg/(sm )BC )(00ρ=7.2×10-3×106×5000=36×106kg/(sm )(1):A B v.由上图可知:当左杆波从自由端反射至接触面时,速度,为-4m/s ,应力为0,撞击结束。
撞击结束时间:0.02μs 。
两杆脱开时间即接触到脱开时间:0.02μs。
短杆整体飞行速度:-4 m/s(3区)。
长杆整体飞行速度:2m/s(5区速度)。
(2)撞击结束应在A点。
撞击结束时间:0.04μs。
两杆脱开时间即接触到脱开时间:0.04μs。
短杆整体飞行速度:2 m/s(7区)。
长杆整体飞行速度:9m/s(6,10区)。
(3)v撞击结束时间:A 点:0.02μs ; B 点:0.04μs 。
应力波基础应力波是由于外部力作用或者物体自身运动引起的一种波动。
它在许多实际应用中都有重要的作用,如地震波、声波、光波等等。
本文将从应力波的定义、产生机制、传播规律等方面进行相关参考内容的阐述。
首先,应力波指的是媒质中由于外界力作用引起的弹性波动。
应力波有两种主要的产生机制:一种是由于外部力的短时间作用产生的冲击波,如地震波;另一种是由物体在自由振动或者动态载荷作用下引起的波动,如声波。
这两种产生机制决定了应力波具有不同的特点和传播规律。
应力波的传播规律可以通过弹性介质的性质来描述。
弹性介质指的是能够恢复形变,且传播速度有限的物质。
在弹性介质中,应力波的传播速度与介质的物理性质有关,主要取决于介质的密度和弹性模量。
一般情况下,介质越密集、越刚性,传播速度越快。
例如,固体对应力波的传播速度远远高于液体和气体。
对于地震波而言,它是地壳中的一种应力波,主要由地震活动引起。
地震波具有横波和纵波两种传播方式。
横波是指沿垂直于波动方向振动的波动,它的传播速度比纵波快;而纵波是指沿波动方向振动的波动,它的传播速度比横波慢。
地震波的传播速度和传播路径受到地壳中各种物质的物理性质和结构的影响。
地震波的传播路径可以通过地震观测站网络进行监测和研究,以了解地壳中的岩石性质和结构特征。
声波是另一种常见的应力波,它是由物体振动引起的。
声波的传播速度与介质的压强和密度有关,一般情况下,在固体中声速最快,液体次之,气体最慢。
声波的频率和振幅决定了它的音调和音量,不同频率的声波会被人耳感知为不同的音调。
除了地震波和声波之外,光波也是一种应力波。
光波的传播是由电磁场引起的,其传播速度为光速,约为30万千米/秒。
光波的频率和波长决定了它的颜色和能量。
光波在介质中传播时会发生折射、反射等现象,这些现象由光的波动性和光在不同介质中的传播速度引起。
总之,应力波作为一种波动现象,具有多样的传播规律和形式。
地震波、声波和光波等都是应力波的重要表现形式。
第一章绪论1、概念理解:应力波(波阵面、波速);横波/纵波(柱面波、球面波、平面波);高应变率下的材料行为(与应变率相关的材料本构、应力应变曲线为绝热曲线);应变率效应与惯性效应2、固体动力学区别于静力学:载荷与介质的耦合、应力波与材料动态力学性能之间的密切关系。
第二章一维杆应力波初等理论1、坐标系建立:拉格朗日坐标:给定质点上的物理量随时间变化物质导数(随体导数)X 欧拉坐标:给定空间点上不同时刻到达该点的不同质点的各物理量随时间变化(空间微商)x物质波速C、空间波速c:c(1)v Cε=++物质导数空间导数(X,t)dc(1)Cx xx x x Xdt t X tvε=∂∂∂=+⨯∂∂∂=++取导:即:物质坐标系/ 空间坐标系下的随波微商2、物质坐标下的杆中纵波控制方程初始条件下的空间坐标即为物质坐标;前提:忽略横向收缩或膨胀;应变率无关理论三类波动表达式:22022222:: u : v v C t Xv v C C t X u u C t X εεσσρ∂∂=∂∂∂∂==∂∂∂∂=∂∂未知量、未知量、未知量位移上述波动方程解法:偏微分化常微分特征线和特征线上的相容关系:dX Cdt dv Cd d Cdv εσρ=±=±=±特征线特征线两类相容关系特征线物理意义:代表扰动(波阵面)的传播轨迹相容关系:质点速度、应力、应变之间的关系,与波速有关 波阻抗:ρ0C 3、单调加载无卸载、正向传播无反射波3.1 线弹性波:冲击载荷不大,弹性变形0= E C C σε=则特征线法:OX轴:类空曲线;AOX:初值问题,Cauchy问题OT轴:类时曲线;AOT:混合问题,Picard问题。
固体中的应力波李清中国矿业大学(北京)参考书:1 王礼立. 《应力波基础》第2版(2005年8月1日),国防工业出版社2 李玉龙. 《应力波基础简明教程》第1版(2007年4月1日),西北工业大学3 丁启财(美国). 《固体中的非线性波》,中国友谊出版公司4 宋守志. 《固体中的应力波》,煤炭工业出版社5 杨善元. 《岩石爆破动力学基础》,煤炭工业出版社6 莱茵哈特(杨善元译). 《固体中的应力瞬变》,煤炭工业出版社7 徐小荷. 《冲击凿岩的理论基础与电算方法》,东工出版社8 郭自强. 《固体中的波》,地震出版社目录第0章绪论 (1)1 波动现象 (1)2 应力波的概念 (1)3 应力波分类 (3)4 应力波理论与其它力学理论的关系 (3)5 应力波理论的发展 (3)6 应力波理论在岩土工程中的应用 (3)第1章一维应力波基础 (4)§1.1波动方程及其解 (4)1.1.1 一维纵波的波动方程 (4)1.1.2 波的传播速度 (4)1.1.3 波动方程的解 (5)1.1.4 解的物理意义 (6)§1.2 应力波的几个基本参量 (7)§1.3 应力波的能量 (7)§1.4 波的衰减 (8)1.4.1 原因 (8)1.4.2 度量 (8)1.4.3 衰减率α的测定 (9)§1.5 考虑杆的横向效应的波动方程 (10)§1.6 杆中的扭转波与弯曲波 (12)1.6.1 扭转波 (12)1.6.2 弯曲波 (13)第2章二维和三维弹性波理论基础 (14)§2.1 弹性体的运动微分方程 (14)§2.2 弹性体的无旋波与等容波 (15)2.2.1 无旋波(纵波、P波) (15)2.2.2 等容波(横波、S波) (16)§2.3 平面波的传播 (17)2.3.1 平面纵波(V//c) (17)2.3.2 平面横波(V⊥c) (18)§2.4 薄板中的应力波 (19)2.4.1 控制方程 (19)2.4.2 纵波 (20)2.4.3 横波 (21)2.4.4 各种波速关系 (21)§2.5 球面波 (22)2.5.1 波动方程及其解 (22)§2.6 柱面波 (23)第3章应力波的相互作用 (24)§3.1 一维应力波在界面的反射和透射 (24)3.1.1 应力波在不同介质界面的反射和透射 (25)3.1.2应力波在变截面杆中的反射和透射 (26)§3.2 两杆相撞的入射波 (27)§3.3 传播图与状态图 (29)3.3.1传播图 (29)3.3.2 状态图 (30)§3.4 弹性杆中波的传播(图解法举例) (32)3.4.1 冲锤撞击杆件应力波的传播 (32)3.4.2 双圆柱活塞撞击钎杆应力波传播 (33)§3.5 平面波的边界效应 (36)3.5.1 平面波在界面上的垂直入射 (36)3.5.2 平面波在界面上的倾斜入射 (37)§3.6 应力波引起的破裂 (39)3.6.1金属丝冲击波拉伸断裂 (39)3.6.2 Hopkinson压杆与飞片 (41)3.6.3 断裂准则 (41)3.6.4 简单反射拉伸波引起的层裂或剥裂 (42)3.6.5 物体形状对应力波引起破裂的影响 (45)§3.7 冲击波基本问题 (45)第4章固体中的非线性波基础 (48)§4.1 弹塑性加载波及其相互作用 (48)4.1.1 强间断弹塑性波的迎面加载 (48)4.1.2弱间断弹塑性波的迎面加载 (50)§4.2 卸载波的控制方程和特征线 (51)第5章岩石动态力学性质与应力波的相互作用 (53)§5.1 岩石动态本构关系与动态强度 (53)§5.2 岩石动态力学参数测试 (54)§5.3 本构关系对应力波传播的影响 (54)§5.4 应变率相关的应力波理论 (55)5.4.1 Voigt体 (55)5.4.2 Maxwell体 (55)第6章应力波在岩土工程中的应用 (55)§6.1 应力波在冲击凿岩中的应用 (55)6.1.1 冲击凿岩的应力波的传递 (55)6.1.2 凿岩机的凿入机理 (55)6.1.3 入射波形对凿入效果的影响 (56)6.1.4 冲击凿岩的破坏原理 (56)§6.2 应力波在爆破工程中的应用 (56)§6.3 应力波在土动力学中的应用 (56)6.3.1绪论 (56)6.3.2 土的动应力-应变关系及其描述 (58)§6.4 应力波在地震工程学的应用 (58)第7章应力波测试分析技术简介了解 (60)§7.1 膨胀环测试技术 (60)§7.2 Hopkinson杆测试技术 (60)§7.3 Taylor圆柱测试技术 (61)§7.4 高速冲击载荷的实验技术 (61)第0章 绪论1 波动现象波动现象:水波、声波、电磁波、光波等。
应力波基础第三版引言:应力波是指在物质中传播的应力随时间和空间变化的波动现象。
它广泛应用于地震学、地质勘探、无损检测等领域。
本文将介绍应力波的基础知识,涵盖了波动的定义、分类、传播方式以及相关应用。
一、波动的定义波动是指物质中某种物理量在时间和空间上的周期性变化。
在应力波中,物理量指的是应力,即物体内部的力的作用。
应力波的波动可以通过引入应力-应变关系来描述,这一关系反映了物质对外部应力的响应。
二、波动的分类应力波可以分为纵波和横波两种类型。
纵波是指波动方向与波的传播方向一致,而横波是指波动方向与波的传播方向垂直。
在纵波中,物质的颗粒沿着波的传播方向做压缩和膨胀的运动;而在横波中,物质的颗粒沿着波的传播方向做垂直于传播方向的振动。
三、波动的传播方式应力波的传播方式包括体波和面波两种。
体波是指波动在物质的内部传播,包括纵波和横波;面波是指波动在物质的表面传播,包括Rayleigh波和Love波。
相比于体波,面波在传播过程中衰减较小,因此在地震学中具有重要的应用价值。
四、应力波的应用1. 地震学:地震学是应力波应用的重要领域。
地震波是地震事件所产生的应力波,通过地震波的记录和分析,可以了解地球内部的结构和物质性质,并预测地震事件的发生和破坏程度。
2. 地质勘探:应力波在地质勘探中也有广泛的应用。
通过发送人工激发的应力波,可以探测地下的矿产资源、油气储层等。
根据应力波在不同介质中的传播速度和反射、折射等特性,可以对地下结构进行成像和定量分析。
3. 无损检测:应力波在无损检测中也扮演着重要的角色。
通过发送应力波到待测物体上,根据波的反射、折射等特性,可以检测和评估物体的缺陷、损伤情况,如裂纹、腐蚀等。
4. 材料科学:应力波在材料科学中的应用也越来越广泛。
通过发送应力波到材料中,可以研究材料的力学性质、弹性行为以及破坏机理等。
这对于材料的设计和改进具有重要意义。
结论:应力波作为一种波动现象,在地震学、地质勘探、无损检测和材料科学等领域具有广泛的应用价值。
第三章 弹性波的相互作用3-3 已知两种材质的弹性杆A 和B 的弹性模量、密度和屈服极限分别为:E A =60GPa , ρA =2.4g/cm 3,Y A =120MPa ,E 1A =E A /5; E B =180GPa ,ρB =7.2g/cm 3,Y B =240MPa ,E 1B =E B /5。
试对Ⅵ-10所示四种情况分别画出X -t 及σ—v 图,并确定撞击结束时间、两杆脱开时间以及分离之后各自的整体飞行速度。
解:两种材料的参数计算如下:s m E C AAA /500010104.210606390=⨯⨯⨯==-ρs m C C A A /10005/01==,s m C v A yA yA/10500010004.210120)(600-=⨯⨯⨯-=-=ρσs m E C BBB /500010102.7101806390=⨯⨯⨯==-ρs m C C B B /10005/01==,s m C v B yB yB/667.6500010002.710240)(600-=⨯⨯⨯-=-=ρσA C )(00ρ=2.4×10-3×106×5000=12×106kg/(sm )BC )(00ρ=7.2×10-3×106×5000=36×106kg/(sm )(1):v.撞击结束时间:0.02μs 。
两杆脱开时间即接触到脱开时间:0.02μs 。
短杆整体飞行速度:-4 m/s (3区)。
长杆整体飞行速度:2m/s (5区速度)。
(2)撞击结束时间:0.04μs。
两杆脱开时间即接触到脱开时间:0.04μs。
短杆整体飞行速度:2 m/s(7区)。
长杆整体飞行速度:9m/s(6,10区)。
(3)v撞击结束时间:A点:0.02μs;B点:0.04μs。
左短杆整体飞行速度:3区速度,-4 m/s。
右短杆整体飞行速度:7区速度,6 m/s。
应力波基础简明教程
应力波是一种在固体或流体中传播的机械波,它由于介质内部的应力和应变之间的相互作用而产生。
应力波是固体力学和流体力学等领域的重要研究对象,对于理解材料的弹性性质以及地震波的传播机制具有重要意义。
应力波的传播速度取决于介质的性质,不同类型的应力波在不同介质中的传播速度也不同。
例如,纵波是一种沿着波的传播方向产生压缩和膨胀的波,它在固体中传播的速度通常比横波快。
而横波是一种垂直于波的传播方向产生振动的波,它在固体中传播的速度一般比纵波慢。
应力波的产生通常是由外界施加的力或应力突然改变引起的。
当外界施加的力或应力突然改变时,介质内部会产生应力集中的现象,从而引发应力波的传播。
应力波的传播路径可以通过数学模型来描述,这些模型通常基于弹性理论或流体力学方程。
应力波在不同领域中有着广泛的应用。
在地震学中,研究地震波的传播路径和速度可以帮助科学家预测地震的发生和传播。
在工程领域,研究材料的应力波传播性质可以帮助工程师设计更安全和可靠的结构。
在医学领域,应力波技术可以应用于医学成像和治疗,如超声波成像和激光治疗等。
除了上述应用外,应力波还可以用于非破坏性测试和材料表征。
通
过分析应力波的传播速度和幅度等特性,可以推断材料的弹性模量、密度和缺陷等信息。
这种非破坏性的测试方法可以在不破坏材料的情况下评估材料的质量和性能。
应力波的研究也面临着一些挑战和难题。
首先,应力波的传播路径和速度受到介质非均匀性和复杂性的影响,因此需要考虑介质的各向异性和非线性等因素。
其次,应力波的传播过程中会发生能量耗散和衰减,这也需要进行深入的研究和分析。
此外,应力波的探测和测量方法也需要不断改进和创新,以提高测试的准确性和精度。
应力波作为一种在固体和流体中传播的机械波,具有广泛的应用和研究价值。
通过研究应力波的传播特性和应变响应,可以深入理解材料的弹性性质和地震波的传播机制,从而为工程设计、地震预测和医学成像等领域提供科学依据和技术支持。
未来,随着技术的不断进步和研究的深入,相信应力波的研究将会取得更多重要的突破和应用。