第六讲 几何轨迹
- 格式:doc
- 大小:451.00 KB
- 文档页数:9
几何法求轨迹例析谈到曲线的轨迹方程,我们都容易想起几种基本方法:定义法、动点转移法、参数法。
但却将关乎几何本原的方法——几何法忘却了。
事实上初中的平面几何知识,如角平分线性质;三角形、梯形中位线性质;三角形四心(内心、外心、重心、垂心)性质;线段的比例性质及切割线定理与切线长定理等,如果能合理的运用,往往成为我们简化运算,快速求解的关键。
以下笔者就平面几何知识,在解析几何轨迹问题中的应用,列举数例一、角平分线性质的活用 例1:已知F 1、F 2为椭圆的两焦点,Q 一焦点,作∠F 1QF 2的外角平分线的垂线,求垂足P 解:如图所示,延长F 2P 交F 1Q 的延长线于H ,则|QH|=|QF 2|,|PH|=|PF 2| 故 11121111||||(||||)(||||)22222PO HF QF HQ QF QF a a ==+=+== ∴P 点是以O 为圆心,以a 为半径的圆,方程为222x y a +=。
评析:平面中对称的图形有很多,比如角平分线、菱形、圆等,如能利用其对称性,不但可以简化运算,而且还能使思维得到锻炼二、利用三角形或梯形中位线性质例2、两个同心圆C 1和C 2的半径分别是10和4,线段AB 是圆的一条直径,一个离心率12e =的椭圆过A 、B 与圆C 1相切,求该椭圆与准线l 相应的焦点F 的轨迹方程。
解:如图所示,建立坐标系,设点F (x ,y ),B 过A 、B 、O 别作l 的垂线,垂足为A 1、B 1、O 1,则由梯形中位线得: 11111||1||1||||2||20,;||2||2FA FB AA BB OO e e AA BB +======又故()111||||||||10,||8102FA FB AA BB AB +=+==<且,故F 的轨迹是以A 、B 为焦点的椭圆,方程为 221259x y +=。
评析:本例条件中,几何特征较隐含。
此类题需要同学们在平时解题时,多注意挖掘题目图形间的隐含条件与几何本质特征。
解析几何中轨迹问题的求解策略求曲线方程的常用思路和方法1.直译法例1 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程. 解 由2240x y x +-=,有()22222x y -+=.设动圆的圆心P 的坐标为(x ,y).根据题意设点A 的坐标为(2,0),则有2PA x =+,即2x =+.化简整理得244y x x =+.当0x ≥时,28;y x =当x ﹤0时,y=0.综上可知,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0).小结 直接将动点满足的几何等量关系“翻译”成动点x 、y ,所得方程即为所求动点的轨迹方程.用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论.2.定义法例2 已知圆C :()22125x y ++=内一点A(1,0),Q 点为圆C 上任意一点,线段AQ的垂直平分线与线段CQ 连线交于点M ,求点M 的轨迹方程.解 连接AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ. 5=+MQ CM ,∴5=+MA CM .故点M(x ,y)到点C(-1,0)和点A(1,0)的距离之和是常数5,且5>2.所以点P 的轨迹是一个以A 、C 为焦点的椭圆.∵2a=5,2c=2,∴222214b ac =-=.∴点M 的轨迹方程为221252144xy+=.小结 若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程.用定义法求解可先确定曲线的类型与方程的具体结构式,然后用待定系数法求解. 3.代入法例3 抛物线x 2=4y 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF 为邻边作平行四边形FARB ,求顶点R 的轨迹方程.解 设点R 的坐标为(x ,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1),由中点坐标公式可得001,22x y x y +==.设A 点的坐标为(x 1,y 1),B(x 2,y 2),则可知x 1≠x 2, 且x 12=4y 1,x 22=4y 2.上述两式对应相减得x 12-x 22=4(y 1-y 2).从而有02A B x k =.又A 、P 、B 、M 四点共线,且001PM y k x +=,由K AB = K PM 可得x 02=2(y 0+1).把001,22x y x y +==代入上式并整理得x 2=4y+12.小结 动点是直线被圆锥曲线截得的弦中点,只要通过代点作差并以弦的斜率作为过渡,即可获得动点的轨迹方程.事实上这就是中点弦问题的处理方法. 4.参数法例4 已知点P 在直线x=2上移动,直线l垂直,通过点A(1,0)及点P 的直线m 和直线l 相交于点Q Q 的轨迹方程.解 如图1所示,设OP 所在直线的斜率为k ,则点 P 的坐标为(2,2k).由l O P ⊥,得直线的方程为x+ky=0. ① 易得直线m 的方程为y=2k(x-1). ②由于点Q(x ,y)是直线l 和直线m 的交点,所以将①②联立,消去k ,得点Q 的轨迹方程为02222=-+x y x (x 小结 当动点坐标满足的等量关系不容易直接找到时,我们可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即可得动点的轨迹方程,这种求轨迹方程的方法叫参数法.圆与圆锥曲线的轨迹问题例5 如图2所示,矩形A B C D 的两条对角线相交于点(20)M ,,A B 边所在直线的方程为360x y --=,点(11)T -,在A D 边所在的直线上.(1)求A D 边所在直线的方程. (2)求矩形A B C D 外接圆的方程.(3)若动圆P 过点(20)N -,,且与矩形A B C D 的外接圆外切,求动圆P 的圆心的轨迹方程.解 (1)A D 边所在直线的方程为320x y ++=. (2)矩形A B C D 外接圆的方程为22(2)8x y -+=.(3)因为动圆P过点N,所以P N是该圆的半径.又动圆P与圆M外切,所以PM PN=+PM PN-=故点P的轨迹是以MN,为焦点,实轴长为的双曲线的左支.因为实半轴长a=半焦距2c=,所以虚半轴长b==从而动圆P的圆心的轨迹方程为221(22x yx-=≤.小结根据题设条件,分析矩形图形的有关性质,通过解由两个直线方程组成的方程组求得圆心坐标,再利用两点间的距离公式求出半径,从而得出“矩形ABCD的外接圆”的标准方程.本题的第(1)问和第(2)问,将平面几何中的一个重要而基本的图形——矩形与圆结合起来,难度不大,但考查的基础知识却不少.立体几何与解析几何的轨迹问题1.轨迹为椭圆例6如图3所示,AB是平面a的斜线段,A在平面a内运动,使得△ABP的面积为定值,则动点PA.圆B.椭圆C.一条直线D.两条平行直线解根据△ABP的面积为定值,线段AB是定值,则动点P到线段AB的距离也是定值,设此定值为d,所以点P在平面a的轨迹是一个以d为半径且与线段AB垂直的圆在平面a上的投影,即为椭圆.选B.小结涉及面积、点到直线的距离等多个知识点的综合,实质利用投影,考查对椭圆图像的理解.2.轨迹为抛物线例7如图4所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一个动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是A.直线B.圆C.双曲线D.抛物线解由C1D1⊥平面BB1C1C,得PC1⊥C1D1,所以PC1就是点P到直线C1D1的距离.因此已知条件转化为点P到BC的距离等于点P到点C1的距离.根据抛物线的定义,可知点P的轨迹所在的曲线是抛物线.选D.小结例6和例7均巧妙地利用了题中某些定值定量条件,从而转化为定义法来判定动点轨迹.这其实也是解析几何中求轨迹问题常用的方法之一.3.轨迹为双曲线例8已知αα∉e,,过点P引与直线e成45°角的直线交平面α于Q,则Q点⊂p的轨迹是A.两个点B.双曲线C.椭圆D.抛物线解如图5所示,过点P作PO⊥α于O点,以过O点与e平行的直线为y轴,以OP为z轴,建立空间直角坐标系.过点Q作OA⊥x轴于A.设Q点的坐标为(x,y,0),则A点的坐标为(x,0,0).由于P点固定,我们不妨设P(0,0,h),由OA=PA,可知y2=x2+h2.故Q点的轨迹是双曲线.选B.小结解答本题时,首先建立空间直角坐标系,然后把立体几何与解析几何知识直接联系起来,根据圆锥曲线的定义作出判断.。
第六讲 几何轨迹几何轨迹的基本知识一、轨迹的意义1.定义给定条件或性质C ,满足条件C 的一切点所构成的图形F,称为由条件C 所决定的轨迹。
2.轨迹命题的两面证明: “不漏不滥”(1)完备性:符合条件C 的任何点都在图形F 上,或不在F 上的任一点均不满足条件C 。
即点无遗漏。
(2)纯粹性:在图形F 上的任一点都符合条件C ;或不符合条件C 的任一点都不在图形F 上。
保证图形F 上的点没有鱼目混珠或冒充的点。
一般来说,图形F 是知其形而不知其性,轨迹是知其性而不知其形。
研究轨迹问题,就是探求适合一定条件的点的集合形成什么样的图形,使形和性得到完美统一。
3.轨迹命题的三种类型轨迹问题根据结论部分叙述是否完整可分为三种类型:第I 类:命题结论中明确说明了轨迹图形的形状、位置和大小。
第II 类:命题结论中只说出了轨迹图形的形状,但位置和大小或缺,或叙述不全。
第III 类:命题结论中只说求适合某条件的轨迹,对轨迹图形的形状、位置和大小没有直接提供任何信息。
一般把第I 类、第II 类命题称为轨迹定理,把第III 类命题称为轨迹问题。
二、基本轨迹命题命题1 和一个定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆。
命题2 和两个定点距离相等的点的轨迹是连结这两个定点的线段的中垂线。
命题3 和一条已知直线的距离等于定长的点的轨迹,是平行于已知直线且位于此直线两侧并和这直线的距离等于定长的两条平行线。
命题4 与两条平行线距离相等的点的轨迹是和这两条平行线距离相等的一条平行线。
命题5 与相交两直线距离相等的点的轨迹,是分别平分两已知直线交角的互相垂直的两条直线。
命题6 对已知线段的视角等于定角(0180)αα<<的点的轨迹,是以已知线段为弦,所含圆周角等于α的两段弓形弧。
命题7 和一个定点的距离等于定长的点的轨迹是以定点为球心,定长为半径的球面。
命题8 和两条平行线距离相等的点的轨迹是这两平行直线公垂线段的中垂面。
1. 求曲线轨迹方程的基本步骤:⑴建立适当的平面直角坐标系,设轨迹上任一点的坐标为(),M x y ; ⑵寻找动点与已知点满足的关系式; ⑶将动点与已知点坐标代入; ⑷化简整理方程;⑸证明所得方程为所求曲线的轨迹方程。
通常求轨迹方程时,可以将步骤⑵和⑸省略。
2. 几种常用的求轨迹的方法:⑴直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x y 、的等式,就得到轨迹方程,这种方法称之为直接法。
用直接法求动点轨迹的方程一般有建系设点、列式、代换、化简、证明五个步骤,例1. 设直线y ax b =+与双曲线2231x y -=交于A B 、,以AB 为直径的圆过原点,求点()P a b ,的轨迹方程。
例2. 如图所示,平面ABC ∆的两个顶点A B 、分别为椭圆2255x y +=的焦点,且三内角A B C 、、满足1sincos 222B A C-=,试求顶点C 的轨迹方程。
例3、 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.例4、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?例5、双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上. (1)求点1F 的坐标;(2) 求点2F 的轨迹方程,并指出其轨迹表示的曲线.例6、 已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.⑵定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有:1、几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】如图,在正四棱锥S-ABCD中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE AC.则动点P的轨迹与△SCD组⊥成的相关图形最有可能的是( )D DA.B.C.解析:如图,分别取CD、SC的中点F、G,连结EF、EG、FG、BD.设AC与BD的交点为O,连结SO,则动点P的轨迹是△SCD的中位线FG.由正四棱锥可得SB⊥AC,EF⊥AC.又∵EG∥SB ∴EG⊥AC∴AC⊥平面EFG,∵P∈FG,E∈平面EFG,∴AC⊥PE.另解:本题可用排除法快速求解.B中P在D点这个特殊位置,显然不满足PE AC;C中P点所在的轨⊥迹与CD平行,它与CF成角,显然不满足PE AC;D于中P点所在的轨迹与CD平行,它与CF所成的角π4⊥为锐角,显然也不满足PE AC.⊥评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】(1)如图,在正四棱柱ABCD —A1B1C1D1中,E、F、G、H分别是CC1、C1D1、DD1、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足时,有MN∥平面B1BDD1.(2)正方体ABCD—A1B1C1D1中,P在侧面BCC1B1及其边界上运动,且总保持AP⊥BD1,则动点P的轨迹是线段B1C.(3)正方体ABCD —A1B1C1D1中,E、F分别是棱A1B1,BC上的动点,且A1E=BF,P为EF的中点,则点P的轨迹是线段MN(M、N分别为前右两面的中心).(4)已知正方体ABCD—A1B1C1D1的棱长为1,在正方体的侧面BCC1B1上到点A距离为的点的集合形成一条曲线,那么这条曲线的形状是,它的长度是.1ACC1AE1AA1A1(1)(2)(3)(4)若将“在正方体的侧面BCC1B1上到点A距离为的点的集合”改为“在正方体表面上与点A距离为的点的集合”那么这条曲线的形状又是,它的长度又是.A【例3】(1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A .A 直线B .圆C .双曲线D .抛物线变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线).(2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A .(3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =,点P 到直13线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 .π6【例4】(04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )BAB CD 【例5】四棱锥P -ABCD ,AD ⊥面PAB ,BC ⊥面PAB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是()A .圆B .不完整的圆C .抛物线D .抛物线的一部分分析:∵AD ⊥面PAB ,BC ⊥平面PAB ∴AD ∥BC 且AD ⊥PA ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴=AD PA CBPB ∴PB =2PA在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0)∴P 的轨迹是(B)1AA 3A立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1面AB 1,所以⊥PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD A B C D -1111ABCD 内的动点,且点P 到直线的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为A D 11(A ).A .抛物线B .双曲线C .直线D .圆简析在正方体中,过P 作PF AD ,过F 作FE A 1D 1,垂足分别为F 、E ,ABCD A B C D -1111⊥⊥连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体中,点P 在侧面BCC 1B 1及其边界上运动,总有AP BD 1,则动点P 的轨迹ABCD A B C D -1111⊥为__________. 简析在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1面ACB 1,所以满足BD 1AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及⊥⊥其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面SCD 内及其边界上运动,总有PE AC ,则动点∆⊥P 的轨迹为_______________. 答案线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面的两个定点,点P 在外,PB ,动点C (不同于A 、B )在内,且PC AC ,则αα⊥αα⊥动点C 在平面内的轨迹是________.(除去两点的圆)9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成的图形可能是:(D )∆A A A AB C B C B C B C A B C D简析动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在的内角∠ABC 平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在的内角平分线与AB 之间的区域∠ABC 内.只能选D .10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆B .椭圆 C .双曲线D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体的棱长为1,在正方体的侧面上到点A 距离为的点的轨迹形ABCD A B C D -1111BCC B 11233成一条曲线,那么这条曲线的形状是_________,它的长度为__________.12.已知长方体中,,在线段BD 、上各有一点P 、Q ,PQ 上有一点ABCD A B C D -1111AB BC ==63,A C 11M ,且,则M 点轨迹图形的面积是 .PM MQ =2提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体中,长为2的线段MN 的一个端点在上运动,另一个端点ABCD A B C D -1111DD 1N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.14.已知平面平面,直线,点,平面、间的距离为4,则在内到点P 的距离为5且到直//αβl α⊂l P ∈αββ线的距离为的点的轨迹是( )l 29A .一个圆B .两条平行直线C .四个点D .两个点简析:如图,设点P 在平面内的射影是O ,则OP 是、的公垂线,OP=4.在βαβ点的轨迹是四个点,故选C .16.在四棱锥中,面PAB ,面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,ABCD P -⊥AD ⊥BC ,满足上述条件的四棱锥的顶点P 的轨迹是( )CPB APD ∠=∠A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为面PAB ,面PAB ,所以AD//BC ,且.⊥AD ⊥BC ︒=∠=∠90CBP DAP 又,8BC ,4AD ,CPB APD ==∠=∠由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面内,定点P C 是内异于A 和B α,PB ,α⊥α∉α的动点.且,那么动点C 在平面内的轨迹是( )AC PC ⊥αA .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为,且PC 在内的射影为BC ,所以,即.所以点C 的轨迹是PC AC ⊥αBC AC ⊥︒=∠90ACB 以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体中,P 是侧面内一动点,若P 到直线1111D C B A ABCD -1BC BC 与直线的距离相等,则动点P 的轨迹所在的曲线是( )11D C A .直线B .圆C .双曲线D .抛物线简析:因为P 到的距离即为P 到的距离,所以在面内,P 到定点11D C 1C 1BC 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .1C 19.已知正方体的棱长为1,点P 是平面AC 内的动点,若点P 到直线的距离等于点1111D C B A ABCD -11D A P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作于E 、于F ,连结EF ,易知AD PE ⊥11D A PF ⊥建议收藏下载本文,以便随时学习!1x |EF ||PE ||PF |2222+=+=又作于N ,则.依题意,CD PN ⊥|1y ||PN |-=|PN ||PF |=故动点P 的轨迹为双曲线,选B .20.如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP a a 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线分析:由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段),得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面的交线 .a 21.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正P 1111ABCD A B C D -1BD P 11BB D D 方体表面相交于.设,,则函数的图象大致是( )M N ,BP x =MN y =()y f x=ABCD MN P A 1B 1C 1D 1分析:将线段MN 投影到平面ABCD 内,易得y 为x 一次函数.22.已知异面直线a ,b 成角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且︒60线段AB 长等于4,求线段AB 中点的轨迹方程.图5简析:如图5,易知线段AB 的中点P 在公垂线段MN 的中垂面上,直线、为平面内过MN 的中α'a 'b α点O 分别平行于a 、b 的直线,于,于,则,且P 也为的中点.'a 'AA ⊥'A 'b 'BB ⊥'B P 'B 'A AB =⋂'B 'A 由已知MN=2,AB=4,易知得.,2AP ,1'AA ==32'B 'A =则问题转化为求长等于的线段的两个端点、分别在、上移动时其中点P 的轨迹.现以32'B 'A 'A 'B 'a 'b 的角平分线为x 轴,O 为原点建立如图6所示的平面直角坐标系.'OB 'A ∠图6设,,)y ,x (P n |'OB |,m |'OA |==则)n 21,n 23('B ),m 21,m 23('A -)n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++-消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为.1y 9x 22=+点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( )A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5.已知正方体的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD A B C D -1111ABCD 内的动点,且点P 到直线的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( A D 11)A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成的图形可能是( ∆)A A AB C B C B C B CA B C D7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是( ) A .圆B .椭圆 C .双曲线D .抛物线8.已知平面平面,直线,点,平面、间的距离为4,则在内到点P 的距离为5且到直//αβl α⊂l P ∈αββ线的距离为的点的轨迹是(l 29)A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥中,面PAB ,面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,ABCD P -⊥AD ⊥BC ,满足上述条件的四棱锥的顶点P 的轨迹是( )CPB APD ∠=∠A .圆B .不完整的圆C .抛物线D .抛物线的一部分10.如图,定点A 和B 都在平面内,定点P C 是内异于A 和B α,PB ,α⊥α∉α的动点.且,那么动点C 在平面内的轨迹是( )AC PC ⊥αA .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体的棱长为1,点P 是平面AC 内的动点,若点P 到直线的距离等于点1111D C B A ABCD -11D A P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面的斜线段,A 为斜足,若点P 在平面内运动,使得△ABP a a 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线13.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正P 1111ABCD A B C D -1BD P 11BB D D 方体表面相交于.设,,则函数的图象大致是( )M N ,BP x =MN y =()y f x =ABCD MN P A 1B 1C 1D 114.在正方体中,点P 在侧面BCC 1B 1及其边界上运动,总有AP BD 1,则动点P 的轨迹ABCD A B C D -1111⊥为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面SCD 内及其边界上运动,总有PE AC ,则动点∆⊥P 的轨迹为_______________.16.若A 、B 为平面的两个定点,点P 在外,PB ,动点C (不同于A 、B )在内,且PC AC ,则αα⊥αα⊥动点C 在平面内的轨迹是________.17.已知正方体的棱长为1,在正方体的侧面上到点A 距离为的点的轨迹形ABCD AB C D -1111BCC B 11233成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体中,,在线段BD 、上各有一点P 、Q ,PQ 上有一点ABCD A B C D -1111AB BC ==63,A C 11M ,且,则M 点轨迹图形的面积是.PM MQ =219.已知棱长为3的正方体中,长为2的线段MN 的一个端点在上运动,另一个端点ABCD A B C D -1111DD 1N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是.20.已知异面直线a ,b 成角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且︒60线段AB 长等于4,求线段AB 中点的轨迹方程.。
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDAB1A lAB Cα A B CD D 1 C 1B 1A 1 M PABCDD 1 C 1 B 1 A 1 M N3 323P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D).2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6P在侧面BCC1B1及其边界上运动,总有1,则动点P的轨迹为的轨迹为_______________.答案线段MN(M、N分别为SC、CD8.若A、B P C(不同于A、B,则动点C在平面内的轨迹是________.(除去两点的圆)A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与组成的图形可能是:(D)A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y|1x2-=+,化简得0y2yx22=+-故动点P的轨迹为双曲线,选B.20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD内的动点,且点P P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线 B .双曲线 C .直线 D .圆A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与组成的图形可能是( )A A AB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .A BC D MNP A 1B 1C 1D 1 yxOyOxOyx O19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.。
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难.通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹.解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线.针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°〉α〉β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
立体几何微专题1 :动态问题之轨迹立体几何动态问题的分为以下基本类型:点动问题、线动问题、面动问题、体动问题、多动问题等,很多的动态问题只要知道轨迹,把空间转化为平面问题要解决,立体几何中某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于转化为平面问题.轨迹的几何判断方法:动点P满足如下轨迹定义条件时(1)平面内到定点距离等于定长(圆);(2)空间中到定点距离等于定长(球面);(3)两不同平面公共点的集合(直线);(4)平面内到两定点距离之和为定值(大于定点间的距离)(椭圆);(5)平面内到两定点距离之差的绝对值为定值(小于定点间的距离)(双曲线);(6)平面内到定直线距离等于到定点(不在定直线上)距离(抛物线)©考点突破[例1] (2004北京,理4)如图,在正方体力NCD-4/C;〃中,尸是侧面内••封点,若「到直线"C与直线的距离相等,则动点「的轨迹所在的曲线是()A,直线H,圆 C.双曲线 D.抛物线解析:选D.由于G〃,平面Mga连接尸G,则产C;_LGR,即点尸到直线qq的距离即尸q,因此,动点尸到定点G与定直线BC的距离相等,由抛物线的定义可知,动点尸的轨迹为抛物线.[例2] (2006北京,理4)平面口的斜线力疗交1于点过定点/的动直线/与X/垂直,且交a于点C ,则动点。
的轨迹是()A. 一条直线B. 一个圆C. 一个桶圆D.双曲线的一支解析:选A.设/与「是其中的两条任意的直线,则这两条直线确定一个平面,且斜线回垂直于这个平面,由过平面外一点有且只有一个平面与己知直线垂直可知过定点刃与山?垂直所有直线都在这个平面内,故动点C都在这个平面与平面b的交线上,故选A.[例3] (2008浙江,理10)如图,川匕是平面戊的斜线段,凡为斜足,若点户在平面内运动,使得A4用尸的面枳为定值,则动点P的轨迹是(A.圆B.椭圆C. 一条直线D.两条平行直线解析:选人由题意知,点尸到线段乂月的距离为定值,则点尸在以为旋转轴的圆柱表面上一点।故平面a斜截圆柱,所得图形为椭圆.[例4](2015浙江,文7)如图,斜线段45与邛面仪所成的角为60、B为斜足,平面a上的动点户满足乙匕13 = 30"则点尸的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支解析:选C由题可知,当尸点运动时,在空间中,满足条件的/尸绕旋转形成一个圆锥,用一个与圆锥高成60口角的平面截圆锥,所得图形为椭圆.[例5](2012浙江模拟)如果一个平面与一个圆柱的轴成](0<tz<-)2角,则该平面与圆柱侧面的交线是一个椭圆,当以=2时;椭圆的离心率是6百八1 8B, — C. 一 D.—2 2 2解析:选既由题意得,椭圆的短半轴长等于底面半径小即5=人若平面与圆柱的轴所成角为30,则平面与圆柱底面成60 ,从而可得椭圆的长半轴长为4二—-—= r L1|I a = 2b t故总= J]- (2)-=---cos 60 V a 2[例6](2013西城 模)如图,正方体4武力-/用£口中,F 为底面/用⑦ 上的动点, PE 工邓:于E ,且/Y =/%,则点P 的轨迹是()A.线段 B,圆弧 C ,椭圆的一部分 D.抛物级的一部分 解析:选/t 由题意知,\A {AP^\A X EP,则点P 在线段/五的中垂面上 运动,从而与底面力人力的交线为线段.[例7](2011广州・•模,理SO 如图所示,已知正方体/狄力-的 棱长为3长为2的线段上W 的一个端点M 在棱Z)口上运动,另一端点N 在正方形⑷?CD 内运动,则河、的中点的轨迹的面积为()A. 4 笈B. 2 乃C. 7T 解析:选D.易知I)J)] 1平面/BCD ,乙MDN = 90 ,取线段的中点 尸,则QF 二4= 所以点尸的轨迹是以。
第六讲 几何轨迹几何轨迹的基本知识一、轨迹的意义1.定义给定条件或性质C ,满足条件C 的一切点所构成的图形F,称为由条件C 所决定的轨迹。
2.轨迹命题的两面证明: “不漏不滥”(1)完备性:符合条件C 的任何点都在图形F 上,或不在F 上的任一点均不满足条件C 。
即点无遗漏。
(2)纯粹性:在图形F 上的任一点都符合条件C ;或不符合条件C 的任一点都不在图形F 上。
保证图形F 上的点没有鱼目混珠或冒充的点。
一般来说,图形F 是知其形而不知其性,轨迹是知其性而不知其形。
研究轨迹问题,就是探求适合一定条件的点的集合形成什么样的图形,使形和性得到完美统一。
3.轨迹命题的三种类型轨迹问题根据结论部分叙述是否完整可分为三种类型:第I 类:命题结论中明确说明了轨迹图形的形状、位置和大小。
第II 类:命题结论中只说出了轨迹图形的形状,但位置和大小或缺,或叙述不全。
第III 类:命题结论中只说求适合某条件的轨迹,对轨迹图形的形状、位置和大小没有直接提供任何信息。
一般把第I 类、第II 类命题称为轨迹定理,把第III 类命题称为轨迹问题。
二、基本轨迹命题命题1 和一个定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆。
命题2 和两个定点距离相等的点的轨迹是连结这两个定点的线段的中垂线。
命题3 和一条已知直线的距离等于定长的点的轨迹,是平行于已知直线且位于此直线两侧并和这直线的距离等于定长的两条平行线。
命题4 与两条平行线距离相等的点的轨迹是和这两条平行线距离相等的一条平行线。
命题5 与相交两直线距离相等的点的轨迹,是分别平分两已知直线交角的互相垂直的两条直线。
命题6 对已知线段的视角等于定角(0180)αα<<o o的点的轨迹,是以已知线段为弦,所含圆周角等于α的两段弓形弧。
命题7 和一个定点的距离等于定长的点的轨迹是以定点为球心,定长为半径的球面。
命题8 和两条平行线距离相等的点的轨迹是这两平行直线公垂线段的中垂面。
命题9 和两条定相交直线距离相等的点的轨迹,是通过这两条直线所成角的平分线。
且与已知两直线所在平面垂直的两相交平面。
命题10 和一条定直线的距离等于定长的点的轨迹是以这条定直线为轴,半径等于定长的一个圆柱面。
命题11 和一条定线段的两端连线所张成的角等于直角的点的轨迹,是以这条定线段为直径的一个球面。
各种轨迹类型命题举例一、第I 类轨迹命题这类问题的求解步骤为:① 写出已知与求证;②证明完备性与纯粹性;③作出结论。
例1 设一点到矩形的一双对顶的距离之和等于到另一双对顶的距离之和,则其轨迹为矩形的两条对称轴。
已知: ABCD 是矩形,l 和'l 是它的对称轴,P 是适合条件PA PC PB PD +=+ (i )的点。
求证:点P 的轨迹是直线l 和'l .证明:(1)完备性 证满足条件(i )的点必在直线l 或'l 上.由 PA PC PB PD +=+ 得222222PA PC PA PC PB PD PB PD ++⋅=++⋅以O 表示AC 与BD 的交点,则PO 是△PAC 和△PBD 的中线,由斯特瓦尔特定理知22222()PA PC AO PO +=+22222()PB PD BO PO +=+由上知 2222PA PC PB PD +=+ 及 22PA PC PB PD ⋅=⋅从而 22()()PA PC PB PD -=-所以 PA PC PB PD -=- 或 PA PC PD PB -=-又 PA PC PB PD +=+所以 PA PB PC PD =⎧⎨=⎩ 或 PA PD PC PB=⎧⎨=⎩ 即满足条件(i )的点P 不在l 上便在'l 上。
(2)证纯粹性 即证在直线l 或'l 上的点满足条件(i )。
由图形的对称性,这是显然的。
(3)得结论 由上知,所求轨迹是直线l 和'l .例2 给定直角XOY ,一条定长(记为a )的线段AB 在角的两边上滑动,则AB 中点的轨迹是以O 为中心,以2a 为半径的圆被角两边所截的圆弧»QR (如图)证明:(1)完备性 设P 为AB 的中点,则P 为直角三角形△OAB 斜边中点,有1122OP AB a == ,即P 在»QR 上。
(2)纯粹性 在»QR上任取一点P ,下面证经过P 存在长为a 且两端在XOY ∠的两边上的线段AB 。
现作(,)P OP e 交角的两边于A 、B ,由于XOY ∠为直角,又12,34∠=∠∠=∠, 142390∠+∠=∠+∠=o ,于是180APB ∠=o ,即A 、P 、B 共线,于是AB 为(,)P OP e 的直径,从而2AB OP a =⋅=,即P 是一条定长线段AB 的中点。
(3)结论:所求轨迹是以O 为中心,以2a 为半径的圆被角两边所截的圆弧»QR .二、第II 类轨迹命题第II 类轨迹命题,明白说出轨迹形状,至于位置和大小,或叙述不全或干脆不说,解决这类问题,分三步:① 探求轨迹,即预测轨迹的位置和大小,使其完全确定。
② 证明完备性和纯粹性,并下结论。
③ 讨论,即研究所给定的条件对轨迹的影响。
例3 和两定点距离之比等于常数(不等于1)的点的轨迹是一个圆周,称为阿氏圆。
设A 、B 为定点,点M 的轨迹使(1)MA m m MB=≠,m 为定常数探求:若一点M 满足此条件,则M 关于AB 的对称点也满足此条件,即所求轨迹以AB 为对称轴,那么就是直径在直线AB 上的圆。
设内分线段AB 于C ,外分线段AB 于D ,使AC AD m CB BD== 那么C 、D 满足条件,轨迹可能是以CD 为直径的圆周。
(1)完备性 如下图,设M 为符合MA m MB=而不在AB 上的任一点,由于MA AC AD MB CB DB==,由三角形内外角平分线的性质知MC 、MD 分别是AMB ∠的内外角平分线,从而CM MD ⊥,故M 在以CD 为直径的圆周上。
(2)纯粹性 如下图,设M 为圆上异于C 、D 的任一点,过M 作CMA CMB '∠=∠交DC 于A '。
下证A '=A .由于MC 为A MB '∠的内角平分线且CM MD ⊥知MD 为A MB '∠的外角平分线,则有A C MA A D A D A C CD CB MB BD BD CB BD CB'''''-====--(内、外角平分线的性质)又由假设()AC AD AD AC CD m CB BD BD CB BD CB-====-- 从而 ,A C AC A C AC CB CB''==,又A '和A 均在C 的同侧,故A '和A 重合。
∴ MA AC m MB CB ==. ■例4 到两定点距离的平方和为常量的点的轨迹(倘若存在)为一圆(可能缩为一点),称为定和幂圆。
设A 、B 为定点(如下图 ),k 为定长,求点M 的轨迹,使满足条件222MA MB k +=.探求:若M 符合条件,则M 关于直线AB 的对称点及M 关于AB 的中垂线l 的对称点也都符合条件。
可见轨迹以AB 和l 为对称轴,故可能是以AB 的中点为中心的圆。
证明:(1)完备性 设M 符合条件,连MO ,由斯特瓦尔特定理知22222122k MA MB MO AB =+=+,于是22122MO k AB r =-= 即 M 在(,)O r e 上,其中r 由上式给出。
(2)纯粹性 反之,设M 为(,)O r e 上任一点,有222222212()22MA MB AO MO AB r k +=+=+= 即M 符合所给条件。
(3)讨论 当2k >时,轨迹为圆;当 2k =时,轨迹为一孤立点;当2k <时,轨迹不存在,即没有适合条件的点。
■例5 到两定点距离的平方差为常量的点的轨迹,是垂直于这两点连线的一条直线,称为等差幂线。
设A 、B 为两定点(如下图 ),k 为常数(正、负或零),求满足条件22MA MB k -=的点的轨迹。
探求:点M 满足条件,则M 关于AB 的对称点也满足条件,故若轨迹是直线,就一定对称于AB ,因而与AB 垂直,只须知道这直线l 和AB 的交点N ,轨迹就完全定了。
由 222222()()k MA MB AN MN BN MN =-=+-+ 22()()(2)AN BN AN BN AN BN AB AN AB =-=+-=⋅- 故22AB k AN AB+= 由上式定一点N ,及通过N 垂直于AB 的直线l .证明:(1)由探求过程知,符合条件的点M 在过N 且垂直于AB 的直线l 上。
(2)反之,在l 上任取一点M ,有2222MA MB AN BN k -=-=,即点M 满足条件。
(3)讨论 当0k =时,l 是AB 的中垂线;当0k <时,可看作满足条件的轨迹是l 关于AB 中垂线的对称线。
■三、第III 类轨迹命题与解决第II 类轨迹命题一样,只是探求较麻烦。
探求轨迹的有效步骤为:① 描迹 按所给条件作出轨迹上若干点,连以平滑曲线,往往可发现轨迹的形状及大体位置,是直观有效的初步方法。
② 预测轨迹的性质,主要观察轨迹的对称性及范围。
i )若所给图形及条件均有对称性,则轨迹有相应的对称性,如轴对称和中心对称;ii )轨迹上有可达任意远处的点,且无(有)端点,轨迹为直线(射线);iii )轨迹上没有可达任意远处的点,轨迹为线段、圆或圆弧,若有起讫,则是圆弧或线段。
③ 确定特殊点④ 研究任意点和特殊点的关系如上一步或几步骤,足可判断轨迹,然后加以证明,必要时进行讨论。
例6 从已知半圆直径AB 延长线上任取一点C ,作切线CT 及ACT ∠的平分线,从圆心作这平分线的垂线,求垂足M 的轨迹。
探求:作OD AB ⊥,若C B →时,CT 趋而为B 的切线,角平分线为BD ,点M 为BD 的中点G 。
由图形的对称性知,G 关于OD 的对称点H 也应为轨迹上一点。
若C 趋向无穷远,则切线趋而为点D 的切线,角平分线为OD 的中垂线,点M 为P 。
故G 、H 、P 在轨迹上且共线(距AB 均为2R ),预测轨迹为线段GH. 证明:(1)设M 是符合条件的点,下证M 在GH 上。
由探求过程知,当C 在以B (A )为端点的射线上连续移动时,点M 由G (H )连续移动到点P ,只须证明M 到AB 的距离12ME R =即可。
设OM 交CT 于N ,并作MF CT ⊥,显然M 是等腰OCN ∆底边ON 的中点,故1122ME MF OT R ===。
(2)设M 为GH 上一点,下证M 符合条件。