最短路径问题dijkstra求解过程
- 格式:docx
- 大小:10.97 KB
- 文档页数:1
dijkstra算法步骤例题Dijkstra算法是解决单源最短路径问题的常用算法。
其思路是通过累计最短路径来逐渐扩展到所有节点。
Dijkstra算法的基本流程如下:1. 创建一个空堆和一个空seen集合。
堆中包含每个节点到起始节点的距离值和节点本身。
2. 将起始节点插入堆中,并将其距离值设为0。
3. 当堆不为空时,取出堆中距离值最小的节点。
如果此节点在seen中,跳过。
否则,将其标记为seen,并计算其邻居节点到起始节点的距离值。
如果邻居节点的距离值未被计算过或新距离值比已计算的距离值小,更新其距离值。
最后,将其加入堆中以备下一次取最小距离值使用。
4. 重复上述步骤3,直至堆为空或者所有节点距离值都被计算。
下面通过一个例子来详细解释Dijkstra算法的具体实现过程:假设我们有如下图所示的一个简单的有向加权图,其中每个节点代表一个城市,每条有向边代表两个城市之间的道路,其权重表示两座城市之间的距离。
设起点为A,我们使用Dijkstra算法来求出从A到图中其余各个节点的最短距离和路径。
具体步骤如下:1. 创建空的distance字典保存每个节点到起点A的距离,创建空的parents字典保存最短路径上的每个节点的前一个节点,创建空的visited集合保存已经访问过的节点,创建初始堆,将A压入堆中,距离设置为0。
```distance = {A: 0}parents = {A: None}visited = set()heap = [(0, A)]```2. 当堆不为空时,取出堆中最小距离值对应的节点,并加入visited中。
```while heap:(curr_dist, curr_node) = heapq.heappop(heap)if curr_node in visited:continuevisited.add(curr_node)```3. 对于当前节点的每个邻居,计算其到起点的距离值并更新distance和parents。
Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
最短路径dijkstra算法流程最短路径算法是计算在带权有向图或者无向图中起点到所有其他点最短路径的一种算法,其中最短路径指的是边权值之和最少的路径。
目前最常用的算法是Dijkstra算法,它是由荷兰计算机科学家Edsger W. Dijkstra于1959年提出的。
下面将介绍Dijkstra算法的流程。
1. 初始化首先,需要将起点到每个点的最短距离都初始化为无穷大,除了起点自己的最短距离为0。
其中,起点是指算法的起点节点。
同时,需要创建一个集合S,用于记录已经确定了最短距离的点。
2. 找出未确定最短路径的节点中最小的距离,并将其标记为已确定最短路径在第一步中,只有起点节点的最短距离是确定的。
接下来,在集合S中找出剩余未确定最短路径的节点中距离最小的节点u,并将其标记为已经确定了最短路径。
在第一次执行该步骤时,节点u即为起点节点。
3. 更新最短距离将节点u所有邻居的距离进行更新。
假设节点v是节点u的邻居,其距离为d(u,v),则:如果 d(u,v) + dist(u) < dist(v),则更新节点v的最短距离为d(u,v) + dist(u),其中dist(u)表示起点节点到节点u的最短距离。
重复执行上述步骤,直到集合S中包含所有节点。
4. 输出每个节点的最短距离执行完第三步之后,每个节点的最短距离都已经确定。
此时,可以输出每个节点的最短距离。
以上就是Dijkstra算法的流程。
此外,这个算法还可以通过堆优化来提高效率。
具体来说,可以将还未确定最短距离的节点按照距离从小到大存储在堆中,每次取出堆中距离最小的节点。
(这部分由于是在原算法的基础之上的优化模型,所以该模型不友好于百科网站的格式要求,如果您有需要,也可以决定不包括,并以此作为描述结尾)总的来说,Dijkstra算法是求解最短路径问题的有效方法之一。
它适用于只有正权边的有向或者无向图,并且能够计算出起点到所有其他节点的最短路径。
因此,它可以用于路线规划、制订地图等应用情景中。
Dijkstra算法是一种用于计算图中从一个顶点到其他所有顶点的最短路径的算法。
它由荷兰计算机科学家艾兹赫尔·戴克斯特拉于1956年提出。
Dijkstra算法的基本思想是通过不断更新起始顶点到其他顶点的最短路径长度,逐步找到最短路径。
以下将详细介绍Dijkstra算法的步骤,并给出一个例题和表格供读者参考。
一、算法步骤1. 初始化- 设置起始顶点的最短路径为0,其余顶点的最短路径为无穷大。
- 将起始顶点加入已访问的顶点集合。
2. 更新- 从未访问的顶点中选择离起始顶点最近的顶点,将其加入已访问的顶点集合。
- 更新起始顶点到其他顶点的最短路径长度,如果经过新加入的顶点到其他顶点的路径长度小于当前已知的最短路径长度,则更新最短路径长度。
3. 重复更新直到所有顶点都被访问过。
二、算法实例为了更好地理解Dijkstra算法的具体应用步骤,我们通过一个实际的例题来演示算法的执行过程。
假设有以下带权重的图,起始顶点为A:顶点 A B C D EA 0 3 4 ∞ ∞B ∞ 0 ∞ 1 7C ∞ 4 0 2 ∞D ∞ ∞ ∞ 0 5E ∞ ∞ ∞ ∞ 0表中每个元素表示从对应顶点到其它顶点的边的权重,"∞"表示没有直接相连的边。
我们按照Dijkstra算法的步骤来计算从顶点A到其他顶点的最短路径长度。
1. 初始化起始顶点为A,初始化A到各顶点的最短路径长度为0,其余顶点的最短路径长度为∞。
将A加入已访问的顶点集合。
2. 更新选择A到B的路径长度最短,将B加入已访问的顶点集合。
更新A到C和A到D的最短路径长度。
3. 重复更新依次选择离起始顶点最近的顶点,并更新最短路径长度,直到所有顶点被访问。
通过不断的更新,最终得到从顶点A到其他顶点的最短路径长度表格如下:顶点 A B C D E最短路径长度 0 3 4 5 9三、总结通过以上Dijkstra算法的步骤和实例计算,我们可以清晰地了解该算法的执行过程和原理。
最短路径dijkstra算法过程
Dijkstra算法是一种用于解决最短路径问题的经典算法,其过
程如下:
1. 创建一个距离表,记录从起始节点到每个节点的距离。
初始时,除了起始节点,其他节点的距离被设置为无穷大,起始节点的距离被设置为0。
2. 创建一个集合Q,用于存放还未被访问的节点。
3. 在集合Q中找到距离最小的节点v并将其从集合Q中移除。
如果没有找到,则说明所有节点已被访问完毕,算法结束。
4. 遍历节点v的所有邻居节点u,对于每个邻居节点u,更新
其距离表中的距离。
如果通过节点v可以获得比原先距离更短的路径,则更新距离。
5. 重复步骤3和步骤4,直到集合Q为空。
6. 返回距离表,其中记录了从起始节点到其他节点的最短距离。
需要注意的是,在实现过程中,需要使用一个优先队列来快速找到集合Q中距离最小的节点v,以提高算法的效率。
以上就是Dijkstra算法的基本过程。
通过不断更新距离表,算
法可以找到从起始节点到其他节点的最短路径。
dijkstra例题详解Dijkstra算法是一种求解单源最短路径问题的贪心算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1956年提出的。
Dijkstra算法可以解决有向有权图中单个源节点到其他所有节点的最短路径问题。
下面我们就来看一下Dijkstra算法的具体流程和实例。
一、Dijkstra算法的基本思想Dijkstra算法是一种基于贪心算法的思想,它采用了一种逐步逼近的方式来得到最短路径。
Dijkstra算法主要基于两个概念:1.已知最短路径节点集合S2.未知最短路径节点集合Q初始时,已知最短路径节点集合S为空,未知最短路径节点集合Q包含所有节点。
第一步,从未知最短路径节点集合Q中选取一个节点v,使得该节点到源节点的距离最短,并把这个节点加入到已知最短路径节点集合S中。
第二步,根据新加入的节点v,更新其他节点到源节点的距离。
如果节点w到源节点的距离通过v缩短了,那么就更新节点w的距离。
重复以上两个步骤,直到集合S包含所有节点。
二、Dijkstra算法的实现步骤具体实现Dijkstra算法的步骤如下:1.首先,初始化一个距离数组dis,保存源节点到每个节点的最短距离,初始化为INF(无穷大)。
2.初始化一个标记数组vis,保存每个节点是否已经走过,初始化为false。
3.设置源节点的距离为0,并将其放入优先队列中。
4.重复以下步骤,直到队列为空:从队列中取出距离源节点最近的节点u,将其标记为vis[u]=true。
遍历节点u的所有邻节点v,若vis[v]=false,则计算源节点到v的距离,并更新dis[v]。
将节点v放入优先队列中。
5.最终,dis数组中保存的就是源节点到每个节点的最短距离。
三、Dijkstra算法的例题详解现在我们来看一个Dijkstra算法的例题。
假设有一个无向有权图,图中有5个节点,给定起点s,节点之间的边和边权如下图所示。
给定起点s,求源节点s到每个节点的最短路径。
dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
matlab dijkstra算法求解最短路径例题摘要:一、Dijkstra 算法简介1.Dijkstra 算法背景2.Dijkstra 算法原理二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象2.计算最短路径3.可视化结果三、Dijkstra 算法应用示例1.例题描述2.解题步骤3.结果分析正文:一、Dijkstra 算法简介Dijkstra 算法是一种经典的图论算法,用于计算图中两个节点之间的最短路径。
它是由荷兰计算机科学家Edsger W.Dijkstra 于1956 年提出的,其基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
可以用堆优化来提高效率。
二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象首先,我们需要使用MATLAB 的graph 函数创建一个图对象,指定节点和边的信息。
例如,我们创建一个简单的图,包含4 个节点和3 条边:```matlabG = graph(4, 3);```其中,4 表示图中有4 个节点,3 表示图中有3 条边。
2.计算最短路径接下来,我们可以使用MATLAB 的shortestpath 函数计算两个节点之间的最短路径。
例如,我们计算节点1 到节点3 的最短路径:```matlabSP = shortestpath(G, 1, 3);```3.可视化结果最后,我们可以使用MATLAB 的plot 函数将最短路径可视化。
例如,我们绘制节点和边以及最短路径:```matlabplot(G, SP);```三、Dijkstra 算法应用示例以下是一个使用Dijkstra 算法求解最短路径的例题:在一个图中,有4 个节点和3 条边,如下所示:```1 --2 -- 3| /| /| /| /|/4```请问,节点1 到节点4 的最短路径是多少?。
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
Dijkstra算法求解过程简介Dijkstra算法是解决单源最短路径问题的经典算法之一,它通过贪心策略逐步确定从源点到其他所有节点的最短路径。
该算法的核心思想是利用优先队列,不断选择最短路径中还未确定最短路径的节点,直到找到源点到目标节点的最短路径。
算法思路1.创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大(表示未确定最短路径)。
2.将源点到自身的距离设置为0,将源点加入优先队列Q。
3.从Q中选择距离最短的节点u,并标记节点u的最短路径为确定。
4.遍历节点u的所有邻接节点v,更新源点到v的距离,如果发现新的最短路径,则更新路径长度并将节点v加入优先队列Q。
5.重复步骤3和4,直到优先队列Q为空。
算法步骤详解初始化首先,我们需要创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大。
同时,将源点到自身的距离设置为0,将源点加入优先队列Q。
选择最短路径节点从优先队列Q中选择距离最短的节点u,将其标记为最短路径已确定的节点。
更新最短路径遍历节点u的所有邻接节点v,计算从源点到节点v的距离。
如果发现新的最短路径,则更新节点v的路径长度,并将节点v加入优先队列Q。
重复步骤3和4重复进行步骤3和4,直到优先队列Q为空。
这样就能够找到源点到所有其他节点的最短路径。
算法实例下面通过一个具体的示例来演示Dijkstra算法的求解过程。
假设有如下图所示的带权有向图,我们需要求解从源点A到其他所有节点的最短路径:4A -------> B| /|\| / || 2 | \3| \/ \/| C---D| / || /1 |2| \/ |--->E------>F我们先初始化距离表,将源点A到所有其他节点的距离设置为无穷大,源点A到自身的距离设置为0:节点距离A 0——- —-B ∞——- —-C ∞——- —-D ∞——- —-E ∞——- —-F ∞接着,将源点A加入优先队列Q。
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
Dijkstra算法步骤详述Dijkstra算法是一种经典的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
本文将详细介绍Dijkstra算法的步骤和实现。
1. 初始化首先,我们需要将算法的输入进行初始化。
假设我们有一个带权重的有向图,其中节点集合为V,边的集合为E。
对于每个节点v ∈ V,我们设置初始距离d[v]为正无穷大(INF),表示从起点到节点v的距离为无穷大;同时,我们设置起点s的初始距离d[s]为0,表示从起点到自身的距离为0。
2. 确定最短路径接下来,我们将在图中逐步确定起点到其他节点的最短路径。
首先,我们从起点s开始,将s标记为当前节点。
然后,对于s的所有邻居节点v,我们更新其当前最短路径,并标记v为下一个当前节点。
这一步骤可以通过以下过程实现:a. 对于节点s的所有邻居节点v,计算通过s到达v的距离。
如果该距离小于d[v],则将d[v]更新为该距离,并将s作为节点v的前驱节点(即最短路径上v的前一个节点)。
b. 从剩余的未标记节点中选择一个距离最短的节点作为下一个当前节点。
具体而言,从未标记节点中选择一个节点u,使得d[u]最小,并将其标记为当前节点。
3. 更新最短路径在上一步中,我们确定了起点到一个节点的最短路径。
现在,我们将以已选择的当前节点继续执行第2步,直到所有节点都被标记为止。
具体而言,重复进行以下步骤:a. 在当前节点的所有邻居节点中,更新其最短路径并选择下一个当前节点,过程与第2步相同。
b. 如果不存在未标记节点,则算法终止。
4. 输出最短路径当算法终止时,我们可以得到从起点到达所有节点的最短路径。
对于每个节点v,最短路径可以通过回溯每个节点的前驱节点得到。
具体而言,从目标节点开始,通过前驱节点一直回溯到起点,即可得到最短路径。
总结:Dijkstra算法通过逐步确定起点到其他节点的最短路径,从而找到整个图中的最短路径。
它的步骤包括初始化、确定最短路径和更新最短路径。
dijkstra算法求解过程
Dijkstra算法是一种用于解决单源最短路径问题的贪心算法。
它的基本思想是从起点开始,每次选择当前最短路径的节点作为下一个中转点,直到到达终点为止。
下面我们来详细了解一下Dijkstra算法的求解过程。
1. 初始化
首先,我们需要将起点到各个节点的距离初始化为无穷大,表示当前还没有找到最短路径。
同时,将起点到自身的距离设为0,表示起点到自身的距离为0。
2. 选择最短路径节点
从起点开始,选择当前距离起点最近的节点作为中转点,将其标记为已访问。
然后,更新起点到其他节点的距离,如果经过当前中转点的路径比原来的路径更短,就更新距离。
3. 重复选择最短路径节点
重复上述步骤,直到所有节点都被标记为已访问,或者终点被标记为
已访问。
在每次选择最短路径节点时,可以使用优先队列来提高效率。
4. 输出最短路径
当所有节点都被标记为已访问时,最短路径就已经确定了。
可以通过
回溯记录每个节点的前驱节点,从终点开始沿着前驱节点一直回溯到
起点,就可以得到最短路径。
Dijkstra算法的时间复杂度为O(n^2),其中n为节点数。
如果使用优先队列来优化,时间复杂度可以降为O(mlogn),其中m为边数。
因此,在实际应用中,Dijkstra算法常常被用来解决稠密图的最短路径
问题。
总之,Dijkstra算法是一种简单而有效的求解单源最短路径问题的算法。
通过不断选择当前最短路径的节点,可以逐步确定起点到终点的
最短路径。
从某个源点到其它各顶点间的最短路径这里路径指两顶点间的通路,路径的长度指所有经过的边的总长。
“最短路径”的问题指当两个顶点间通路多于一条时,如何找出边长总和为最短的那条。
Dijkstra 提出按路径长度递增的次序求最短路径的方法。
1、 Dijkstra 求最短路径的基本思想 把顶点分成两组,第一组是已确定最短路径的结点的集合,第二组是尚未确定最短路径的结点的集合。
按路径长度递增的次序逐个把第二组的顶点放到第一组中。
设求从v0到其它各顶点间的最短路径,则在任意时刻,从v0到第一组各顶点间的最短路径都不大于从v0到第二组各顶点间的最短路径。
2、Dijkstra 求最短路径的步骤设图以邻接矩阵arcs 存储,矩阵中各元素的值为各边的权值。
顶点间无边时其对应权值用无穷大表示。
从顶点v0到其它各顶点间的最短路径的具体步骤如下:(1)初始化:第一组(集合s )只含顶点v0,第二组(集合v-s )含有图中其余顶点。
设一dist 向量,其下标是各顶点,元素值是顶点v0到各顶点的边的权值。
若v0到某顶点无边,dist 向量中的对应值为无穷大。
(2)选dist 中最小的权值,将其顶点(j )加入s 集合。
s=s {j}(3)修改从顶点v0到集合t(t=V -s)中各顶点的最短路径长度,如果 dist[j]+arcs[j][k]<dist[k] 则修改dist[k]为dist[k]=dist[j]+arcs[j][k] (4) 重复(2)、(3)n-1次。
由此求得v0到图上其余各顶点得最短路径。
3、例:求下图从v0到其余各顶点的最短路径。
图7.34 一个带权有向图G6图的邻接矩阵如下:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞=6020105051003010.arcs G算法(程序)如下:/* 用邻接矩阵表示的图的Dijkstra算法的源程序2010年11月16日修改*/#include <stdio.h>#include <limits.h>#define INFINITY INT_MAX#define MAXVEX 6#define FALSE 0#define TRUE 1typedef char V exType;typedef float AdjType;typedef struct{ int vexnum; /* 图的顶点个数*/V exType vexs[MAXVEX]; /* 顶点信息*/AdjType arcs[MAXVEX][MAXVEX]; /* 边信息*/}MGraph;void ShortestPath_DIJ(MGraph &G,int p[][MAXVEX],AdjType D[]){ int v,w,i,j;AdjType min;int final[MAXVEX]; //final[v]为TRUE当且仅当v∈s,即已求得从v0到v的最短路径for(i=0;i<G.vexnum;i++){ final[i]=FALSE; D[i]=G.arcs[0][i];for(w=0;w<G.vexnum;w++) p[i][w]=FALSE; /*设空路径*/if(D[i]<INFINITY) /*如果V0到V i有直接路径则置p[i][0]和p[i][i]为1*/{ p[i][0]=TRUE;p[i][i]=TRUE;}}/*for语句结束*/D[0]=0; final[0]=TRUE; /* 初始化,表示顶点v0在集合S中*/for(i=1;i<G.vexnum;i++)/*开始主循环,每次求得v0到某个v顶点的最短路径,并加v到s集*/{ min=INFINITY;for(w=0;w<G.vexnum;w++) /*在V-S中选出距离值最小顶点*/if(!final[w]&&D[w]<min) /*w顶点离v0顶点是更近*/{ v=w; min=D[w]; }final[v]=TRUE; /*离v0最近的v加入S集*/for(w=0;w<G.vexnum;w++) /*更新当前最短路径及距离*/if(!final[w]&&(min+G.arcs[v][w]<D[w])) /*修改D[w]和p[w],w∈v-S*/{ D[w]=min+G.arcs[v][w]; /*修改路径长度*/for(j=0;j<G.vexnum;j++)p[w][j]=p[v][j]; /*修改路径为经过v到达w*/p[w][w]=TRUE;} /*if结束*/}/*for结束*/}/*ShortestPath_DIJ结束*/void main() { int i,j;MGraph G;AdjType D[MAXVEX]; /*D(v)为v0到v 的路径长度*/int p[MAXVEX][MAXVEX]; /*p(v)记录v0到v 的最短路径,若p[v][w]为TRUE ,则w 是从v0到v 当前求得最短路径上的顶点*/ G .vexnum=6;for(i=0;i<G .vexnum;i++)for(j=0;j<G .vexnum;j++)G .arcs[i][j]=INFINITY ; /*G 数组初始化最大值*/ G .arcs[0][2]=10; G .arcs[0][4]=30; G .arcs[0][5]=100; G .arcs[1][2]=5; G .arcs[2][3]=50; G .arcs[3][5]=10; G .arcs[4][3]=20; G .arcs[4][5]=60; ShortestPath_DIJ(G ,p,D);for(i=0;i<G .vexnum;i++) /*以邻接矩阵形式输出图*/ { for(j=0;j<G .vexnum;j++)printf("%12.0f",G .arcs[i][j]); printf("\n"); }for(i=0;i<G .vexnum;i++) /*输出V0到其它各顶点的路径*/ { for(j=0;j<G .vexnum;j++)printf("%3d",p[i][j]); printf("\n"); }for(i=0;i<G .vexnum;i++) /*输出V0到其它各顶点的最短距离*/ printf("%.0f ",D[i]); }final 、D 和p 数组的初始状态:fina l =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡000000 D =⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡1003032767103276732767 ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=101010*********000101000000000000p 下标=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡543210 输出:32767要换成214748364832767 32767 10 32767 30 100 32767 32767 5 32767 32767 3276732767 32767 32767 50 32767 32767 32767 32767 32767 32767 32767 10 32767 32767 32767 20 32767 60 32767 32767 32767 32767 32767 32767D 数组的变化情况final 、D 和p 数组的终止状态:fina l =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡111111 D =⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡60305010327670 ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=1111010*********000101000000000000p 下标=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡543210 其中P 中记录的是最短路径,D 数组记录的是最短距离。
求解单源最短路径问题的算法单源最短路径问题是指从图中的一个顶点到其他所有顶点的最短路径的问题。
下面将详细介绍两种经典的求解该问题的算法:Dijkstra算法和Bellman-Ford 算法。
1. Dijkstra算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
创建一个集合S,记录已经确定最短路径的顶点。
- 重复以下步骤,直到集合S包含所有顶点:- 从未确定最短路径的顶点中选择距离源顶点最近的顶点u,并将其加入集合S。
- 对于与u相邻的顶点v,更新其距离为:min(distance[v], distance[u] + weight(u, v)),其中weight(u, v)表示边(u, v)的权值。
- 最终得到源顶点到图中所有其他顶点的最短路径。
2. Bellman-Ford算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
- 重复以下步骤,执行V-1次(V为顶点数):- 遍历图中的所有边,对于每条边(u, v),更新顶点v的距离为:min(distance[v], distance[u] + weight(u, v))。
- 检查是否存在负权回路:再次遍历所有边,如果对于边(u, v),发现distance[v] > distance[u] + weight(u, v),则说明存在从源顶点可达的负权回路,无法确定最短路径;否则,最短路径已经确定。
Dijkstra算法适用于无负权边且图稠密的情况,时间复杂度为O(V^2),也可以通过最小堆优化(时间复杂度为O((V+E)logV))。
Bellman-Ford算法适用于有负权边或存在负权回路的情况,时间复杂度为O(VE)。
需要注意的是,以上算法都是解决单源最短路径问题的经典算法,也可以使用其他如SPFA、Floyd-Warshall等算法求解,选择合适的算法应根据具体问题的要求和图的特性进行评估和选择。
最短路径计算过程
最短路径计算是图论中的一个经典问题,主要目的是寻找图中两点之间的最短路径。
常用的算法有迪杰斯特拉算法(Dijkstra's algorithm)、贝尔曼-福特算法(Bellman-Ford algorithm)和动态规划算法等。
以迪杰斯特拉算法为例,其计算最短路径的过程大致如下:
1. 初始化:选择一个起点,并设其余所有顶点的最短路径估计值为无穷大,只有起点到起点的最短路径估计值为0。
2. 访问顺序:按照估计值递增的顺序访问顶点,即每次从未访问顶点中选择估计值最小的顶点进行访问。
3. 更新最短路径:对于每个访问的顶点,考虑通过该顶点到达其他顶点的路径,如果这条路径的长度小于当前记录的最短路径估计值,则更新该顶点的最短路径估计值和前驱顶点。
4. 重复步骤2和3,直到到达终点或者所有顶点都被访问过。
5. 路径重构:通过保存的最短路径前驱顶点,从终点反向追踪至起点,得到最短路径。
这个过程中需要注意算法对图中边的权重和是否有负权边的支持。
迪杰斯特拉算法仅适用于有权图中没有负权边的场景,而贝尔曼-福特算法则可以处理包含负权边的图,但其时间复杂度相对较高。
动态规划算法则适用于更为一般的情况,尤其是当最短路径问题可以通过分解为子问题来解决时。
Dijkstra算法(重定向自Dijkstra 法)Dijkstra算法(狄克斯特拉算法)Dijkstra算法概述Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法。
是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。
其基本原理是:每次新扩展一个距离最短的点,更新与其相邻的点的距离。
当所有边权都为正时,由于不会存在一个距离更短的没扩展过的点,所以这个点的距离永远不会再被改变,因而保证了算法的正确性。
不过根据这个原理,用Dijkstra求最短路的图不能有负权边,因为扩展到负权边的时候会产生更短的距离,有可能就破坏了已经更新的点距离不会改变的性质。
举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离。
Dijkstra 算法可以用来找到两个城市之间的最短路径。
Dijkstra算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。
我们以V表示G中所有顶点的集合。
每一个图中的边,都是两个顶点所形成的有序元素对。
(u,v)表示从顶点u到v有路径相连。
我们以E所有边的集合,而边的权重则由权重函数w: E → [0, ∞]定义。
因此,w(u,v)就是从顶点u到顶点v的非负花费值(cost)。
边的花费可以想像成两个顶点之间的距离。
任两点间路径的花费值,就是该路径上所有边的花费值总和。
已知有V中有顶点s及t,Dijkstra算法可以找到s到t的最低花费路径(i.e. 最短路径)。
这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径。
算法描述这个算法是通过为每个顶点v保留目前为止所找到的从s到v的最短路径来工作的。
初始时,源点s的路径长度值被赋为0(d[s]=0),同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V中所有顶点v除s外d[v]= ∞)。
当算法结束时,d[v]中储存的便是从s到v的最短路径,或者如果路径不存在的话是无穷大。
dijkstra算法过程
Dijkstra算法是一种用于计算从一个特定节点到其他所有节点的
最短路径的算法,这也是属于贪心算法范畴。
此算法基于一个启发式
方法,根据每个节点距离源节点的距离不断更新最优解。
步骤:
1. 从源节点开始,将当前节点标记为已访问,并将其加入路径树中。
2. 计算从源节点出发可以到达的所有邻接点的距离,如果某个邻
接点的距离小于当前已知的距离,更新最短路径树,并标记邻接点为
被访问状态。
3. 重复第2步,直到所有邻接点都被访问,或者所有邻接点都在
最短路径树上,则停止。
4. 根据最短路径树,从源节点出发,可以依次到达目的节点,即
可得到最短路径。
Dijkstra算法的性能主要取决于图的存储结构,采用邻接矩阵存
储的话,时间复杂度是O(n^2),采用邻接表存储的话,时间复杂度是
O(nlogn)。
空间复杂度与存储结构无关,都是O(n)。
该算法可以用于
求解有向图或无向图的最短路径问题,也可以用于多源最短路径问题。
数学建模最短路径问题
在数学建模中,求解最短路径问题是一个经典的问题。
在一个有向、加权图中,最短路径指的是从起点到终点路径上的各边权值之和最小的路径。
下面介绍两种常用的最短路径求解方法:
Dijkstra算法
Dijkstra算法是一种基于贪心策略的单源最短路径算法。
它的基本思想是从起点开始,不断扩展到其他结点,每次选择当前路径中距离最小的结点进行扩展。
具体步骤如下:
初始化距离数组dist[]为正无穷,起点距离设为0;
将起点加入集合S;
重复以下过程,直到所有结点都被加入集合S:
在非S中的结点中选择距离起点最近的结点w,并将它加入集合S;
对S中结点可以直接到达的结点v,更新它们的距离dist[v]为min{dist[v], dist[w]+边(w,v)的权值}。
Floyd算法
Floyd算法是一种多源最短路径算法,它通过动态规划的方式求解任意两个结点之间的最短路径。
具体步骤如下:
初始化距离矩阵D,如果结点i和结点j有边相连,则D[i,j]为边的权值,否则为正无穷;
三重循环求解任意两个结点之间的最短路径:
对于每对结点i和结点j,考虑是否经过中间结点k可以获得更短的路径。
即D[i,j] = min{D[i,j], D[i,k]+D[k,j]}。
最后得到的距离矩阵D即为任意两个结点之间的最短路径长度。
Dijkstra算法是一种用于求解最短路径问题的常用算法,适用于带权有向图。
以下是Dijkstra 算法的求解过程:
初始化:将起始节点标记为当前节点,并将起始节点到所有其他节点的距离初始化为无穷大(表示暂时未知)。
将起始节点到自身的距离设置为0,表示起始节点到自身的最短路径长度为0。
遍历所有节点:
选择当前节点的邻接节点中,距离最小且尚未被访问的节点。
更新该邻接节点的最短路径长度。
如果经过当前节点到达该邻接节点的路径比当前记录的最短路径更短,则更新最短路径长度。
继续遍历未访问的节点,直到所有节点都被访问。
重复步骤3,直到所有节点都被访问或者没有可达节点。
最终得到起始节点到其他节点的最短路径长度。
在Dijkstra算法的求解过程中,使用一个距离表(distances)来记录起始节点到各个节点的当前最短路径长度,一个访问表(visited)来标记节点是否已被访问。
同时,使用优先队列(例如最小堆)来选取下一个距离最小且尚未被访问的节点。
具体的实现可以使用迭代或递归的方式,根据实际情况来选择合适的数据结构和算法实现。
在实际编程中,可能还需要考虑处理边的权重、处理节点的邻接关系和路径记录等细节。
Dijkstra算法要求图中的边权重非负,且无法处理负权边的情况。
对于含有负权边的图,可以考虑使用其他算法,如Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)等。