棱柱棱锥棱台的体积公式
- 格式:docx
- 大小:3.04 KB
- 文档页数:2
四棱台体积公式:①、[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥)[上面面积+下面面积+根号(上面面积×下面面积)]×高÷2②、(S上+S下)*h/2 (不能用于四棱锥)(上面面积+下面面积)x高÷2第②个最简便的公式,可以把正方体当作四棱台验证。
注意:如果把四棱锥可以看成上面面积为0的四棱台,第①个公式仍然可以用,但是四棱锥不能用第②个公式,切记!!!!!!!!。
拟棱台:对于一个多面体,如果有两个面互相平行,而其余的面均为顶点全在这两个平行面上的三角形、平行四边形或梯形,这样的多面体叫拟棱台。
若上下底面和中截面的面积分别是S1、S2、S0,高为H,则体积V=1/6(s1+s2+4s0)H正四棱台体积V=底面积S×高H圆锥体体积=底×高÷3长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15评论(14) | 80 12012-08-12 16:31 我只是碗馄饨| 四级体积的话叫棱台S1=上面的面积S2=下面的面积H是高V是体积V=(S1+S2+根号(S1×S2))×H ÷3评论(6) | 52 22012-05-08 23:50 绿锦小学| 十三级答:梯形是平面图形,没有体积,只有面积。
7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积学习目标 1.理解柱体、锥体、台体的体积公式(重点);2.理解球的表面积和体积公式(重点);3.能运用体积公式求解有关的体积问题,并且熟悉台体与柱体和锥体之间的转换关系(重、难点).知识点一 柱、锥、台体的体积公式几何体体积公式柱体圆柱V 柱体=ShS —柱体底面积 h —柱体的高棱柱 锥体圆锥V 锥体=13ShS —锥体底面积 h —锥体的高 棱锥 台体圆台V 台体=13(S 上+S 下+S 上·S 下)·hS 上、S 下—台体的上、下底面面积,h —高棱台【预习评价】简单组合体分割成几个几何体,其表面积如何变化?其体积呢? 提示 表面积变大了,体积不变. 知识点二 球的体积公式与表面积公式 1.球的体积公式V =43πR 3(其中R 为球的半径).2.球的表面积公式S =4πR 2. 【预习评价】球有底面吗?球面能展开成平面图形吗? 提示 球没有底面,球的表面不能展开成平面.题型一 柱体、锥体、台体的体积【例1】 (1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由所给三视图可知,该几何体是由相同底面的两个圆锥和一个圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,因此该几何体的体积V =2×13×π×12×1+π×12×2=83π(m 3). 答案 83π(2)在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3CD ,M 为AE 的中点,设E -ABCD 的体积为V ,那么三棱锥M -EBC 的体积为多少?解 如图,设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2. 连接MD .因为M 是AE 的中点, 所以V M -ABCD =12V .所以V E -MBC =12V -V E -MDC .而V E -MBC =V B -EMC ,V E -MDC =V D -EMC , 所以V E -MBC V E -MDC =V B -EMC V D -EMC =h 1h 2. 因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,所以h 1h 2=32.所以V E -MBC =V M -EBC =310V .规律方法 (1)求柱体的体积关键是求其底面积和高,底面积利用平面图形面积的求法,常转化为三角形及四边形,高常与侧棱、斜高及其在底面的投影组成直角三角形,进而求解. (2)锥体的体积公式V =13Sh 既适合棱锥,也适合圆锥,其中棱锥可以是正棱锥,也可以不是正棱锥.(3)三棱锥的体积求解具有较多的灵活性,因为三棱锥的任何一个面都可以作为底面,所以常常需要根据题目条件对其顶点和底面进行转换,这一方法叫作等积法.(4)台体的体积计算公式是V =13(S 上+S 下+S 上S 下)h ,其中S 上,S 下分别表示台体的上、下底面的面积.计算体积的关键是求出上、下底面的面积及高,求解相关量时,应充分利用台体中的直角梯形、直角三角形.另外,台体的体积还可以通过两个锥体的体积差来计算. 【训练1】 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析 由三视图可知原几何体为半个圆锥和一个三棱锥的组合体,半圆锥的底面半径为1,高为3,三棱锥的底面积为12×2×1=1,高为3.故原几何体体积为:V =12×π×12×3×13+1×3×13=π2+1.答案 A【训练2】 四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,求所得旋转体的体积.解 ∵C (2,1),D (0,3), ∴圆锥的底面半径r =2,高h =2. ∴V 圆锥=13πr 2h =13π×22×2=83π. ∵B (1,0),C (2,1),∴圆台的两个底面半径R =2,R ′=1,高h ′=1. ∴V 圆台=13πh ′(R 2+R ′2+RR ′)=13π×1×(22+12+2×1)=73π, ∴V =V 圆锥+V 圆台=5π.【训练3】 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值. (1)证明 由条件知PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD .又DC ∩QD =D .所以PQ ⊥平面DCQ . (2)解 设AB =a .由题设知AQ 为棱锥Q -ABCD 的高, 所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高. 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.题型二 球的表面积和体积【例2】 (1)已知球的表面积为64π,求它的体积; (2)已知球的体积为5003π,求它的表面积.解 (1)设球的半径为R ,则4πR 2=64π,解得R =4, 所以球的体积V =43πR 3=43π·43=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.规律方法 (1)已知球的半径,可直接利用公式求它的表面积和体积. (2)已知球的表面积和体积,可以利用公式求它的半径.【训练4】 (1)若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比是________.(2)如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.解析 (1)设圆锥的底面半径为R , 由题意知球的半径为R2, V 圆锥=13πR 2h (h 为圆锥的高),V 球=43π(R 2)3=16πR 3,∴13πR 2h =16πR 3,h =12R ,则圆锥的母线l =R 2+h 2=52R , 圆锥的侧面积为π×R ×52R =52πR 2. 球的表面积为4π×(R2)2=πR 2. ∴圆锥的侧面积与球面面积之比为5∶2.(2)由三视图知该几何体由圆锥和半球组成,且球的半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积为S =2π×32+π×3×5=33π. 答案 (1)52(2)33π【例3】 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为( )A.3172B.210C.13D.310解析 因为三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直.△ABC 的外心是斜边的中点,上下底面的中心连线垂直底面ABC ,其中点是球心,即侧面B 1BCC 1,经过球的球心,球的直径是侧面B 1BCC 1的对角线的长,因为AB =3,AC =4,BC =5,BC 1=52+122=13,所以球的直径为13.答案 C【迁移1】 本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3. 【迁移2】 本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【迁移3】 本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.规律方法 空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解(其R为球的半径).课堂达标1.设正方体的表面积为24,那么其外接球的体积是( ) A.43π B.8π3C.43πD.323π解析 由题意可知,6a 2=24,∴a =2. 设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π.答案 C2.已知高为3的直棱柱ABC -A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1-ABC 的体积为( ) A.14 B.12 C.36D.34解析 S 底=12×1×1-⎝ ⎛⎭⎪⎫122=34,所以V 三棱锥B 1-ABC =13S 底·h =13×34×3=34.答案 D3.某几何体的三视图如图所示,则其表面积为________.解析 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面圆面积的和,即12×4π+π=3π.答案 3π4.一个几何体的三视图(单位:m)如图所示,则该几何体的体积为________ m 3.解析 由三视图知,几何体下面是两个球,球半径为32;上面是长方体,其长、宽、高分别为6、3、1, 所以V =43π×278×2+1×3×6=9π+18(m 3).答案 9π+185.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,求该球的表面积. 解 如图,设球心为O ,半径为r ,则Rt△AOF 中,(4-r )2+(2)2=r 2,解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.课堂小结1.柱体、锥体、台体的体积之间的内在关系为2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3VS △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算.5.解决球与其他几何体的切接问题,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.基础过关1.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.16B.13C.23D.1解析 如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V =13×12×1×1×2=13,故选B. 答案 B2.已知长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线的长是214,则这个长方体的体积是( ) A.6B.12C.24D.48解析 设长方体的过一个顶点的三条棱长分别为x 、2x 、3x (x >0),又对角线长为214,则x 2+(2x )2+(3x )2=(214)2,解得x =2,∴三条棱长分别为2、4、6,∴V 长方体=2×4×6=48. 答案 D3.一空间几何体的三视图如图所示,则该几何体的体积为( )A.2π+2 3B.4π+2 3C.2π+233D.4π+233解析 该空间几何体由一圆柱和一四棱锥组成,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为13×(2)2×3=233,所以该几何体的体积为2π+233.答案 C4.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意6πr 3-8πr 2=4πr 3,解得r =4 cm. 答案 45.如图为某个几何体的三视图,则该几何体的体积为________.解析 由三视图可知,该几何体是由一个正四棱柱挖掉一个半圆锥所得到的几何体,其直观图如图所示,其中正四棱柱的底面正方形的边长a =2,半圆锥的底面半径r =1,高h =3,所以正四棱柱的体积V 1=a 2h =22×3=12,半圆锥的体积V 2=12×π3r 2h =π6×12×3=π2,所以该几何体的体积V =V 1-V 2=12-π2. 答案 12-π26.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求A 到平面A 1BD 的距离d .解 在三棱锥A 1-ABD 中,AA 1⊥平面ABD ,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V A 1-ABD =V A -A 1BD ,∴13×12a 2×a =13×12×2a ×32×2a ×d . ∴d =33a . 7.已知底面半径为 3 cm ,母线长为 6 cm 的圆柱,挖去一个以圆柱上底面圆心为顶点,下底面为底面的圆锥,求所得几何体的表面积及体积.解 作轴截面如图,设挖去的圆锥的母线长为l ,底面半径为r ,则l =(6)2+(3)2=9=3(cm),r = 3 (cm).故几何体的表面积为 S =πrl +πr 2+2πrAD=π×3×3+π×(3)2+2π×3× 6=33π+3π+62π=(33+3+62)π(cm 2).几何体的体积为V =V 圆柱-V 圆锥=πr 2AD -13πr 2AD =π×3×6-13×π×3× 6 =26π(cm 3).能力提升8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4 解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12. ∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =πr 2h =π⎝ ⎛⎭⎪⎫322×1=3π4. 答案 B9.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的体积为( )A.500π3cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析 作出该球的轴截面图如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3(cm 3). 答案 A10.若球的半径由R 增加为2R ,则这个球的体积变为原来的________倍,表面积变为原来的________倍.解析 球的半径为R 时,球的体积为V 1=43πR 3,表面积为S 1=4πR 2,半径增加为2R 后,球的体积为V 2=43π(2R )3=323πR 3,表面积为S 2=4π(2R )2=16πR 2. 所以V 2V 1=323πR 343πR 3=8,S 2S 1=16πR 24πR 2=4, 即体积变为原来的8倍,表面积变为原来的4倍.答案 8 411.已知三棱锥A -BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________. 解析 如图,构造正方体ANDM -FBEC .因为三棱锥A -BCD 的所有棱长都为2,所以正方体ANDM -FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A -BCD 的外接球就是正方体ANDM -FBEC 的外接球,所以三棱锥A -BCD 的外接球的半径为32.所以三棱锥A -BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎫322=3π. 答案 3π12.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC =24,AC =30,求球的表面积和体积.解 ∵AB ∶BC ∶AC =18∶24∶30=3∶4∶5,∴△ABC 是直角三角形,∠B =90°.∵球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt△ABC 的外接圆的圆心,∴斜边AC 为截面圆O ′的直径(如图所示).设O ′C =r ,OC =R ,则球半径R ,截面圆半径r ,在Rt△O ′CO 中,由题设知sin∠O ′CO =OO ′OC =12, ∴∠O ′CO =30°,∴rR =cos 30°=32,即R =23r ,① 又2r =AC =30⇒r =15,代入①得R =10 3.∴球的表面积为S =4πR 2=4π(103)2=1 200π.球的体积为V =43πR 3=43π(103)3=4 0003π. 13.(选做题)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度. 解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V=V 圆锥-V 球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h , 从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .。
(完整版)棱台和棱锥的知识点整理棱台和棱锥的知识点整理棱台(Prism)的定义和特点棱台是由两个平行的多边形底面和连接这两个底面的棱所组成的立体图形。
下面是棱台的一些特点:1. 底面:棱台有两个平行的多边形底面。
2. 侧面:棱台的侧面是将两个底面的相对顶点相连而成的棱,侧面的数量和底面的边数相等。
3. 顶点:棱台的顶点位于底面的中间,连接底面的棱延长线所交于的点。
4. 高度:棱台的高度是连接两个底面的垂直距离。
棱台的公式和计算方式在计算棱台的体积和表面积时,我们需要使用以下公式:1. 棱台的体积公式:V = (1/3) * 底面积 * 高度其中,底面积是指底面的面积。
2. 棱台的表面积公式:S = 底面积 + 侧面积其中,侧面积是指所有侧面的总面积的和。
棱锥(Pyramid)的定义和特点棱锥是由一个多边形底面和连接底面的各个顶点到一个顶点的棱所组成的立体图形。
下面是棱锥的一些特点:1. 底面:棱锥有一个多边形底面。
2. 侧面:棱锥的侧面是将底面的各个顶点与顶点相连所得到的棱。
3. 顶点:棱锥的顶点位于连接底面的棱的延长线与底面的交点处。
4. 高度:棱锥的高度是连接顶点与底面中心的垂直距离。
棱锥的公式和计算方式在计算棱锥的体积和表面积时,我们需要使用以下公式:1. 棱锥的体积公式:V = (1/3) * 底面积 * 高度其中,底面积是指底面的面积。
2. 棱锥的表面积公式:S = 底面积 + 侧面积其中,侧面积是指所有侧面的总面积的和。
以上就是棱台和棱锥的一些基本知识点和计算方法,希望对您有所帮助。
7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学习目标 1.掌握柱体、锥体、台体的体积计算公式,会利用它们求有关几何体的体积.2.掌握求几何体体积的基本技巧.知识点一 柱、锥、台体的体积公式知识点二 柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .1.锥体的体积等于底面面积与高之积.( × ) 2.台体的体积可转化为两个锥体的体积之差.( √ )类型一 多面体的体积例1 如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值. (1)证明 由题知四边形PDAQ 为直角梯形. 因为QA ⊥平面ABCD ,QA 平面PDAQ , 所以平面PDAQ ⊥平面ABCD ,交线为AD . 又四边形ABCD 为正方形,DC ⊥AD , 所以DC ⊥平面PDAQ ,可得PQ ⊥DC . 在直角梯形PDAQ 中可得DQ =PQ =22PD , 则PQ ⊥QD .又DC ∩QD =D ,DC ,QD 平面DCQ , 所以PQ ⊥平面DCQ .(2)解 设AB =a .由题设知AQ 为棱锥Q -ABCD 的高, 所以棱锥Q -ABCD 的体积V 1=13a 3.由(1)知PQ 为棱锥P -DCQ 的高. 而PQ =2a ,△DCQ 的面积为22a 2, 所以棱锥P -DCQ 的体积V 2=13a 3.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1. 反思与感悟 求几何体体积的四种常用方法 (1)公式法:规则几何体直接代入公式求解.(2)等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. (3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱、三棱柱补成四棱柱等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.跟踪训练1 如图,在三棱柱111ABC A B C -中,若E ,F 分别为AB ,AC 的中点,平面11EB C F 将三棱柱分成体积为l 2V V ,的两部分,那么12:V V =________.答案 7∶5解析 设三棱柱的高为h ,底面的面积为S ,体积为V ,则V =V 1+V 2=Sh . 因为E ,F 分别为AB ,AC 的中点,所以AEFS =14S , 1V =13h ⎝⎛⎭⎫S +14S +S ·S 4=712Sh , 2V =Sh -1V =512Sh ,故12:7:5V V =.类型二 旋转体的体积例2 体积为52 cm 3的圆台,一个底面面积是另一个底面面积的9倍,求截得这个圆台的圆锥的体积.解 由底面面积之比为1∶9知,体积之比为1∶27. 截得的小圆锥与圆台体积比为1∶26, ∴小圆锥的体积为2 cm 3, 故原来圆锥的体积为54 cm 3.反思与感悟 要充分利用旋转体的轴截面,将已知条件尽量归结到轴截面中求解,分析题中给出的数据,列出关系式后求出有关的量,再根据几何体的体积公式进行运算、解答. (1)求台体的体积,其关键在于求高,在圆台中,一般把高放在等腰梯形中求解.(2)“还台为锥”是求解台体的体积问题的重要思想,作出截面图,将空间问题平面化,是解决此类问题的关键.跟踪训练2 设圆台的高为3,如图,在轴截面中母线AA 1与底面直径AB 的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体积为________.考点 题点答案 21π解析 设上,下底面半径,母线长分别为r ,R ,l .作A 1D ⊥AB 于点D ,则A 1D =3,∠A 1AB =60°, 又∠BA 1A =90°, ∴∠BA 1D =60°, ∴AD =A 1Dtan 60°=3, ∴R -r = 3.BD =A 1D ·tan 60°=33,∴R +r =3 3.∴ R =23,r =3,而h =3.∴V 圆台=13πh (R 2+Rr +r 2)=13π×3×[(23)2+23×3+(3)2]=21π.∴圆台的体积为21π. 类型三 几何体体积的求法 命题角度1 等体积法例3 如图,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E 为AA 1的中点,F 为CC 1上一点,求三棱锥A 1-D 1EF 的体积.考点 柱体、锥体、台体的体积 题点 锥体的体积解 1111A D EF F A D E V V --=,锥锥三棱三棱由1121111124A D E S EA A D a ∆⋅==, 又三棱锥F -A 1D 1E 的高为CD =a ,11231113412F A D E V a a a ∴⨯⨯-==,锥三棱 1131.12A D EF V a ∴-=三棱锥反思与感悟 (1)三棱锥的每一个面都可当作底面来处理. (2)利用等体积法可求点到面的距离.跟踪训练3 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,在三棱锥A 1-ABD 中,求A 到平面A 1BD 的距离d .考点 题点解 在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=1,A 1B =BD =A 1D = 2.∵13×12×12×1=13×12×2×32×2×d , ∴d =33. 命题角度2 割补法例4 如图,在多面体ABCDEF 中,已知面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 与平面AC 的距离为3,求该多面体的体积.考点 题点解 如图,连接EB ,EC ,AC .四棱锥E -ABCD 的体积V E -ABCD =13×42×3=16.因为AB =2EF ,EF ∥AB ,所以S △EAB =2S △BEF .所以V F -EBC =V C -EFB =12V C -ABE =12V E -ABC=12×12V E -ABCD =4. 所以该多面体的体积V =V E -ABCD +V F -EBC =16+4=20.反思与感悟 通过“割补法”解决空间几何体的体积问题,需要思路灵活,有充分的空间想象力,什么时候“割”,什么时候“补”,“割”时割成几个图形,割成什么图形,“补”时补上什么图形,都需要灵活的选择.跟踪训练4 如图所示,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积.考点 题点解 用一个完全相同的几何体把题中几何体补成一个圆柱,如图所示,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.1.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34考点 柱体、锥体、台体的体积 题点 锥体的体积答案 D解析 V =13Sh =13×34×3=34.2.圆锥的轴截面是等腰直角三角形,侧面积是162π,则圆锥的体积是( ) A.128π3 B.64π3 C .64π D .1282π考点 柱体、锥体、台体的体积 题点 锥体的体积 答案 B解析 设圆锥的底面半径为r ,母线长为l , 由题意知2r =l 2+l 2,即l =2r ,∴S 侧=πrl =2πr 2=162π, 解得r =4.∴l =42,圆锥的高h =l 2-r 2=4,∴圆锥的体积为V =13Sh =13π×42×4=64π3.3.棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是( ) A .18+6 2 B .6+2 2 C .24 D .18考点 题点 答案 B解析 V =13(2+4+2×4)×3=6+2 2.4.已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是________. 考点题点 台体的体积 答案73π3解析 设圆台的上、下底面半径分别为r 和R ,母线长为l ,高为h ,则S 上=πr 2=π,S 下=πR 2=4π.∴r =1,R =2,S 侧=π(r +R )l =6π.∴l =2,∴h =3,∴V =13π(12+22+1×2)×3=73π3.5.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降__________cm.考点 题点 答案 0.6解析 将铅锤取出后,水面下降部分实际是圆锥的体积. 设水面下降的高度为x cm ,则π×⎝⎛⎭⎫2022x =13π×⎝⎛⎭⎫622×20, 得x =0.6 cm.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.一、选择题1.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34考点 题点 答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′,∴V C -AA ′B ′B =23V ABC -A ′B ′C ′=23.2.如图,已知正三棱锥S -ABC ,D ,E 分别为底面边AB ,AC 的中点,则四棱锥S -BCED 与三棱锥S -ABC 的体积之比为( )A .1∶2B .2∶3C .3∶4D .4∶3答案 C解析 两锥体高相等,因此V 四棱锥S -BCED ∶V 三棱锥S -ABC =S 四边形BCED ∶S △ABC =3∶4. 3.已知圆锥的母线长为8,底面圆的周长为6π,则它的体积是( ) A .955π B .955 C .355π D .355 考点 题点 答案 C解析 设圆锥的底面圆的半径为r ,高为h ,则2πr =6π,∴r =3. ∴h =64-32=55,∴V =13π·r 2·h =355π.4.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.53πB.43πC.23π D .2π 考点 组合几何体的表面积与体积题点 柱、锥、台、球切割的几何体的表面积与体积 答案 A解析 由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为( ) A .2 B .2 2 C. 2 D. 3 考点 题点 答案 A解析 如图所示,设等边三角形ABC 为圆锥的轴截面,由题意知圆锥的母线长即为△ABC 的边长,且S △ABC =34AB 2,∴3=34AB 2,∴AB =2.6.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥D 1-ACD 的体积是( )A.16B.13C.12D .1答案 A 解析 三棱锥D 1-ADC 的体积V =13S △ADC ×D 1D =13×12×AD ×DC ×D 1D =13×12=16. 7.将若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面高度为6 cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面高度为( )A .6 3 cmB .6 cmC .2318 cmD .3312 cm 考点 柱体、锥体、台体的体积题点 锥体的体积答案 B解析 设圆锥中水的底面半径为r cm ,由题意知13πr 2×3r =π22×6, 得r =23,∴水面的高度是3×23=6 cm.8.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( )A .1 B.32 C .3 D.32考点题点答案 A解析 在正△ABC 中,D 为BC 中点,则有AD =32AB =3,11DB C S =12×2×3= 3. 又∵平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD 平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴1111DB C A B DC V S 三棱-=锥·AD =13×3×3=1. 二、填空题9.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 考点题点答案 32解析 设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32. 由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,所以V 1V 2=πr 21h 1πr 22h 2=r 1r 2=32. 10.如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.考点题点答案 96解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.11.如图,在三棱柱A 1B 1C 1-ABC 中,已知D ,E ,F 分别为AB ,AC ,AA 1的中点,设三棱锥A -FED 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2的值为______.考点 柱体、锥体、台体的表面积与体积题点 其他求体积、表面积问题答案 124解析 设三棱柱的高为h ,∵F 是AA 1的中点,∴三棱锥F -ADE 的高为h 2, ∵D ,E 分别是AB ,AC 的中点,∴S △ADE =14S △ABC , ∵V 1=13S △ADE ·h 2,V 2=S △ABC ·h , ∴V 1V 2=16S △ADE ·h S △ABC ·h =124. 三、解答题12.在四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,求所得旋转体的体积.解 如图为所得旋转体,由一个圆锥和一个圆台组成.∵C (2,1),D (0,3),∴圆锥的底面半径r =2,高h =2.∴V 圆锥=13πr 2h =13π×22×2 =83π.∵B (1,0),C (2,1), ∴圆台的两个底面半径R =2,R ′=1,高h ′=1.∴V 圆台=13πh ′(R 2+R ′2+RR ′) =13π×1×(22+12+2×1)=73π, ∴V =V 圆锥+V 圆台=5π.13.如图所示是一个边长为5+2的正方形,剪去阴影部分得到圆锥的侧面和底面展开图,求该圆锥的体积.考点题点解 设圆锥的底面半径为r ,母线长为l ,高为h ,则依题意有14·2πl =2πr , ∴l =4r .又∵AC =OC +OA =2r +r +l =(2+5)r ,且AC =2×(2+5),∴(2+5)r =(2+5)×2,∴r =2,∴l =42,∴h =l 2-r 2=30,∴V 圆锥=13πr 2h =13π(2)2×30=2303π.故该圆锥的体积为2303π. 四、探究与拓展14.若正三棱台A 1B 1C 1-ABC 的两底面边长分别为2,8,侧棱长等于6,则此三棱台的体积V =________.答案 42 2解析 如图,设D 1,D 分别为A 1B 1,AB 的中点,O 1,O 为上、下两底面的中心,则O 1O 为棱台的高h ,O 1C 1=233,OC =833,作C 1H ⊥OC 于点H ,则C 1H =h ,且CH =23,故h =C 1H =36-12=2 6. ∵111A B C S =3,S △ABC =163,∴V =(3+43+163)×263=42 2. 15.在三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,则三棱锥A 1-ABC ,B -A 1B 1C ,C -A 1B 1C 1的体积之比是多少?考点题点解 设棱台的高为h ,S △ABC =S ,则1114.A B C S S ∆= ∴1A ABC V -=13S △ABC ·h =13Sh , 1111114·.3C ABC A B C V S h Sh ∆-==又V 台=13h (S +4S +2S )=73Sh , ∴11B A B C V -=V 台-1111A ABC C ABC V V ---=73Sh -13Sh -43Sh =23Sh . ∴1A ABC V -∶11B A B C V -∶111C A B C V -=1∶2∶4.。
棱台体积公式计算棱台,又叫各方台、棱锥体,是一种具有三个相交的平行棱面的平行体,由三角形的底面加上其他四个等腰直角三角形组成,可以用以计算物体的体积数据。
棱台的体积计算公式是由棱锥体的作者建立的,而且在日常生活中也有着很多用途,可以说是比较有用的工具和计算公式。
本文将详细介绍棱台体积计算公式,使大家能够理解并运用它来计算各种物体的体积。
首先,要计算棱台体积,我们要先理解棱台的结构,可以简要的概括为:棱台由三个平行的棱面组成,三个棱面之间有三个相交的棱角,四边形的底面四面棱角只有一个圆角,它包含有一个底部、一个中央及四个侧面,四个侧面是等腰直角三角形,它们的高、宽和深是相等的,这也是棱台的特殊之处,它们的顶部是一个平行四边形。
计算棱台体积公式是:体积=底面积×高其中,底面积=[(宽+深)/2]×宽例如,有一个棱台的宽、深和高分别是3厘米、2厘米和4厘米,它的底面积就可以按照如下计算公式来算:底面积=[(3+2)/2]×3=9平方厘米因此,它的体积就可以计算出来了:体积=9×4=36平方厘米棱台体积计算公式的应用由于棱台是一种特殊的多边形,它有着明显的数学特征,因此,在实际应用中也有着重要的位置。
例如,在建筑计算中,棱台体积计算公式可以用来计算建筑物内部空间容积,从而比较准确地控制建筑物里的功能需求,起到优化楼内布局的作用。
此外,在机械工程计算中,棱台体积计算公式也能够计算机械零件的体积以及零件的质量,从而可以比较准确地进行机械设计、加工制造和测试。
此外,棱台体积计算公式在医学应用中也有着重要的意义,医学应用中棱台体积计算公式可以用来计算肝脏、肺部及其他脏器的体积,很好地反应病人的健康状态以及疾病的发展情况,有助于医生的病理确诊和治疗。
总结棱台体积计算公式是一种有效的、实用的多边形计算公式,它的应用范围比较广泛,可以说是具有很强的物理意义和工程意义的计算公式。
四棱台体积公式:①、[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥)[上面面积+下面面积+根号(上面面积×下面面积)]×高÷2②、(S上+S下)*h/2 (不能用于四棱锥)(上面面积+下面面积)x高÷2第②个最简便的公式,可以把正方体当作四棱台验证。
注意:如果把四棱锥可以看成上面面积为0的四棱台,第①个公式仍然可以用,但是四棱锥不能用第②个公式,切记!!!!!!!!。
拟棱台:对于一个多面体,如果有两个面互相平行,而其余的面均为顶点全在这两个平行面上的三角形、平行四边形或梯形,这样的多面体叫拟棱台。
若上下底面和中截面的面积分别是S1、S2、S0,高为H,则体积V=1/6(s1+s2+4s0)H正四棱台体积V=底面积S×高H圆锥体体积=底×高÷3长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15评论(14) | 80 12012-08-12 16:31 我只是碗馄饨| 四级体积的话叫棱台S1=上面的面积S2=下面的面积H是高V是体积V=(S1+S2+根号(S1×S2))×H ÷3评论(6) | 52 22012-05-08 23:50 绿锦小学| 十三级答:梯形是平面图形,没有体积,只有面积。
8.3简单几何体的表面积与体积8.3.1棱柱、棱锥、棱台的表面积和体积学习目标核心素养1.通过对棱柱、棱锥、棱台的研究,掌握棱柱、棱锥、棱台的表面积与体积的求法.(重点)2.会求棱柱、棱锥、棱台有关的组合体的表面积与体积.(难点、易错点)1.借助棱柱、棱锥、棱台的表面积、体积的计算,培养数学运算素养.2.通过对棱柱、棱锥、棱台的体积的探究,提升逻辑推理的素养.1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.2.棱柱、棱锥、棱台的体积棱柱的体积公式V=Sh(S为底面面积,h为高);棱锥的体积公式V=13Sh(S为底面面积,h为高);棱台的体积公式V=13h(S′+S′S+S).其中,台体的上、下底面面积分别为S′、S,高为h.思考:简单组合体分割成几个几何体,其表面积不变吗?其体积呢?[提示]表面积变大了,而体积不变.1.棱长为3的正方体的表面积为()A.27B.64C.54D.36C[根据表面积的定义,组成正方体的面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.]2.长方体同一顶点上的三条棱长分别为1,2,3,则长方体的体积与表面积分别为( )A .6,22B .3,22C .6,11D .3,11A [V =1×2×3=6,S =2(1×2)+2(1×3)+2(2×3)=22.] 3.棱长都是3的三棱锥的表面积S 为 .93 [因为三棱锥的四个面是全等的正三角形,所以S =4×34×32=9 3.]简单几何体的表面积【例1】 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.[解] 如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9,∴a 2+52=152,b 2+52=92, ∴a 2=200,b 2=56.∵该直四棱柱的底面是菱形, ∴AB 2=⎝ ⎛⎭⎪⎫AC 22+⎝ ⎛⎭⎪⎫BD 22=a 2+b 24=200+564=64,∴AB =8.∴直四棱柱的侧面积S =4×8×5=160.求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.1.侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2A [∵侧面都是等腰直角三角形,故侧棱长等于22a , ∴S 表=34a 2+3×12×⎝ ⎛⎭⎪⎫22a 2=3+34a 2.]简单几何体的体积【例2】 三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1-ABC ,三棱锥B -A 1B 1C ,三棱锥C -A 1B 1C 1的体积之比.[解] 设三棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S . ∴VA 1-ABC =13S △ABC ·h =13Sh , VC -A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V台=13h(S+4S+2S)=73Sh,∴VB-A1B1C=V台-VA1-ABC-VC-A1B1C1=73Sh-Sh3-4Sh3=23Sh,∴体积比为1∶2∶4.求几何体体积的常用方法2.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C 上的点,则三棱锥D1-EDF的体积为.16[利用三棱锥的体积公式直接求解.VD1-EDF=VF-DD1E=13S△D1DE·AB=13×12×1×1×1=16.]棱台与棱锥之间关系的综合问题是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.[解] 如图,E ,E 1分别是BC ,B 1C 1的中点,O ,O 1分别是下、上底面正方形的中心,则O 1O 为正四棱台的高,则O 1O =12.连接OE ,O 1E 1, 则OE =12AB =12×12=6, O 1E 1=12A 1B 1=3.过E 1作E 1H ⊥OE ,垂足为H , 则E 1H =O 1O =12,OH =O 1E 1=3, HE =OE -O 1E 1=6-3=3. 在Rt △E 1HE 中,E 1E 2=E 1H 2+HE 2=122+32=32×17, 所以E 1E =317.所以S 侧=4×12×(B 1C 1+BC )×E 1E =2×(6+12)×317=10817.在本例中,把棱台还原成棱锥,你能利用棱锥的有关知识求解吗?[解] 如图,正四棱台的侧棱延长交于一点P .取B 1C 1,BC 的中点E 1,E ,则EE 1的延长线必过P 点(以后可以证明).O 1,O 分别是正方形A 1B 1C 1D 1与正方形ABCD 的中心.由正棱锥的定义,CC 1的延长线过P 点,且有O 1E 1=12A 1B 1=3,OE =12AB =6, 则有PO 1PO =O 1E 1OE =36, 即PO 1PO 1+O 1O=12.所以PO 1=O 1O =12.在Rt △PO 1E 1中,PE 21=PO 21+O 1E 21=122+32=32×17,在Rt △POE 中,PE 2=PO 2+OE 2=242+62=62×17, 所以E 1E =PE -PE 1=617-317=317. 所以S 侧=4×12×(BC +B 1C 1)×E 1E =2×(12+6)×317=10817.解决有关正棱台的问题时,常用两种解题思路:一是把基本量转化到直角梯形中去解决;二是把正棱台还原成正棱锥,利用正棱锥的有关知识来解决.1.棱柱、棱锥、棱台的表面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段的长,是掌握它们的表面积有关问题的关键.2.计算棱柱、棱锥、棱台的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关截面,将空间问题转化为平面问题.3.在几何体的体积计算中,注意体会“分割思想”、“补体思想”及“等价转化思想”.1.判断正误(1)锥体的体积等于底面积与高之积.()(2)台体的体积,可转化为两个锥体体积之差.()(3)正方体的表面积为96,则正方体的体积为64.()[答案](1)×(2)√(3)√2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D1-ACD的体积是()A.16 B.13C.12D.1A[三棱锥D1-ADC的体积V=13S△ADC×D1D=13×12×AD×DC×D1D=13×12=16.]3.已知高为3的棱柱ABC-A1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1-ABC的体积为()A.14 B.12C.36 D.34[答案]D4.把一个棱长为a的正方体,切成27个全等的小正方体,则所有小正方体的表面积为.18a2[原正方体的棱长为a,切成的27个小正方体的棱长为13a,每个小正方体的表面积S1=19a 2×6=23a2,所以27个小正方体的表面积是23a2×27=18a2.]5.如图所示,三棱锥的顶点为P,P A,PB,PC为三条侧棱,且P A,PB,PC两两互相垂直,又P A=2,PB=3,PC=4,求三棱锥P-ABC的体积V.[解]三棱锥的体积V=13Sh,其中S为底面积,h为高,而三棱锥的任意一个面都可以作为底面,所以此题可把B看作顶点,△P AC作为底面求解.故V=13S△P AC·PB=13×12×2×4×3=4.。
圆台圆锥圆柱棱台棱柱棱锥各种公式1. 先来认识几位“几何朋友”嘿,大家好!今天我们来聊聊一些几何图形,这些形状可真是我们生活中的好朋友啊!先说说圆柱。
圆柱就像是你喝的饮料罐,底部是个圆,侧面是个长长的直筒。
要想知道它的体积,咱们用公式:V = πr²h。
这个“π”看起来神秘,但其实就是个常数,约等于3.14,差不多就能用。
r是底面的半径,h是高度。
把这三者结合起来,嘿,你就能知道能装多少饮料啦!接下来是圆锥,想象一下,冰淇淋筒就是它的代表!底下是个圆,尖尖的顶端可真是个亮点。
它的体积公式是V = (1/3)πr²h。
听起来是不是有点复杂?其实不然,你只要记得,圆锥的体积总是要比圆柱小个一半,因为它的尖尖部分可没什么用处嘛!2. 圆台的秘密说完这两位,咱们再看看圆台。
圆台就是上下各有一个圆的“中间人”。
你可以想象一下,两个圆饼叠在一起,形成一个平坦的表面。
它的体积公式是V = (1/3)πh(r₁² +r₁r₂+ r₂²),r₁和r₂分别是上下圆的半径。
这个公式有点复杂,但只要咱们认真点,还是能搞定的!圆台就像生活中的调和,给人一种圆润的感觉,不管是用来做蛋糕还是建筑,都显得那么完美。
2.1 圆柱与圆锥的关系你有没有想过,圆锥和圆柱的关系?就好比父母和孩子。
圆锥的体积是圆柱的一半,这就像是孩子总是要在父母的保护下成长。
圆柱高高在上,圆锥则在它的怀抱中成长。
这个数学关系可真有趣,不是吗?2.2 几何体在生活中的应用几何体的这些公式,咱们在生活中随处可见。
比如,建筑师设计房子的时候,会用到很多这些形状,确保房子稳稳当当。
而咱们的日常生活中,不论是吃东西还是玩乐,都少不了这些几何的身影。
比如那张圆形的餐桌,它的面积就能告诉我们,能放下多少美味的菜肴!3. 棱柱与棱锥的魅力好了,聊完圆的家族,咱们接下来聊聊棱柱和棱锥。
这两位的外形可都挺“棱角分明”的!棱柱就像是个直挺挺的盒子,底面是多边形,侧面是长方形。
棱柱棱锥棱台的体积公式
棱柱、棱锥、棱台是几何学中常见的三维图形,它们的体积是我们在计算空间中物体的容积时必须掌握的知识点。
下面我们将分别介绍它们的体积公式。
一、棱柱的体积公式
棱柱是由两个平行的多边形底面和它们之间的若干个矩形侧面组成的多面体。
它的体积公式为:
V = S × h
其中,V表示棱柱的体积,S表示底面积,h表示棱柱的高。
例如,一个底面为正方形,高为10cm的棱柱,它的体积为:
V = S × h = 10 × 10 × 10 = 1000cm³
二、棱锥的体积公式
棱锥是由一个多边形底面和若干个三角形侧面组成的多面体。
它的体积公式为:
V = 1/3 × S × h
其中,V表示棱锥的体积,S表示底面积,h表示棱锥的高。
例如,一个底面为正方形,高为10cm的棱锥,它的体积为:
V = 1/3 × S × h = 1/3 × 10 × 10 × 10 = 333.33cm³
三、棱台的体积公式
棱台是由两个平行的多边形底面和它们之间的若干个梯形侧面组成的多面体。
它的体积公式为:
V = 1/3 × h × (S₁ + S₂ + √(S₁ × S₂))
其中,V表示棱台的体积,h表示棱台的高,S₁和S₂分别表示上下底面的面积。
例如,一个上底面为正方形,下底面为长方形,高为10cm的棱台,它的体积为:
V = 1/3 × h × (S₁ + S₂ + √(S₁ × S₂)) = 1/3 × 10 × (10 + 20 + √(10 × 20)) = 266.67cm³
掌握棱柱、棱锥、棱台的体积公式是我们在计算空间中物体的容积时必须掌握的基础知识。