北京市2016届高三数学理一轮复习专题突破训练:圆锥曲线
- 格式:doc
- 大小:1.71 MB
- 文档页数:24
北京市2016届高三数学文一轮复习专题突破训练圆锥曲线一、填空、选择题1、(2015年北京高考)已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .2、(2014年北京高考)设双曲线C 的两个焦点为(),),一个顶点式()1,0,则C 的方程为 .3、(2013年北京高考)若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________。
4、(昌平区2015届高三上期末)双曲线13:22=-y x C 的离心率是_________;若抛物线mx y 22=与双曲线C 有相同的焦点,则=m _____________.5、(朝阳区2015届高三一模)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为A .2 C .4 D .6、(东城区2015届高三二模)已知抛物线22y x =上一点P (,2)m ,则m = ,点P 到抛物线的焦点F 的距离为 .7、(房山区2015届高三一模)双曲线22194x y -=的渐近线方程是( )A .23y x =±B .49y x =±C .32y x =±D .94y x =± 8、(丰台区2015届高三一模)双曲线22126x y -=的渐近线方程为 9、(丰台区2015届高三二模)设O 是坐标原点,F 是抛物线2y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为6π,则||AF =(A)12(B) 34(C) 1(D) 2+10、(海淀区2015届高三一模)抛物线2=4x y 的焦点到准线的距离为( ) (A )12(B ) 1(C )2 (D)411、(海淀区2015届高三二模)以坐标原点为顶点,(1,0)-为焦点的抛物线的方程为12、(西城区2015届高三二模)抛物线24C y x =:的准线l 的方程是____;以C 的焦点为圆心,且与直线l 相切的圆的方程是____。
圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
高中数学学习材料马鸣风萧萧*整理制作北京市石景山区普通中学2016年1月高三数学 圆锥曲线方程 复习达标检测卷一、选择题1.a ·c ≠0是方程ax 2+(y+1)2=c 表示椭圆或双曲线的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.集合M {(x,y)|y 2=2x },N ={(x,y)|(x-a)2+y 2=9} M ∩N =φ的充要条件( )A.a ≤5B.a ≥5C.-3≤a ≤5D.-3≤a ≤29 3.圆x 2+y 2=16和抛物线x 2-3y+12=0的交点个数是( )A.0B.1C.2D.2个以上 4.双曲线9y 2-x 2-2x-10=0的渐近线方程是( )A.y =±3(x+1)B.y =±3(x-1)C.y =±31(x+1)D.y =±31(x-1) 5.双曲线92y -42x =1两渐近线间夹角的正切值是( ) A.-512 B.512 C. 1312 D.125 6.椭圆362x +162y =1的弦过点P(3,2)且被P 平分,则此弦所在直线方程是( ) A.3x+2y-12=0B.2x+3y-12=0C.4x+9y-144=0D.9x+4y-144=07.方程y =-222+-x x 表示( )A.一条折线B.双曲线的下半支C.椭圆的下半椭圆D.两条相交直线8.θ∈R ,圆系x 2+y 2-2axcos θ-2bysin θ-a 2sin 2θ=0(ab ≠0)在x 轴截得的弦长是( )A.2aB.4|a |C.2|a |D.2|a |9.抛物线y 2=2px 和y 2=q(x-h)有公共的焦点(p>0,q>0),则p,q,h 间应适合关系式( )A.2h =p+qB.2h+p+q =0C.2h =q-pD.2h =p-q10.抛物线(x-1)2=4(y+1)关于原点对称的曲线方程是( )A.(x+1)2=4(y-1)B.(x+1)2=-4(y-1)C.(x+1)2=41(y-1)D.(x+1)2=-41(y-1)二、填空题11.椭圆x 2+4y 2=4关于直线x+y-4=0的对称曲线方程是 .12.抛物线y =x 2关于点(2,0)中心对称曲线方程是 .13.双曲线的渐近线为5x+3y-7=0和5x-3y-13=0,又双曲线过点P(6,375-),则此双曲线方程为 .14.如果抛物线y 2-mx-2y+4m+1=0的准线与双曲线x 2-3y 2=12的左准线重合,则m 的值等于 .15.双曲线y =212++x x 的两条渐近线方程是 ,两条对称轴方程是 .16.抛物线y =x 2上点到直线2x-y-4=0的最小距离为 .17.P 与F 分别是抛物线x 2=-4y 上的点和焦点,已知点A(1,-2),为使|PA |+|PF |取最小值,则P 点坐标为 .18.已知圆C :x 2+y 2=4,过定点A(6,0)且与圆C 相切的动圆圆心的轨迹方程是 .三、解答题19.双曲线的中心在直线x =-4上又在y =2上,焦点在y 轴上,它的离心率为34,求此双曲线方程.(8′)20.椭圆的内接三角形有一个顶点在短轴的顶点,而其重心是椭圆的一个焦点,求此椭圆离心率的取值范围.(10′)21.设定点A(3,1),动点B 在抛物线y 2=x+1上移动,P 在线段AB 上,且AP ∶PB =2∶1,求P 点的轨迹方程,并指出曲线名称.(10′)22.已知椭圆x 2+42y =1及两点P(-2,0),Q(0,1),过点P 作斜率为k 的直线交椭圆于不重合的两点A 、B ,设线段AB 的中点为M ,连结QM ,(1)k 为何值时,直线QM 与椭圆的准线平行.(2)k 为何值时,直线QM 通过椭圆的顶点.(10′)参考答案一、1.B 2.C 3.B 4.C 5.B 6.B 7.B 8.D 9.D 10.B二、11.(x-4)2+4)4(2-y =1 12.(x-4)2=-y13.25x 2-9y 2-100x-18y-134=014.2815.x =-2,y =2,x+y =0,x-y+4=0 16. 553 17.(1,- 41) 18.(x-3)2-82y =1 19. 9)2(2-y -7)4(2+x =1 20.(0,33) 21.=2y 32(x-31),抛场线 22.(1)当k =4-23时,QM 与椭圆准线平行(2)当k =0,或k =32或k =-4+25时,直线QM 通过椭圆的顶点。
高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2016年四川省高考)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A (B )23(C (D )1 2、(2015年四川省高考)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.B. C. 6 D. 3、(四川省2016届高三预测金卷 )已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ). A. ]210,1( B. ]537,1( C. ]210,537[ D. ),210[+∞ 4、(成都市2016届高三第二次诊断)已知抛物线y=x 2的焦点为F ,经过y 轴正半轴上一点N 作直线l 与抛物线交于A ,B 两点,且OA OB ⋅ =2(O 为坐标原点),点F 关于直线OA 的对称点为C ,则四边形 OCAB 面积的最小值为(A)3 (B)(D)325、(成都市都江堰2016届高三11月调研)已知双曲线)0,0(12222>>=-b a b y a x 的一个焦点与抛物线x y 122=的焦点重合,且双曲线的离心率等于3,则该双曲线的标准方程为( )A .1182722=-y xB .1271822=-x yC .1241222=-y xD .16322=-y x6、(乐山市高中2016届高三第二次调查研究)抛物线24y x =的焦点为F ,经过点F 的直线与抛物线在x 轴上方的部分交于点A ,与准线l 交于点B ,且AK l ⊥于点K ,如果|AF|=|BF|,那么△AKF 的面积为A. 7、(绵阳中学2017届高三上学期入学考试)若圆221:0C x y ax ++=与圆222:2tan 0C x y ax y θ+++=都关于直线210x y --=对称,则sin cos θθ=( )A .25 B. 25- C.637- D. 23- 8、(成都市双流中学2017届高三9月月考)已知椭圆221(09),9x y m m+=<<左、右焦点分别为12F F 、,过1F 的直线交椭圆于A B 、两点,若22||||AF BF +的最大值为10,则m 的值为A.3B.2C.19、(内江市2016届高三第四次(3月)模拟)F 为双曲线12222=-by a x 的右焦点,点P 在双曲线右支上,POF ∆(为坐标原点O )满足5==OP OF ,52=PF ,则双曲线的离心率为 BA. 13+B. 5C. 2D. 310、(成都市双流中学2016届高三5月月考)已知P B A ,,是双曲线12222=-b y a x 上的不同三点,且AB 连线经过坐标原点,若直线PB PA ,的斜率乘积32=⋅PB PA k k ,则该双曲线的离心率=e ( B )A . 25B . 315C . 210D . 211、(成都市双流中学2017届高三9月月考)抛物线2:4C y x =的准线方程为 A.1x =-B.1x =C.2x =-D.2x =12、(遂宁市2016届高三第二次诊断考试)设B 、C 是定点,且均不在平面α上,动点A 在平面α上,且1sin 2ABC ∠=,则点A 的轨迹为 A .圆或椭圆 B .抛物线或双曲线 C .椭圆或双曲线 D .以上均有可能13、(宜宾市2016届高三第二次诊断)已知直线2100x y +-=过双曲线22221x y a b-=()0,0a b >>的焦点,且与该双曲线的一条渐近线垂直,则该双曲线的标准方程为(A) 221169x y -= (B) 221205x y -= (C) 221520x y -= (D) 221916x y -=14、(宜宾市2016届高三第二次诊断)设动直线l :m kx y +=(其中m k ,为整数)与椭圆1121622=+y x 交于不同两点B A ,,与双曲线112422=-y x 交于不同两点D C ,,且 AC BD +=0,则符合上述条件的直线l 共有(A )5条 (B )7条 (C )9条 (D )11条 15、(资阳市资阳中学2017届高三上学期入学考试)如图平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的离心率32e =,12,A A 分别是椭圆的左、右两个顶点,圆1A 的半径为a ,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q .则2PQ QA = .16、(成都市2016届高三第二次诊断)双曲线2225x y a -=l 的一个焦点坐标为(3,0),则该双曲线的离心率为 。
江苏省2016年高考优题精练圆锥曲线一、填空题1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值为_____________。
2、(2013年江苏高考)双曲线191622=-y x 的两条渐近线的方程为 。
3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 。
4、(2015届南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C :yx42=的焦点为F ,定点)0,22(A ,若射线FA 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM :MN=5、(苏锡常镇四市2015届高三教学情况调研(二))已知双曲线22221(,0)x y a b a b-=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲6、(泰州市2015届高三第二次模拟考试)已知双曲线2214x y m -=的渐近线方程为2y x =±,则m = ▲ 7、(盐城市2015届高三第三次模拟考试)若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为 ▲8、(2015届江苏南京高三9月调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为 ▲9、(2015届江苏苏州高三9月调研)已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为 ▲10、(南京市、盐城市2015届高三)若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .11、(南通市2015届高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物线24y x =焦点的双曲线的方程是12、(苏州市2015届高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为13、(泰州市2015届高三上期末)双曲线12222=-by a x 的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e = ▲14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线2219x y m-=的一个焦点为(5,0),则实数m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB的面积为2,则双曲线的离心率为 ▲ 二、解答题1、(2015年江苏高考)如图,在平面直角坐标系xoy 中,已知椭圆22221x y a b+=(0)a b >>的离心率为2,且右焦点F 到左准线l 的距离为3。
高三数学章节训练题34《圆锥曲线与方程》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1.若椭圆经过原点,且焦点为12(1,0),(3,0)F F ,则其离心率为 ( )A .34 B .23 C .12 D .142.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅AB OQ ,则P 点的轨迹方程是( )A .()0,0123322>>=+y x y x B .()0,0123322>>=-y x y x C .()0,0132322>>=-y x y xD .()0,0132322>>=+y x y x 3.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A .2B .332 C . 2 D .4 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D . 22(1)(01)y x x =--<≤5.直线2y k =与曲线2222918k x y kx += (,)k R ∈≠且k 0的公共点的个数为( )A . 1B . 2C . 3D . 46.曲线221(6)106x y m m m+=<--与曲线221(59)59x y m m m +=<<--的 ( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同 二、填空题:(本大题共4小题,每小题5分,满分20分)7.椭圆221123x y +=的两个焦点为12,F F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的______________倍.8.如图把椭圆2212516x y +=的长轴AB 分成8等 分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|= . 9.已知两点(5,0),(5,0)M N -,给出下列直线方程:①530x y -=;②53520x y --=;③40x y --=.则在直线上存在点P 满足||||6M P P N =+的所有直线方程是_______.(只填序号)10.以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,k PB PA =+||||,则动点P 的轨迹为椭圆;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③到定直线c a x 2-=和定点)0,(c F -的距离之比为)0(>>a c ca的点的轨迹是双曲线的左半支;④方程02722=+-x x 的两根可分别作为椭圆和双曲线的离心率; 其中真命题的序号为 (写出所有真命题的 三、解答题:(本大题共2小题,满分30分)11.(本小题满分14分)已知抛物线28y x =,是否存在过点(1,1)Q 的弦AB ,使AB 恰被Q平分.若存在,请求AB 所在直线的方程;若不存在,请说明理由.12.(本小题满分16分)设,x y R ∈,,i j为直角坐标平面内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++ ,(2)b xi y j =+- ,且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于,A B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.高三数学章节训练题34《圆锥曲线与方程》答案一、 选择题1、C2、D3、C4、A5、D6、A 2.D .由PABP 2=及,A B分别在x 轴的正半轴和y 轴的正半轴上知,3(,0),2A x (0,3)B y ,3(,3)2AB x y =- ,由点Q 与点P 关于y 轴对称知,(,)Q x y -,OQ =(,)x y -,则2233(,3)(,)31(0,0)22OQ AB x y x y x y x y ⋅=-⋅-=+=>>二、填空题7.7倍.由已知椭圆的方程得123,(3,0),(3,0)a b c F F ===-.由于焦点12F F 和关于y 轴对称,所以2PF 必垂直于x 轴.所以21||222P PF PF ===,所以21||7||PF PF =. 8.35. 设P 1(x 1,y 1),P 2(x 2,y 2),…,P 7(x 7,y 7),所以根据对称关系x 1+x 2+…+x 7=0,于是 |P 1F|+|P 2F|+…+|P 7F|=a+ex 1+a+ex 2+…+a+ex 7=7a+e(x 1+x 2+…+x 7)= 7a=35,所以应填35.9.②③. 由||||6MP PN -=可知点P 在双曲线221916x y -=的右支上,故只要判断直线与双曲线右支的交点个数.因为双曲线的渐近线方程为43y x =±,直线①过原点且斜率5433>,所以直线①与双曲线无交点;直线②与直线①平行,且在y 轴上的截距为523-故与双曲线的右支有两个交点;直线③的斜率413<,故与双曲线的右支有一个交点.10.④三、解答题11.假设存在这样的直线,则直线的斜率一定存在,设为k ,点1122(,),(,)A x y B x y 在抛物线上,所以21122288y x y x ⎧=⎪⎨=⎪⎩,两式作差得,121212()()8()y y y y x x +-=-,即121212()()8y y y y x x -+=-,解得4k =,故直线方程为14(1)y x -=-,即43y x =-.经验证,直线符合条件.12.(1)由||||8a b+=,84=>,设12(0,2),(0,2)F F -则动点M 满足1212||||84||M F M F F F +=>=,所以点M 在椭圆上,且椭圆的4,2,a c b ===所以轨迹C 的方程为2211612y x +=.(2)设直线的斜率为k ,则直线方程为3y kx =+,联立方程组22311612y kx y x =+⎧⎪⎨+=⎪⎩消去y得:22(43)18210k x kx ++-=,22(18)84(43)0k k ∆=++>恒成立,设1122(,),(,)A x y B x y ,则1212221821,4343k x x x x k k+=-=++.由AP OB = ,所以四边形OAPB 为平行四边形.若存在直线l ,使四边形OAPB 为矩形,则OA OB ⊥,即212121212(1)3()90OA OB x x y y k x x k x x ⋅=+=++++= ,解得4k =±,所以直线l的方程为34y x =±+,此时四边形OAPB 为矩形.。
【创新大课堂】(新课标)2016高考数学一轮总复习 第八章 第6节直线与圆锥曲线的位置关系练习一、选择题1.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |等于( )A .3B .4C .3 2D .4 2[解析] 设直线AB 的方程为y =x +b ,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =-x 2+3,y =x +b⇒x2+x +b -3=0⇒x 1+x 2=-1,得AB 的中点M ⎝ ⎛⎭⎪⎫-12,-12+b .又M ⎝ ⎛⎭⎪⎫-12,-12+b 在直线x +y =0上,可求出b =1,则|AB |=1+12² -1 2-4³ -2 =3 2. [答案] C2.(2015²泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(2,+∞)C .(1,3)D .(3,+∞)[解析] 因为斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,所以ba >3,所以e =ca=1+b 2a2>1+ 3 2=2. 所以双曲线离心率的取值范围是(2,+∞). [答案] B3.(2015²西安模拟)已知任意k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m=1(m >0)恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)[解析] 直线y =kx +1过定点(0,1),只要(0,1)在椭圆x 25+y 2m =1上或其内部即可.从而m ≥1,又因为椭圆x 25+y 2m=1中m ≠5,所以m 的取值范围是[1,5)∪(5,+∞).[答案] C4.(2015²衡水模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 2m 2+y 2b2=1(m >b >0)的离心率之积等于1,则以a ,b ,m 为边长的三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形[解析] 设双曲线离心率为e 1,椭圆离心率为e 2, 所以e 1= a 2+b 2a 2,e 2= m 2-b 2m 2, 故e 1²e 2=a 2+b 2m 2-b 2a 2m2=1 ⇒(m 2-a 2-b 2)b 2=0,即a 2+b 2-m 2=0,所以,以a ,b ,m 为边长的三角形为直角三角形. [答案] B5.(2015²嘉定模拟)过点P (1,1)作直线与双曲线x 2-y 22=1交于A ,B 两点,使点P 为AB 中点,则这样的直线( )A .存在一条,且方程为2x -y -1=0B .存在无数条C .存在两条,方程为2x ±(y +1)=0D .不存在[解析] 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=2,则x 21- 12y 21=1,x 22- 12y 22=1,两式相减得(x 1-x 2)(x 1+x 2)- 12 (y 1-y 2)(y 1+y 2)=0,所以x 1-x 2= 12(y 1-y 2),即k AB=2,故所求直线方程为y -1=2(x -1),即2x -y -1=0.联立⎩⎪⎨⎪⎧y =2x -1,x 2-12y 2=1 可得2x 2-4x +3=0,但此方程没有实数解,故这样的直线不存在.故选D.[答案] D6.(2015²杭州模拟)F 为椭圆x 25+y 2=1的右焦点,第一象限内的点M 在椭圆上,若MF⊥x 轴,直线MN 与圆x 2+y 2=1相切于第四象限内的点N ,则|NF |等于( )A.213 B.45 C.214D.35[解析] 因为MF ⊥x 轴,F 为椭圆x 25+y 2=1的右焦点,所以F (2,0),M ⎝⎛⎭⎪⎫2,55,设l MN :y -55=k (x -2),N (x ,y ),则O 到l MN 的距离d =⎪⎪⎪⎪⎪⎪-2k +55k 2+1=1,解得k =255(负值舍去).又因为⎩⎪⎨⎪⎧x 2+y 2=1,y -55=255 x -2 ⇒⎩⎪⎨⎪⎧x =23,y =-53,即N ⎝ ⎛⎭⎪⎫23,-53,所以|NF |=⎝ ⎛⎭⎪⎫2-232+⎝ ⎛⎭⎪⎫532=213.[答案] A 二、填空题7.已知两定点M (-2,0),N (2,0),若直线上存在点P ,使得|PM |-|PN |=2,则称该直线为“A 型直线”,给出下列直线:①y =x +1;②y =3x +2;③y =-x +3;④y =-2x .其中是“A 型直线”的序号是________.[解析] 由条件知考虑给出直线与双曲线x 2-y 23=1右支的交点情况,作图易知①③直线与双曲线右支有交点,故填①③.[答案] ①③8.(2015²无锡模拟)若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________.[解析] 由题意知:4m 2+n 2>2,即m 2+n 2<2,所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.[答案] 29.已知双曲线左、右焦点分别为F 1,F 2,点P 为其右支上一点,∠F 1PF 2=60°,且S △F 1PF 2=23,若|PF 1|,14|F 1F 2|2,|PF 2|成等差数列,则该双曲线的离心率为________.[解析] 设|PF 1|=m ,|PF 2|=n (m >n ),双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),因此有m -n =2a ,|F 1F 2|=2c ,S △PF 1F 2=12²m ²n ²32=23,m ²n =8. 又m +n =12³4c 2=2c 2⇒(m +n )2=4c 4.①由余弦定理cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|²|PF 2|=m 2+n 2-4c 22mn =12⇒m 2+n 2=8+4c 2⇒(m +n )2=4c 2+24.②①②两式联立解得c 2=3⇒c =3,所以⎩⎪⎨⎪⎧m ²n =8,m +n =6m >n,⇒⎩⎪⎨⎪⎧m =4,n =2⇒2a =2,a =1,e =ca= 3.[答案]3三、解答题10.(2015²衡水模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b ≥1)的离心率e =32,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A ,B .(1)求椭圆C 的方程.(2)设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|AB |<3时,求实数t 的取值范围.[解] (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设N (x ,y ),则|NQ |= x -0 2+ y -3 2=4b 2-4y 2+ y -3 2=-3y 2-6y +4b 2+9=-3 y +1 2+4b 2+12. 当y =-1时,|NQ |有最大值为4b 2+12=4, 解得b 2=1,所以a 2=4,椭圆方程是x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),AB 方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k x -3 ,x 24+y 2=1,整理得(1+4k 2)x 2-24k 2x +36k 2-4=0.由Δ=(24k 2)2-16(9k 2-1)(1+4k 2)>0,得k 2<15.x 1+x 2=24k 21+4k 2,x 1²x 2=36k 2-41+4k2.所以OA →+OB →=(x 1+x 2,y 1+y 2)=t (x 0,y 0), 则x 0=1t(x 1+x 2)=24k 2t 1+4k 2,y 0=1t (y 1+y 2) =1t[k (x 1+x 2)-6k ]=-6kt 1+4k 2.由点P 在椭圆上,得 24k 22t 2 1+4k 2 2+144k2t 21+4k 2 2=4, 化简得36k 2=t 2(1+4k 2)①又由|AB |=1+k 2|x 1-x 2|<3,即(1+k 2)[(x 1+x 2)2-4x 1x 2]<3,将x 1+x 2,x 1x 2代入得(1+k 2)⎣⎢⎡⎦⎥⎤242k 41+4k -4 36k 2-4 1+4k <3, 化简,得(8k 2-1)(16k 2+13)>0, 则8k 2-1>0,k 2>18,所以18<k 2<15②由①,得t 2=36k 21+4k 2=9-91+4k2,联立②,解得3<t 2<4, 所以-2<t <-3或3<t <2.11.(2015²石家庄模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0)、F 2(1,0),过F 1作与x 轴不重合的直线l 交椭圆于A 、B 两点.(1)若△ABF 2为正三角形,求椭圆的离心率; (2)若椭圆的离心率满足0<e <5-12,O 为坐标原点, 求证:|OA |2+|OB |2<|AB |2.(1)解:由椭圆的定义知|AF 1|+|AF 2|=|BF 1|+|BF 2|,∵|AF 2|=|BF 2|,∴|AF 1|=|BF 1|,即F 1F 2 为边AB 上的中线,∴F 1F 2⊥AB .在Rt △AF 1F 2中,cos 30°=2c 4a 3,则c a =33,∴椭圆的离心率为33. (2)证明:设A (x 1,y 1),B (x 2,y 2),∵0<e <5-12,c =1, ∴a >1+52. ①当直线AB 与x 轴垂直时,1a 2+y 2b 2=1,y 2=b 4a 2,OA →²OB →=x 1x 2+y 1y 2=1-b 4a 2=-a 4+3a 2-1a2=-⎝ ⎛⎭⎪⎫a 2-322+54a 2,∵a 2>3+52,∴OA →²OB →<0, ∴∠AOB 恒为钝角,∴|OA |2+|OB |2<|AB |2. ②当直线AB 不与x 轴垂直时,设直线AB 的方程为:y =k (x +1),代入x 2a 2+y 2b2=1,整理得,(b 2+a 2k 2)x 2+2k 2a 2x +a 2k 2-a 2b 2=0, ∴x 1+x 2=-2a 2k 2b 2+a 2k 2,x 1x 2=a 2k 2-a 2b2b 2+a 2k 2, OA →²OB →=x 1x 2+y 1y 2=x 1x 2+k 2(x 1+1)(x 2+1) =x 1x 2(1+k 2)+k 2(x 1+x 2)+k 2= a 2k 2-a 2b 21+k 2-2a 2k 4+k 2b 2+a 2k 2b 2+a 2k 2=k 2 a 2+b 2-a 2b 2 -a 2b 2b 2+a 2k 2=k 2 -a 4+3a 2-1 -a 2b 2b 2+a 2k 2令m (a )=-a 4+3a 2-1,由①可知m (a )<0, ∴∠AOB 恒为钝角,∴恒有|OA |2+|OB |2<|AB |2.12.(2015²长春三校调研)在直角坐标系xOy 中,点M ⎝ ⎛⎭⎪⎫1,12,点F 为抛物线C :y =mx 2(m>0)的焦点,线段MF 恰被抛物线C 平分.(1)求m 的值;(2)过点M 作直线l 交抛物线C 于A ,B 两点,设直线FA ,FM ,FB 的斜率分别为k 1,k 2,k 3,问k 1,k 2,k 3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.解:(1)由题得抛物线C 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,14m ,线段MF 的中点N ⎝ ⎛⎭⎪⎫1,18m -14在抛物线C 上,∴18m -14=m,8m 2+2m -1=0, ∴m =14(m =-12舍去).(2)由(1)知抛物线C :x 2=4y ,F (0,1).设直线l 的方程为y +12=k (x -2),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y +12=k x -2 ,x 2=4y ,得x 2-4kx +8k +2=0,Δ=16k 2-4(8k +2)>0, ∴k <2-62或k >2+62.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8k +2,假设k 1,k 2,k 3能成公差不为零的等差数列,则k 1+k 3=2k 2. 而k 1+k 3=y 1-1x 1+y 2-1x 2=x 2y 2+x 2y 2-x 2-x 1x 1x 2=x 2x 214+x 1x 224-x 2-x 1x 1x 2=⎝ ⎛⎭⎪⎫x 1x 24-1 x 1+x 2 x 1x 2=⎝ ⎛⎭⎪⎫8k +24-1²4k 8k +2=4k 2-k 4k +1,k 2=-12-12-0=-34,∴4k 2-k 4k +1=-32,8k 2+10k +3=0,解得k =-12(符合题意)或k =-34(不合题意,舍去). ∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.。
F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。
2016北京高三一模二模分类汇编(理科)专题:圆锥曲线一、选择题1、(2016东城一模理科 7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点P 的椭圆的短轴长为 (A )3 (B )6(C )9(D )12二、填空题1、(2016东城一模理科 11)若圆22(2)1x y -+= 与双曲线222:1x C y a-=(a >0)的渐近线相切,则a =______;双曲线C 的渐近线方程是______.2、(2016海淀一模理科 12)已知双曲线2222:1x y C a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的C 的方程为 .3、(2016石景山一模理科 9)双曲线2212x y -=的焦距是________,渐近线方程是________.4、(2016丰台一模理科 9)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为y =,那么双曲线的离心率为_________.5、(2016顺义一模理科 10)抛物线的准线与双曲线的两条渐近线所围成的三角形面积为6、(2016东城二模理科 13)若点O 和点2(F 分别为双曲线2221x y a-=(>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则222+1PF OP 的取值范围为___.7、(2016西城二模理科 12)设双曲线C 的焦点在x 轴上,渐近线方程为y =±22x ,则其离心率为 ;若点4,2()在C 上,则双曲线C 的方程为 。
8、(2016朝阳二模理科 9)双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)y px p =>的焦点与双曲线C 的一个焦点重合,则p = .9、(2016丰台二模理科 11)已知点(,4)P t 在抛物线24y x =上,抛物线的焦点为F ,那么|PF |=____________. 三、解答题1、(2016东城一模理科 19)已知抛物线2:2(0)C y px p =>,焦点F ,O 为坐标原点,直线AB (不垂直x 轴)过点F 且与抛物线C 交于两点,直线与的斜率之积为p -. (Ⅰ)求抛物线C 的方程;(Ⅱ)若M 为线段AB 的中点,射线OM 交抛物线C 于点D ,求证:2ODOM>. 2、(2016西城一模理科 19)已知椭圆C :2231(0mx my m +=>)的长轴长为62,O 为坐标原点。
北京市2016届高三数学理二轮复习专题突破训练圆锥曲线1、(15北京)已知双曲线()01222>=-a y ax 的一条渐近线为03=+y x ,则=a.2、(14北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.3、(13北京)若双曲线22221x y a b-=的离心率为3,则其渐近线方程为( ).A .y =±2xB .2y x =±C .12y x =±D .22y x =±4、(朝阳15届一模)已知点A(1,y 0 )( y 0> 0) 为抛物线 y 2 = 2px ( p > 0)上一点.若点 A 到该抛物线焦点的距离为 3,则y 0 =A .2B . 2C .22D . 45、(东城15届二模)若双曲线22221(0,0)x y a b a b-=>>截抛物线24y x =的准线所得线段长为b ,则a =6、(房山15届一模)双曲线221x my -=的实轴长是虚轴长的2倍,则m =( )A .4B .2C .12 D .147、(丰台15届一模)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是3y x =,它的一个焦点坐标为(2,0),则双曲线的方程为(A)22126x y -= (B)22162x y -= (C)2213y x -= (D) 2213x y -= 8、(海淀15届二模)若双曲线M 上存在四个点,,,A B C D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是9、(石景山15届一模)如果双曲线的离心率215+=e ,则称此双曲线为黄金双曲线.有以下几个命题: ①双曲线115222=--y x 是黄金双曲线; ②双曲线115222=+-x y 是黄金双曲线;③在双曲线22221x y a b -=中, F 1为左焦点, A 2为右顶点, B 1(0,b ),若∠F 1 B 1 A 290=︒,则该双曲线是黄金双曲线;④在双曲线22221x y a b-=中,过焦点F 2作实轴的垂线交双曲线于M 、N 两点,O 为坐标原点,若∠MON 120=︒,则该双曲线是黄金双曲线.其中正确命题的序号为( )A .①和②B .②和③C .③和④D .①和④10、(西城区2015届高三一模)已知双曲线()222210x y a b a b=>>0-,的一个焦点是抛物线 y 2 = 8x 的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为 .11、(东城示范校2015届综合能力测试)双曲线()301362222<<=--m m y m x 的焦距为 A. 6B. 12C. 36D. 22362m -12、(昌平15届期末)已知双曲线221(0)y x m m-=>的离心率是2,则________,m =以该双曲线的右焦点为圆心且与其渐近线相切的圆的方程是13、(朝阳15届期末)双曲线22:C x y λ-=(0λ>)的离心率是 ;渐近线方程是14、(东城15届期末)若抛物线22(0)y px p =>的焦点到其准线的距离为1,则该抛物线的方程为15、(海淀15届期末)若双曲线221y x m-=的一条渐近线的倾斜角为60︒,则m =二、解答题1、(15北京)已知椭圆C : ()012222>>=+b a b y a x 的离心率为22,点()1,0P 和点()()0,≠m n m A 都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得ONQ OQM ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.2、(14北京)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.3、(13北京)已知A ,B ,C 是椭圆W :24x +y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.4、(朝阳15届一模)已知椭圆C :()22221x y a b a b +=>>0的一个焦点为F (2,0),离心率为 63。
过焦点F 的直线l 与椭圆C 交于 A ,B 两点,线段 AB 中点为D ,O 为坐标原点,过O ,D 的直线交椭圆于M ,N 两点。
(1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值。
5、(东城15届二模)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为32,且椭圆C 上的点到两个焦点的距离之和为4.(Ⅰ)求椭圆C 的方程;(Ⅱ)设A 为椭圆C 的左顶点,过点A 的直线l 与椭圆交于点M ,与y 轴交于点N ,过原点与l 平行的直线与椭圆交于点P .证明:2||||2||AM AN OP ⋅=.6、(房山15届一模)动点),(y x P 到定点)0,1(F 的距离与它到定直线4:=x l 的距离之比为21. (Ⅰ) 求动点P 的轨迹C 的方程;(Ⅱ) 已知定点(2,0)A -,(2,0)B ,动点(4,)Q t 在直线l 上,作直线AQ 与轨迹C 的另一个交点为M ,作直线BQ 与轨迹C 的另一个交点为N ,证明:,,M N F 三点共线.7、(丰台15届一模)已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,右顶点A 是抛物线28y x =的焦点.直线l :(1)y k x =-与椭圆C 相交于P ,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)如果AM AP AQ =+,点M 关于直线l 的对称点N 在y 轴上,求k 的值.8、(海淀15届二模)已知椭圆2222:1(0)x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点. (Ⅰ)求圆O 和椭圆C 的方程;(Ⅱ)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:∠MQN 为定值.9、(石景山15届一模)已知椭圆C :22221(0)x y a b a b+=>>离心率22e =,短轴长为22.(Ⅰ)求椭圆C 的标准方程;(Ⅱ) 如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别 与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.10、(西城15届一模)设F 1 ,F 2分别为椭圆()22221x y a b a b+=>>0的左、右焦点,点P (1,32) 在椭圆E 上,且点P 和F 1 关于点C (0,34) 对称。
(1)求椭圆E 的方程;(2)过右焦点F 2 的直线l 与椭圆相交于 A ,B 两点,过点P 且平行于 AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由。
NMQAOPxy11、(大兴15届期末)已知椭圆2222: 1 (0)x y G a b a b +=>>的离心率为63,右焦点为(22, 0),过原点O 的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线交椭圆G 于点M . (Ⅰ)求椭圆G 的方程; (Ⅱ)求证:2211OAOM+为定值,并求AOM ∆面积的最小值.12、(丰台15届期末)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点(3,0)F ,点1(3,)2M -在椭圆C 上.(I )求椭圆C 的标准方程;(II )直线l 过点F ,且与椭圆C 交于A ,B 两点,过原点O 作直线l 的垂线,垂足为P ,如果△OAB 的面积为||42||AB OP λ+(λ为实数),求λ的值.13、(石景山15届期末)已知椭圆)0(12222>>=+b a b y a x 的离心率为23,且过点(01)B ,. (Ⅰ)求椭圆的标准方程;(Ⅱ)直线)2(:+=x k y l 交椭圆于P 、Q 两点,若点B 始终在以PQ 为直径的圆内,求实数k 的取值范围.14、(西城15届期末)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.15、(通州15高三4月模拟考试)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点是()1,0F -,上顶点是B ,且2BF =,直线(1)y k x =+与椭圆C 相交于M ,N 两点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若在x 轴上存在点P ,使得PM PN ⋅uuu r uuu r与k 的取值无关,求点P 的坐标.参考答案一、选择、填空题 1、33 解析:渐近线为03=+y x 所以有3-=-a b 双曲线1222=-y a x 的方程得1=b 且0>a 33=∴a2、221312x y -=;2y x =±双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±设C :224y x m -= 并将点(22),代入C 的方程,解得3m =-故C 的方程为2234y x -=-,即221312x y -=3、答案:B解析:由离心率为3,可知c =3a ,∴b =2a . ∴渐近线方程为2by x x a=±=±,故选B. 4、答案:C【解析】:抛物线焦点为:它们的距离为5、2556、A7、C8、(2,)+∞9、B 10、答案:11、B 12、3;22(2)3x y -+= 13、2;y x =± 14、22y x = 15、3二、解答题 1、解析:(I )由题意得⎪⎪⎩⎪⎪⎨⎧+===,,22,1222c b a ac b 解得22=a ,故椭圆C 的方程为.1222=+y x设).0,(M x M因为0≠m ,所以.11<<-n直线PA 的方程为x mn y 11-=-, 所以n m x M -=1,即).0,1(nmM - ()∏因为点B 与点A 关于x 轴对称,所以()n m B -,.设)0,(N x N ,则nmx N +=1. “存在点),0(Q y Q 使得ONQ OQM ∠=∠”等价于“存在点),0(Q y Q 使得ONOQ OQ OM =”,即Q y 满足N M Q x x y =2. 因为n m x M -=1,n mx N +=1,.1222=+n m 所以2=Q y 或2-=Q y ,故在y 轴上存在点Q ,使得ONQ OQM ∠=∠, 点Q 的坐标为)2,0(或)2,0(-.2、⑴椭圆的标准方程为:22142x y +=,2a =,2b =,则2c =,离心率22c e a ==; ⑵直线AB 与圆222x y +=相切.证明如下: 法一:设点A B ,的坐标分别为()()002x y t ,,,,其中00x ≠.因为OA OB ⊥,所以0OA OB ⋅= ,即0020tx y +=,解得002yt x =-.当0x t =时,202t y =-,代入椭圆C 的方程,得2t =±,故直线AB 的方程为2x =±.圆心O 到直线AB 的距离2d =. 此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为()0022y y x t x t--=--, 即()()0000220y x x t y x ty ---+-=. 圆心O 到直线AB 的距离()()00220022x ty d y x t -=-+-.又220024x y +=,02y t x =-,故 22000024222000002202422481642y x x x x d yx x x y xx++===+++++.此时直线AB 与圆222x y +=相切.法二:由题意知,直线OA 的斜率存在,设为k ,则直线OA 的方程为y kx =,OA OB ⊥, ①当0k =时,()20A ±,,易知()02B ,,此时直线AB 的方程为2x y +=或2x y -+=, 原点到直线AB 的距离为2,此时直线AB 与圆222x y +=相切; ②当0k ≠时,直线OB 的方程为1y x k=-,联立2224y kx x y =⎧⎨+=⎩得点A 的坐标22221212k k k ⎛⎫, ⎪++⎝⎭或22221212kk k ⎛⎫-,- ⎪++⎝⎭; 联立12y x k y ⎧=-⎪⎨⎪=⎩得点B 的坐标()22k -,,由点A 的坐标的对称性知,无妨取点A 22221212k kk ⎛⎫, ⎪++⎝⎭进行计算, 于是直线AB 的方程为:()()22222212122222112212kk k ky x k x k k kkk--++-=+=+++++,即()()22212112220k k x k k y k -+-++++=,原点到直线AB 的距离()()2222222212112k d k k kk +==-++++,此时直线AB 与圆222x y +=相切。