因数与积的变化规律
- 格式:ppt
- 大小:331.50 KB
- 文档页数:11
“点线面”思维训练模式3——
从“积的变化规律”到“积不变的规律”
一、一个因数变化
【1】一个因数不变,另一个因数扩大了。
【结论】:一个因数不变,另一个因数扩大多少倍(0除外),积也跟着扩大相同的倍数。
【2】一个因数不变,另一个因数缩小。
【结论】:一个因数不变,另一个因数缩小多少倍(0除外),积也跟着缩小相同的倍数。
(一)、积的变化规律:
(1)、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。
字母表示:如果axb=C,则
(ax3)×b=c×3
举例:axb=12如果(ax3)则积就是
12×3=36.
(2)、一个数乘一个比1大的数,积比原数大;
(3)、一个数乘一个比1小的数,积比原数小。
【3】积的变化规律:
【结论】:积与因数同向变化。
【4】同步应用
【5】能力提升
【6】拓展训练
二、积不变的规律
【结论】:一个因数扩大或缩小多少倍,另一个因数缩小或扩大相同的倍数(0除外),积不变。
两个因素反向变化,积不变。
(巧墨静好)
下一节内容:1.商的变化规律——商不变的规律——余数的变化规律
2、和、差、积、商的变化规律。
例1、因数与积的变化规律复习:小数乘法怎样计算3.2 5 3 2 5×0.6×61 9 5 0找规律:3.5×1.2 =4.2 3.5×1.2 = 4.2 3.5×1.2 = 4.23.5×3.6 = 7× 3.6 = 0.7×3.6 =3.5 × 6 = 14 × 6 = 14 ×0.4 =3.5×0.4 = 0.7 ×0.4 = 14 ×0.3 =小结:因数×因数 = 积因数×(因数×m)= 积因数×(因数÷m)= 积(因数×m)×(因数×n)= 积(因数÷m)×(因数÷n)= 积(因数×m)×(因数÷n)= 积思考:什么时候积不变?例2、被除数、除数与商的变化规律思考:为什么被除数和除数同时乘以(或除以)一个不为0的数,商才不变?找规律:4.2÷3.5 =1.2 4.2÷3.5 =1.2 4.2÷3.5 =1.212.6÷3.5 = 4.2 ÷ 7 = 8.4÷ 7 =21 ÷3.5 = 4.2÷0.7 = 0.6÷0.5 =1.4 ÷3.5 = 4.2÷0.5 = 8.4÷0.7 =1.4÷10.5 =小结:被除数÷除数 = 商(被除数×m)÷除数 = 商(被除数÷m)÷除数 = 商被除数÷(除数×m)= 商被除数÷(除数÷m)= 商(被除数×m)÷(除数×n)= 商(被除数÷m)÷(除数÷n)= 商(被除数×m)÷(除数÷n)= 商(被除数÷m)÷(除数×n)= 商例3:一个两位小数四舍五入到十分位是5.0,那么这个小数最大是多少?最小是多少?还可能是多少?分析:比5.0小的数需要五入,可能是比5.0大的数需要四舍,可能是例4: 2.5×6= 2.5×2.2= 2.5×1.1= 2.5×0.8= 2.5×0.6=小结:一个数(0除外)乘大于1的数,例5: 4.5÷5= 4.5÷1.5= 4.5÷1= 4.5÷0.9= 4.5÷0.5= 小结:一个数(0除外)除以大于1的数,例6: 下面各题的商那些事小于1的?那些是大于1的?4.5÷1.5= 3÷2= 2.4÷2.4= 4÷5= 7.6÷8=小结:例7:一个小数,如果把小数点向右移动一位,所得的数比原来增加了63.9,这个小数是多少?(分析)原数:扩大后的数:扩大后的数是原数的10倍,比原数多9倍,原数的9倍是。
教案标题:小学三年级数学因数和积的变化规律教学目标:1.理解因数和积的概念;2.掌握数学因数和积的变化规律;3.能够灵活应用因数和积的规律解决实际问题。
教学准备:1.教学工具:白板、黑板、彩色粉笔、讲解卡片;2.教学材料:练习题、实际问题、实物模型等。
教学过程:步骤一:导入(5分钟)1.引入主题:今天我们要学习因数和积的变化规律,相信大家都知道乘法吧?(学生应进行回答)2.提问:你们还记得乘法的运算法则吗?(学生应回答乘法的基本法则:乘法交换律、乘法结合律)3.复习:请大家回忆一下,怎样计算两个数的积?步骤二:概念讲解(10分钟)1.出示讲解卡片:因数和积的概念定义;2.老师讲解:因数是指能够整除一个数的数,而积是指两个数相乘的结果;例如:6是12的因数,因为6能够整除12;而12和6的积是72,因为12乘以6等于72步骤三:变化规律的探究(20分钟)1.提问:如果一个数的因数和积有什么样的变化规律呢?2.引导学生合作完成以下操作:(1)拿出数字卡片1和2,观察和计算1和2的因数之和和积;(2)再拿出数字卡片3,观察和计算1、2和3的因数之和和积;(3)请学生依此类推,使用数字卡片继续进行计算;(4)让其中一组学生上来,把卡片上的数字放入一个小箱子中;(5)让另一组学生上来,把小箱子中的数字拿出来,组成因数之和和积的等式,并解释他们的发现。
3.教师引导学生总结规律:(1)因数之和=因数1+因数2=积;(2)当一个数的因数之和和积相等时,这个数有几个因数呢?(3)变化规律是否适用于更大的数呢?(4)提出新的问题,让学生思考并继续实践验证。
步骤四:实际问题应用(15分钟)1.出示一个实际问题:小明要买苹果,每箱装12个,他一共买了多少个苹果?2.让学生们尝试使用因数和积的规律解决这个问题,并根据结果回答问题。
步骤五:拓展练习(10分钟)1.从小到大列举10以内的整数,让学生们找出它们的因数之和和积的特点;2.请学生用白板写出规律,并解释;3.完成练习题并批改。
因数和积的变化规律导读:本文是关于因数和积的变化规律,希望能帮助到您!课题:因数和积的变化规律教学目标1.知道“扩大”、“缩小”的含义.2.理解乘法里一个因数不变,另一个因数扩大(或缩小)若干倍积也扩大(或缩小)相同倍数的规律.3.能运用积的变化规律进行简便计算.教学重点理解“一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数”这一数学规律.教学难点理解因数和积的变化规律并运用规律计算.教学步骤一、铺垫孕伏.1.口算:420×2 9×40 23×30 0×700600×3 80×90 35×20 800×10200×30 70×60 1×190 18×402.下面两题,用竖式怎样计算比较简便?28×40 2800×30二、探究新知.1.教“扩大”或“缩小”几倍的含义.(1)讲授把一个数“扩大”几倍就是把这个数乘几.如5扩大3倍就是5×3=15,板书:,把一个数缩小几倍就是把这个数除以几.如15缩小3倍就是15÷3=5,板书:(2)练习:① 6扩大4倍是多少?② 3扩大10倍是多少?③ 200缩小20倍是多少?④ 8缩小8倍是多少?2.教例6.(1)出示表格:因数1616161616因数241020100积32(2)学生口算填表:(3)想:发现了什么?分组讨论.①第2、3、4、5组的第二个因数同第一组比较,分别扩大2倍、5倍、10倍、50倍,积也随着扩大2倍、5倍、10倍、50倍.②一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数.(4)练习:12×3= 48×5=24×5=120×3= 48×50= 24×25=1200×3= 48×500=24×75=小结:启发学生把发现的规律进行概括:一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.(5)填空练习:①在4×5=20中,如果4不变,5扩大2倍,那么积也()倍.②在6×8=48中,如果8不变,6缩小3倍,那么积也()倍.三、课堂总结.这堂课你学到了什么?四、随堂练习.1.填表:观察每次计算同前一次比较,因数有什么变化?积有什么变化?因数204040200200因数5050100100200积2.填空:(1)一个因数不变,另一个因数(),积也().(2)一个因数不变,另一个因数扩大5倍,积();一个因数缩小7倍,另一个因数不变,积();一个因数不变,要想使积扩大24倍,另一个因数().五、布置作业.(207+99)×32 130×(560-490) 400×(225÷9)(798+486)÷6板书设计因数和积的变化规律因数1616161616因数241020100积32641603201600一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.。
《因数和积的变化规律》例3 陈洁●教学目标1.使学生经历因数和积变化规律的发现过程,感受发现数学中的规律。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
●教学重难点教学重点:通过对算式的归纳,自己找出并掌握因数和积的变化规律。
教学难点:通过对算式的归纳,自己概括并掌握因数和积的变化规律。
●教学过程一、激趣引入师:今天我们来猜一个谜语“一位游泳家,说话呱呱呱。
小时有尾没有腿,大时有腿没有尾。
”它是?预设:青蛙。
师:这是我们的青蛙王子。
一起来数一数它有几条腿?师:1只青蛙4条腿,3只青蛙呢?那30只呢?300只呢?(列出3只、30只、300只的算式。
)(请一位同学上台完成)给三个算式编上序号。
①3×4=12②30×4=120③300×4=1200二、孕育新知师:那我们就来讨论这三个式子。
我们来观察这三道算式,你发现了什么?1、发现因数和积的变化中有规律预设:我发现,在这个算式中因数变大了,积也变大了。
师:你能说得更详细一些吗?你是把哪两个式子拿来作比较的?什么变了,什么没变?预设:我看的是第一个和第二个式子,从3变成30,乘了10,其他没有变化,而积乘了10倍。
师:这次就说得比较完整了,谁能照着他刚才说得样子再说一说,你还有哪些发现?预设1:第二个和第三个式子比,其中一个因数从30变成了300,扩大了10倍,其他没有变化,积也是扩大了10倍。
预设2:第一个和第三个式子比,因数从3变成了300,扩大了100倍,其他不变,积也扩大了100倍。
师:同学们们眼睛可真尖,一下子就发现了藏在里面的规律,那你能用自己的话来试着概括一下你的发现吗?预设:两个因数相乘,因数扩大几倍,他们的积也就扩大几倍。
师:说得很简明扼要,但数学讲究的是严谨。
我们一起来完善这个规律。
看黑板上的式子,它是哪个因数在变化?预设:3、30、30.师:那另外一个因数有没有变化呢?预设:没有。
在乘法里因数的变化引起积的变化的规律
积的变化规律有:
1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍,(N为非0自然数)。
2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。
3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。
4、在乘法算式中,一个因数a乘m,另一个因数b除以n,积c 乘m再除以n,(m≠0,n≠0)。
5、在乘法算式中,一个因数a除以m,另一个因数b除以n,积c除以m再除以n,(m≠0,n≠0)。
两个因数所得结果,叫做积。
也可阐述为其中一个因数表示另一个因数的数量,这么多的这个因数之和为这个乘式的积。
一个乘式中的各个数字为这个乘式的因数。
乘法是指将相同的数加起来的快捷方式。
其运算结果称为积,“x”是乘号。
从哲学角度解析,乘法是加法的量变导致的质变结果。
整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
因数和积的变化规律
因数和积的变化规律是指当一个数的因数发生变化时,它们的和与积会如何变化。
当一个因数增加或减少时,和与积也会相应地发生变化。
假设我们有一个正整数N,并且找到了N的所有因数。
这些因数可以用来表示N可以整除的所有数。
例如,如果N是12,那么它的因数是1, 2, 3, 4, 6和12。
当我们将这些因数相加时,就得到了因数的和。
在我们的例子中,因数和为1 + 2 + 3 + 4 + 6 + 12 = 28。
当我们将这些因数相乘时,就得到了因数的积。
在我们的例子中,因数积为1 × 2 × 3 × 4 × 6 × 12 = 1728。
如果我们增加或减少一个因数,那么和与积也会相应地发生变化。
例如,如果我们增加一个因数,那么和与积将会增加。
相反,如果我们减少一个因数,那么和与积将会减少。
总的来说,当一个数的因数发生变化时,它们的和与积会随之变化。
这种变化可以通过增加或减少因数来实现。
因数与积的变化规律:
1、一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)相同的倍数。
2、一个因数扩大(或缩小)a倍,另一个因数扩大(或缩小)b倍,那么积扩大(或缩小)ab倍。
3、一个因数扩大一定的倍数,另一个因数缩小相同的倍数,积不变。
被除数、除数与商的变化规律:
1、除数不变,被除数扩大(或缩小)几倍,商就扩大(或缩小)相同的倍数。
(商与被除数的变化方向相同)
2、被除数不变,除数扩大(或缩小)几倍,商就缩小(或扩大)相同的倍数。
(商与除数的变化方向相反)
3、被除数扩大(或缩小)几倍,除数扩大(或缩小)相同的倍数, ,商就不变。
(商不变的性质)。
【积的变化规律】(1)如果一个因数扩大(或缩小)若干倍,另一个因数不变,那么,它们的积也扩大(或缩小)同样的倍数。
用字母表达,就是如果a×b=c,那么(a×n)×b=c×n,(a÷n)×b=c÷n。
(2)如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
用字母表达,就是如果a×b=c,那么(a×n)×(b÷n)=c,或(a÷n)×(b×n)=c。
【商或余数的变化规律】(1)如果被除数扩大(或缩小)若干倍,除数不变,那么它们的商也扩大(或缩小)同样的倍数。
用字母表达,就是如果a÷b=q,那么(a×n)÷b=q×n,(a÷n)÷b=q÷n。
(2)如果除数扩大(或缩小)若干倍,被除数不变,那么它们的商反而缩小(或扩大)同样的倍数。
用字母表达,就是如果a÷b=q,那么a÷(b×n)=q÷n,a÷(b÷n)=q×n。
(3)被除数和除数都扩大(或都缩小)同样的倍数,那么它们的商不变。
用字母表达,就是如果a÷b=q,那么(a×n)÷(b×n)=q,(a÷n)÷(b÷n)=q。
(4)在有余数的除法中,如果被除数和除数都扩大(或都缩小)同样的倍数,不完全商虽然不变,但余数却会跟着扩大(或缩小)同样的倍数。
这一变化规律用字母表示,就是如果a÷b=q(余r),那么(a×n)÷(b×n)=q(余r×n),(a÷n)÷(b÷n)=q(余r÷n)。
例如,84÷9=9……3,而(84×2)÷(9×2)=9……6(3×2),(84÷3)÷(9÷3)=9……1(3÷3)。
积的变化规律和因数末尾有零的乘法在数学中,积是几个数相乘的结果。
例如,2和3的积是6。
积在数学中是一个非常重要的概念,因为它出现在许多不同的数学问题中。
在这篇文章中,我们将探讨积的变化规律和因数末尾有零的乘法的概念。
积的变化规律积的变化规律是一种描述积随着因数变化而发生变化的方法。
在这里,我们将讨论两种基本的积变化规律:比例关系和反比例关系。
比例关系是指当一个因数的值增加时,积也会相应地增加。
例如,如果我们乘以2和3的积为6,那么当我们将2乘以3时,积将变为12。
同样地,如果我们将3乘以2的积也为6,那么当我们将3乘以4时,积将变为24。
反比例关系是指当一个因数的值增加时,积会相应地减少。
例如,如果我们将2乘以3的积为6,那么当我们将2乘以4时,积将减少到3。
同样地,如果我们将3乘以2的积也为6,那么当我们将3乘以1.5时,积将减少到4.5。
因数末尾有零的乘法当我们计算一个数的积时,有时会出现因数末尾有零的情况。
这种情况可能会影响结果,因此在进行乘法运算时需要特别注意。
现在,我们探讨一下因数末尾有零的乘法。
当我们将一个数乘以10的幂时,例如10、100或1000,我们将会得到一个末尾有零的结果。
例如,当我们将2乘以100时,结果为200,末尾有两个零。
这是因为2乘以100等于2乘以10乘以10,也就是说,我们将2乘以10的幂两次,每次都得到一个末尾有零的结果。
如果我们将两个或多个带有末尾零的数相乘,那么最终的结果将有更多的末尾零。
例如,当我们将20和30相乘时,结果为600,末尾有两个零。
这是因为20和30都有一个末尾零,所以它们的乘积也有一个末尾零,这是两个末尾零的和。
然而,在实际的乘法中,因数末尾有零并不总是会影响最终结果。
例如,当我们将13乘以10时,结果为130,末尾有一个零。
在这种情况下,因数末尾的零并没有对结果产生影响。