用三角函数求方位角
- 格式:pdf
- 大小:88.25 KB
- 文档页数:3
坐标方位角计算公式
坐标方位角是计算地理位置的重要参数,它指的是从一个点指向另一个点的角度,可以使用坐标方位角来计算两个点之间的距离。
坐标方位角是指一个点到另一个点的角度,以正北方向为0度,顺时针方向增大,范围为0°-360°,也可以用-180°至+180°表示,例如,一个点从正北方向顺时针旋转90°,就是在正东方向,坐标方位角就是90°。
计算坐标方位角的方法有很多,最常用的是三角函数法,又称“正余弦定理”。
它可以通过计算两个点的经纬度来计算坐标方位角,即可以计算出从一个点指向另一个点的角度。
此外,还可以使用坐标方位角来计算两个点之间的距离。
通常,计算距离的方法是使用余弦定理,即可以根据两个点的坐标方位角来计算出两点之间的距离。
以上就是坐标方位角的基本概念及其计算方法。
坐标方位角是地理位置和距离计算中不可或缺的重要参数,可以用来计算两点之间的距离,以及从一个点指向另一个点的角度。
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
定向井施工中常用计算方法一、方位角计算在定向井施工中,方位角是指井眼对准目标方向所需要的角度。
1.使用正弦定理计算方位角:若知道当前位置与下一目标位置的距离d,当前方位角Φ和井斜角I,以及投影角度A,可以使用正弦定理计算出目标方位角B。
B = Φ - arcsin(sin(A) * sin(I) / sin(d))二、井斜角计算在定向井施工中,井斜角是指井斜的角度。
1.使用三角函数计算井斜角:若知道当前位置与下一目标位置的距离d和目标方位角B,可以使用三角函数计算出井斜角I。
I = arcsin(sin(B - Φ) * sin(d))三、井斜距计算在定向井施工中,井斜距是指井眼移动的水平距离。
1.使用三角函数计算井斜距:若知道井斜角I和距离d,可以使用三角函数计算出井斜距T。
T = d * cos(I)四、投影距离计算在定向井施工中,投影距离是指井眼投射到垂直平面的水平距离。
1.使用三角函数计算投影距离:若知道井斜角I和距离d,可以使用三角函数计算出投影距离H。
H = d * sin(I)五、井身长度计算在定向井施工中,井身长度是指井身的长度。
1.使用勾股定理计算井身长度:若知道井斜距T、投影距离H和当前深度d,可以使用勾股定理计算出井身长度L。
L = sqrt(H² + T²) + d综上所述,定向井施工中常用的计算方法包括方位角计算、井斜角计算、井斜距计算、投影距离计算和井身长度计算等。
这些计算方法可以帮助工程师在实际施工中准确地控制井眼的方向和位置,保证井眼穿越目标地层,并实现成功的定向井施工。
中考数学锐角三角函数应用方位角与方向角问题复习引入本节课将应用解直角三角形知识解决测量中的方位角问题.探究新知(一)方位角与方向角1.方向角教师讲解:指北或指南方向线与目标方向所成的小于90°的角叫做方向角.如课本图28.2-1中的目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,如图28.2-1的目标方向线OD 与正南方向成45°角,通常称为西南方向.图28.2-1 图28.2-2 2.方位角教师讲解:从某点的指北方向线按顺时针转到目标方向的水平角,叫做方位角.•如课本图28.2-2中,目标方向线PA,PB,PC的方位角分别是40°,135°,225°.(二)用解直角三角形的方法解决实际问题方法要点教师讲解:在解决实际问题时,我们要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)•之间的关系,这样才能很好地运用解直角三角形的方法求解.解题时一般有以下三个步骤:1.审题.按题意画出正确的平面或截面示意图,并通过图形弄清已知和未知.2.将已知条件转化为示意图中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.如果没有现成是直角三角形可供使用,可通过作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形.3.根据直角三角形(或通过作垂线构造直角三角形)元素(边、•角)之间关系解有关的直角三角形.(三)例题讲解教师解释题意:如课本图28.2-8所示,一艘海轮位于灯塔P的北偏东65°方向,•距离灯塔80海里的A处,它沿正南方向航行一段时间后,•到达位于灯塔P的南偏东34°方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)教师提示:这道题的解题思路与上一节课的例4相似.因为△APB不是一个直角三角形,所以我们把一个三角形分解为两个直角三角形,△ACP与△PCB.PC•是东西走向的一条直线.AB是南北走向的一直线,所以AB与PC是相互垂直的,即∠ACP与∠BDP•均为直角.再通过65度角与∠APC互余的关系求∠APC;通过34度角与∠BPC•互余的关系求∠BPC.教师分析后要求学生自行做完这道题.学生做完后教师再加以总结并板书.解:如课本图28.2-8,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8.在Rt△BPC中,∠B=34°,∵sinB=PC PB,∴PB=72.872.8sin sin340.559PCB=≈︒≈130.23.因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.教师讲解:解直角三角形有广泛的应用,解决问题时,•要根据实际情况灵活运用相关知识.例如,当我们要测量如课本图28.2-9所示大坝的高度h时,只要测出仰角α和大坝的坡面长度L,就能算出h=Lsinα.但是,当我们要测量如课本图28.2-10所示的山高h 时,问题就不那么简单了.这是由于不能很方便地得到仰角α和山坡长度L.图28.2-9 图28.2-10与测坝高相比,测山高的困难在于:坝坡是“直”的,而山坡是“曲”的.怎样解决这样的问题呢?我们设法“化曲为直,以直代曲”.我们可以把山坡“化整为零”地划分为一些小段,课本图28.2-11表示其中一部分小段.划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长L1,测出相应的仰角α,这样就可以算出这段山坡的高度h1=L1sin α.图28.2-11在每个小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…….然后我们再“积零为整”,把h1,h2,…相加,于是得到山高h.以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.随堂练习课本第95页练习第1题、第2题.课时总结利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题(画出平面图形,•转化为解直角三角形的问题).2.根据条件的特点,适当选用锐角三角函数等去解直角三角形.3.得到数学问题的答案.4.得到实际问题的答案.教后反思:____________________________________________________________________________________________________________________________________________________ 第4课时作业设计课本练习课本第97页习题28.2拓广探索第9题、第10题.双基与中考一、选择题.1.如图,轮船航行到C处时,观测到小岛B的方向是北偏西35°,那么同时从B观测到轮船的方向是().A.南偏西35°B.东偏西35°C.南偏东55°D.南偏东35°(第1题) (第5题) (第8题) 2.•身高相同的三个小朋友甲、•乙、•丙放风筝,•他们放出的线长分别是300m,250m,200m,线与地面所成的角分别为30°、45°、60°(假设风筝线是拉直的),则三人所放风筝().A.甲的最高B.乙的最低C.丙的最低D.乙的最高3.一日上午8时到12时,若太阳光线与地面所成角由30°增大到45°,•一棵树的高为10m,则树在地面上影长h的范围是().A.5<h≤B.10≤h≤C.10<h<15 D.4.△ABC中,AB=6,AC=3,则∠B最大值是().A.30°B.45°C.60°D.无法确定5.如图,水库大坝横断面为梯形,坝顶宽6m,坝高2m,斜坡AB的坡角为45°,•斜坡CD的坡度i=1:2,则坝底AD的长为().A.42m B.()m C.78m D.()m6.△ABC中,+(2=0且AB=4,则△ABC的面积是().A.B.4 C.D.27.一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/小时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时,灯塔M 与渔船的距离是().A.B.C.7 D.148.某地夏季中午,当太阳移到屋顶上方偏南时光线与地面成80°角,房屋朝南的窗子高AB=1.8m;要在窗子外面上方安装一个水平挡光板AC,•使午间光线不能直接射入室内,那么挡光板AC的宽度应为().A.1.8tan80°m B.1.8cos80°mC.1.8sin80︒D.1.8cot80°m9.若菱形的边长为4,它的一个内角为126°,则较短的对角线长为( ).A .4sin54°B .4cos63°C .8sin27°D .8cos27°10.如图,上午9时,一条船从A 处出发以20海里/小时的速度向正北方向航行,•11时到达B 处,从A 、B 望灯塔C ,测得∠NAC=36°,∠NBC=72°,那么从B 处到灯塔C 的距离是( ).A .20海里B .36海里C .72海里D .40海里 北BA NC(第10题) (第11题)11.如图,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1•米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,•请你计算电线杆AB 的高为( ).A .5米B .6米C .7米D .8米二、填空题.12.升国旗时,某同学站在离旗杆底部24m 处行注目礼,当国旗升至旗杆顶端时,•该同学视线的仰角恰为30°,若双眼离地面1.5m ,则旗杆高度为______m .(•用含根号的式子表示)13.在地面上一点,测得一电视塔尖的仰角为45°,沿水平方向,•再向塔底前进a 米,又测得塔尖的仰角为60°,那么电视塔高为________.• • •14.•如图一铁路路基的横断面为等腰梯形ABCD ,•根据图示数据得下底宽AD=______米.(第14题) (第15题)15.如图△ABC的顶点A、C的坐标分别是(0,4),(3,0),并且∠ACB=90°,∠B=•30°,则顶点B的坐标是________.16.如图,•燕尾槽的外口宽AD=•90mm,•深为70mm,•燕尾角为60•°,•则里口宽为________.(第16题) (第17题)17.如图,从高出海平面500m的直升飞机上,测得两艘船的俯角分别为45•°和30°,如果这两艘船一个在正东,一个在正西,那么它们之间的距离为______.三、解答题.18.甲、乙两船同时从港口O出发,甲船以16.1海里/小时的速度向东偏南35°方向航行,乙船向西偏南58°,方向航行,航行了两小时,甲船到达A处并观测到B处的乙船恰好在其正西方向,求乙船的速度v.(精确到0.1海里/小时)(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,cot32°≈1.60)19.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路(图中的线段AB),经测量,在A地的北偏东60°方向,B地的北偏西45°方向的C•处有一个半径为0.7千米的公园,问计算修筑的这条公路会不会穿出公园?为什么?A B答案:一、1.D 2.D 3.B 4.A 5.C 6.A 7.A 8.D 9.C 10.D11.D 二、12.332 1333米 14.29.2 15.(3316.(90+33)mm 17.500(3)m三、18.由题意可知:OA=16.1×2=32.2(海里).∠1=32°,∠2=58°.∴∠AOB=180°-(∠1+∠2)=180°-(32°+58°)=90°.由B 在A 的正西方向,可得:∠A=∠1=32°.又∵在Rt △AOB 中,tanA=OBOA ,∴OB=OA ·tanA=32.2×tan32°=32.2×0.62=19.964(海里).∴v=2OB=19.964÷2=9.982≈10.0(海里/小时).即:乙船的速度约为10.0海里/小时.19.过点C 作CD ⊥AB 于D ,3,这条公路不会穿过公园.。
中考数学锐角三角函数应用方位角与方向角问题复习引入本节课将应用解直角三角形知识解决测量中的方位角问题.探究新知(一)方位角与方向角1.方向角教师讲解:指北或指南方向线与目标方向所成的小于90°的角叫做方向角.如课本图28.2-1中的目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,如图28.2-1的目标方向线OD 与正南方向成45°角,通常称为西南方向.图28.2-1 图28.2-2 2.方位角教师讲解:从某点的指北方向线按顺时针转到目标方向的水平角,叫做方位角.•如课本图28.2-2中,目标方向线PA,PB,PC的方位角分别是40°,135°,225°.(二)用解直角三角形的方法解决实际问题方法要点教师讲解:在解决实际问题时,我们要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)•之间的关系,这样才能很好地运用解直角三角形的方法求解.解题时一般有以下三个步骤:1.审题.按题意画出正确的平面或截面示意图,并通过图形弄清已知和未知.2.将已知条件转化为示意图中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.如果没有现成是直角三角形可供使用,可通过作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形.3.根据直角三角形(或通过作垂线构造直角三角形)元素(边、•角)之间关系解有关的直角三角形.(三)例题讲解教师解释题意:如课本图28.2-8所示,一艘海轮位于灯塔P的北偏东65°方向,•距离灯塔80海里的A处,它沿正南方向航行一段时间后,•到达位于灯塔P的南偏东34°方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)教师提示:这道题的解题思路与上一节课的例4相似.因为△APB不是一个直角三角形,所以我们把一个三角形分解为两个直角三角形,△ACP与△PCB.PC•是东西走向的一条直线.AB是南北走向的一直线,所以AB与PC是相互垂直的,即∠ACP与∠BDP•均为直角.再通过65度角与∠APC互余的关系求∠APC;通过34度角与∠BPC•互余的关系求∠BPC.教师分析后要求学生自行做完这道题.学生做完后教师再加以总结并板书.解:如课本图28.2-8,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8.在Rt△BPC中,∠B=34°,∵sinB=PC PB,∴PB=72.872.8sin sin340.559PCB=≈︒≈130.23.因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.教师讲解:解直角三角形有广泛的应用,解决问题时,•要根据实际情况灵活运用相关知识.例如,当我们要测量如课本图28.2-9所示大坝的高度h时,只要测出仰角α和大坝的坡面长度L,就能算出h=Lsinα.但是,当我们要测量如课本图28.2-10所示的山高h 时,问题就不那么简单了.这是由于不能很方便地得到仰角α和山坡长度L.图28.2-9 图28.2-10与测坝高相比,测山高的困难在于:坝坡是“直”的,而山坡是“曲”的.怎样解决这样的问题呢?我们设法“化曲为直,以直代曲”.我们可以把山坡“化整为零”地划分为一些小段,课本图28.2-11表示其中一部分小段.划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长L1,测出相应的仰角α,这样就可以算出这段山坡的高度h1=L1sin α.图28.2-11在每个小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…….然后我们再“积零为整”,把h1,h2,…相加,于是得到山高h.以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.随堂练习课本第95页练习第1题、第2题.课时总结利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题(画出平面图形,•转化为解直角三角形的问题).2.根据条件的特点,适当选用锐角三角函数等去解直角三角形.3.得到数学问题的答案.4.得到实际问题的答案.教后反思:____________________________________________________________________________________________________________________________________________________ 第4课时作业设计课本练习课本第97页习题28.2拓广探索第9题、第10题.双基与中考一、选择题.1.如图,轮船航行到C处时,观测到小岛B的方向是北偏西35°,那么同时从B观测到轮船的方向是().A.南偏西35°B.东偏西35°C.南偏东55°D.南偏东35°(第1题) (第5题) (第8题) 2.•身高相同的三个小朋友甲、•乙、•丙放风筝,•他们放出的线长分别是300m,250m,200m,线与地面所成的角分别为30°、45°、60°(假设风筝线是拉直的),则三人所放风筝().A.甲的最高B.乙的最低C.丙的最低D.乙的最高3.一日上午8时到12时,若太阳光线与地面所成角由30°增大到45°,•一棵树的高为10m,则树在地面上影长h的范围是().A.5<h≤B.10≤h≤C.10<h<15 D.4.△ABC中,AB=6,AC=3,则∠B最大值是().A.30°B.45°C.60°D.无法确定5.如图,水库大坝横断面为梯形,坝顶宽6m,坝高2m,斜坡AB的坡角为45°,•斜坡CD的坡度i=1:2,则坝底AD的长为().A.42m B.()m C.78m D.()m6.△ABC中,+(2=0且AB=4,则△ABC的面积是().A.B.4 C.D.27.一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/小时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时,灯塔M 与渔船的距离是().A.B.C.7 D.148.某地夏季中午,当太阳移到屋顶上方偏南时光线与地面成80°角,房屋朝南的窗子高AB=1.8m;要在窗子外面上方安装一个水平挡光板AC,•使午间光线不能直接射入室内,那么挡光板AC的宽度应为().A.1.8tan80°m B.1.8cos80°mC.1.8sin80︒D.1.8cot80°m9.若菱形的边长为4,它的一个内角为126°,则较短的对角线长为( ).A .4sin54°B .4cos63°C .8sin27°D .8cos27°10.如图,上午9时,一条船从A 处出发以20海里/小时的速度向正北方向航行,•11时到达B 处,从A 、B 望灯塔C ,测得∠NAC=36°,∠NBC=72°,那么从B 处到灯塔C 的距离是( ).A .20海里B .36海里C .72海里D .40海里 北BA NC(第10题) (第11题)11.如图,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1•米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,•请你计算电线杆AB 的高为( ).A .5米B .6米C .7米D .8米二、填空题.12.升国旗时,某同学站在离旗杆底部24m 处行注目礼,当国旗升至旗杆顶端时,•该同学视线的仰角恰为30°,若双眼离地面1.5m ,则旗杆高度为______m .(•用含根号的式子表示)13.在地面上一点,测得一电视塔尖的仰角为45°,沿水平方向,•再向塔底前进a 米,又测得塔尖的仰角为60°,那么电视塔高为________.• • •14.•如图一铁路路基的横断面为等腰梯形ABCD ,•根据图示数据得下底宽AD=______米.(第14题) (第15题)15.如图△ABC的顶点A、C的坐标分别是(0,4),(3,0),并且∠ACB=90°,∠B=•30°,则顶点B的坐标是________.16.如图,•燕尾槽的外口宽AD=•90mm,•深为70mm,•燕尾角为60•°,•则里口宽为________.(第16题) (第17题)17.如图,从高出海平面500m的直升飞机上,测得两艘船的俯角分别为45•°和30°,如果这两艘船一个在正东,一个在正西,那么它们之间的距离为______.三、解答题.18.甲、乙两船同时从港口O出发,甲船以16.1海里/小时的速度向东偏南35°方向航行,乙船向西偏南58°,方向航行,航行了两小时,甲船到达A处并观测到B处的乙船恰好在其正西方向,求乙船的速度v.(精确到0.1海里/小时)(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,cot32°≈1.60)19.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路(图中的线段AB),经测量,在A地的北偏东60°方向,B地的北偏西45°方向的C•处有一个半径为0.7千米的公园,问计算修筑的这条公路会不会穿出公园?为什么?A B答案:一、1.D 2.D 3.B 4.A 5.C 6.A 7.A 8.D 9.C 10.D11.D 二、12.332 1333米 14.29.2 15.(3316.(90+33)mm 17.500(3)m三、18.由题意可知:OA=16.1×2=32.2(海里).∠1=32°,∠2=58°.∴∠AOB=180°-(∠1+∠2)=180°-(32°+58°)=90°.由B 在A 的正西方向,可得:∠A=∠1=32°.又∵在Rt △AOB 中,tanA=OBOA ,∴OB=OA ·tanA=32.2×tan32°=32.2×0.62=19.964(海里).∴v=2OB=19.964÷2=9.982≈10.0(海里/小时).即:乙船的速度约为10.0海里/小时.19.过点C 作CD ⊥AB 于D ,3,这条公路不会穿过公园.。
预测钻孔方位角的应用1、当开孔位置在距帮0.5米时,左右偏角取27度。
根据三角函数可知:sin27°=0.453,孔深10米,终孔点位于开孔位置外4.53米,4.53-0.5=4.03米,即在巷道轮廓线外4.03米处;cos27°=0.891,孔深10米时,终孔点位于开孔位置外8.91米,即孔深投影距为8.91米。
2、当开孔位置在距帮0.6米时,左右偏角取28度。
根据三角函数可知:sin28°=0.469,孔深10米,终孔点位于开孔位置外4.69米,4.69-0.6=4.09米,即在巷道轮廓线外4.09米处;cos28°=0.882,孔深10米时,终孔点位于开孔位置外8.82米,即孔深投影距为8.82米。
3、当开孔位置在距帮0.7~0.8米时,左右偏角均取29度。
根据三角函数可知:sin29°=0.484,孔深10米,终孔点位于开孔位置外4.84米,即在巷道轮廓线外4.14米和4.04米处;cos29°=0.874,孔深10米时,终孔点位于开孔位置外8.74米,即孔深投影距为8.74米。
4、当开孔位置在距帮0.9~1米时,左右偏角均取30度。
根据三角函数可知:sin30°=0.5,孔深10米,终孔点位于开孔位置外5米,即在巷道轮廓线外4.1米和4米处;cos30°=0.866,孔深10米时,终孔点位于开孔位置外8.66米,即孔深投影距为8.66米。
5、若三个预测孔深均为8米,当开孔位置在距帮0.5米时,左右偏角取35度。
根据三角函数可知:sin35°=0.573,8×0.573=4.58,终孔点位于开孔位置外4.58米,4.58-0.5=4.08米,即在巷道轮廓线外4.08米处;cos35°=0.819,8×0.819=6.552,终孔点位于开孔位置外6.552米,即孔深投影距为6.552米。
测量学中坐标方位角计算公式在测量学中,坐标方位角是用于描述目标物体或点在水平坐标系中的方向的数值。
坐标方位角是指从北方向顺时针旋转到目标点所需的角度。
在实际的测量工作中,计算坐标方位角是非常重要的,它可以帮助测量员准确地确定目标点在地图上的位置。
计算公式计算坐标方位角的主要公式是使用三角函数来实现的。
具体的计算公式如下:方位角 = arctan((Y2 - Y1) / (X2 - X1))在上述公式中,X1和Y1表示起点的水平坐标值,X2和Y2表示终点的水平坐标值。
arctan表示反正切函数,它可以将斜率转化为角度值。
通过使用这个计算公式,我们可以得到起点和终点之间的坐标方位角。
需要注意的是,上述公式仅适用于计算水平平面上的坐标方位角。
如果需要在垂直平面上计算坐标方位角,我们还需要考虑高程的影响。
在这种情况下,计算公式会稍有不同,需要引入高程差的概念。
示例为了更好地理解坐标方位角的计算过程,我们可以通过一个示例来说明。
假设我们有两个点A和B,它们的水平坐标分别为:点A:(X1, Y1) = (100, 200)点B:(X2, Y2) = (150, 280)现在我们来计算点A和点B之间的坐标方位角。
首先,我们将点A和点B的坐标值代入计算公式中:方位角 = arctan((280 - 200) / (150 - 100))接下来,我们计算分子和分母的差值:方位角 = arctan(80 / 50)然后,我们计算这两个差值的比值:方位角 = arctan(1.6)最后,使用反正切函数来计算坐标方位角的数值:方位角≈ 56.31°所以,根据计算结果,点A和点B之间的坐标方位角约为56.31°。
结论测量学中的坐标方位角是用于描述目标物体或点在水平坐标系中方向的数值。
通过使用三角函数计算公式,我们可以准确地确定起点和终点之间的坐标方位角。
在计算时需要注意坐标值的顺序和差值的计算方法。
通过实际的计算示例,我们可以更好地理解和应用坐标方位角的计算公式。
测量中坐标方位角怎么算在测量中,方位角是一种重要的测量参数,用于描述目标(或观测点)相对于测量起点的方向。
方位角通常用度数表示,从北方向为基准,按顺时针方向计算。
方位角计算方法计算方位角的方法通常分为两种:磁方位角和真方位角。
磁方位角是以磁北(即地球磁场的北极)为基准进行计算,真方位角则是以地理北极为基准进行计算。
磁方位角计算方法计算磁方位角需要考虑磁偏角,即磁北与真北之间的夹角。
磁偏角的数值在不同地区会有所不同,因此在计算磁方位角时需要先确定磁偏角的数值。
假设测量的起点为点A,目标点为点B,首先需要获取两点的经纬度信息。
然后使用三角函数计算两点之间的水平位移和垂直位移。
水平位移为点B的经度减去点A的经度,垂直位移为点B的纬度减去点A的纬度。
接下来,使用反正切函数计算方位角。
具体计算公式如下:方位角= atan((sin(Δ经度) * cos(纬度B)) / (cos(纬度A) * sin(纬度B) - sin(纬度A) * cos(纬度B) * cos(Δ经度)))其中,Δ经度为点B的经度减去点A的经度。
真方位角计算方法真方位角的计算方法与磁方位角类似,不同之处在于不需要考虑磁偏角。
同样假设测量的起点为点A,目标点为点B,获取两点的经纬度信息,计算水平位移和垂直位移。
真方位角的计算公式如下:方位角= atan((sin(Δ经度) * cos(纬度B)) / (cos(纬度A) * sin(纬度B) - sin(纬度A) * cos(纬度B) * cos(Δ经度)))这与计算磁方位角的公式相同,唯一不同的是不需要考虑磁偏角。
使用方位角进行测量测量中的方位角通常用于确定目标点的方向,可以通过方位角和距离信息计算目标点在平面坐标系中的坐标。
假设测量起点的坐标为(x1, y1),已知方位角α和距离d,则目标点的坐标可通过以下公式计算得出:x2 = x1 + d * cos(α)y2 = y1 + d * sin(α)其中,x2和y2为目标点的坐标。
根据两点坐标计算方位角方位角是指在平面直角坐标系中,以其中一固定点为起点,与水平轴正方向之间的夹角,一般用度数或弧度来表示。
计算两点之间的方位角可以使用三角函数的方法。
以两点A(x1,y1)和B(x2,y2)为例,我们可以将这两个点连接,并连接与x轴正方向之间的夹角,就是我们要计算的方位角。
步骤1:计算斜边的长度斜边的长度可以使用勾股定理来计算,公式为:AB = sqrt((x2 - x1)^2 + (y2 - y1)^2)步骤2:计算sin值sin值可以通过斜边与x轴正方向的夹角来计算,公式为:sinθ = (y2 - y1) / AB步骤3:计算cos值cos值可以通过斜边与y轴正方向的夹角来计算,公式为:cosθ = (x2 - x1) / AB使用反三角函数arcsin和arccos可以得到方位角的度数或弧度值:方位角= arcsin(sinθ) 或方位角= arccos(cosθ)需要注意的是,反三角函数的结果是一个范围在-π/2到π/2之间的角度,如果希望得到完整的方位角范围,还需考虑斜边所在的象限。
如果x2 > x1 且 y2 > y1,则得到的方位角为arcsin(sinθ);如果x2 < x1 且 y2 > y1,则得到的方位角为180° -arcsin(sinθ);如果x2 < x1 且 y2 < y1,则得到的方位角为180° +arccos(cosθ);如果x2 > x1 且 y2 < y1,则得到的方位角为360° -arccos(cosθ)。
以下是一个用Python编写的示例代码,用于计算两点坐标之间的方位角:import mathdef calculate_bearing_angle(x1, y1, x2, y2):AB = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)sin_theta = (y2 - y1) / ABcos_theta = (x2 - x1) / ABif x2 > x1 and y2 > y1:bearing = math.degrees(math.asin(sin_theta))elif x2 < x1 and y2 > y1:bearing = 180 - math.degrees(math.asin(sin_theta))elif x2 < x1 and y2 < y1:bearing = 180 + math.degrees(math.acos(cos_theta))elif x2 > x1 and y2 < y1:bearing = 360 - math.degrees(math.acos(cos_theta))return bearing#示例:x1=0y1=0x2=3y2=4bearing_angle = calculate_bearing_angle(x1, y1, x2, y2)print("方位角:", bearing_angle)方位角的计算方法可以应用于航海、航空、地理信息系统和导航等领域。
excel方位角计算公式方位角是指从北方向开始逆时针旋转到某个方向的角度。
在Excel中,可以通过一些数学函数和计算公式来计算方位角。
下面是一些相关参考内容,可以帮助你进行方位角计算。
1. 方位角的计算公式:方位角可以通过三角函数来计算,公式如下:方位角 = atan2(East, North)其中,East和North分别代表东方向和北方向的坐标轴上的值。
2. 利用Excel函数计算方位角:在Excel中,可以使用一些函数来计算方位角。
其中,atan2函数是可以直接计算方位角的函数。
在 Excel 中,可以使用以下公式计算方位角:方位角 = ATAN2(East, North)3. Excel中的ATAN2函数:ATAN2函数是Excel中的一个数学函数,用于计算给定点的方位角。
它接受两个参数:x和y。
ATAN2函数的返回值为[-π, π]的弧度值。
使用ATAN2函数计算方位角的示例:方位角 = ATAN2(East, North)其中,East和North分别是对应点的东方向和北方向的值。
4. Excel中的DEGREES函数:DEGREES函数用于将给定的弧度值转换为角度值。
在计算方位角时,通常会将通过ATAN2函数计算得到的弧度值转换为角度值。
使用DEGREES函数将弧度转换为角度的示例:角度值 = DEGREES(弧度值)5. Excel中的RADIAN函数:RADIAN函数用于将给定的角度值转换为弧度值。
在计算方位角时,通常需要将角度值转换为弧度值。
使用RADIAN函数将角度转换为弧度的示例:弧度值 = RADIAN(角度值)综上所述,可以通过在Excel中使用atan2函数、DEGREES 函数和RADIAN函数来计算方位角。
使用这些函数,可以方便地进行方位角的计算和转换。
方位角计算公式范文方位角是指物体或目标相对于参考点的方向,通常以度数或弧度来表示。
计算方位角可以使用三角函数来完成。
在平面直角坐标系中,参考点位置被设置为原点(0,0),目标点的位置被表示为(x,y)。
方位角定义为从参考点到目标点的射线与x轴正方向之间的夹角。
为了计算方位角,可以使用以下公式:```方位角 = arctan(y / x)```其中,arctan是反正切函数。
然而,上述公式存在一个问题,就是无法区分出目标点在第一象限或第三象限与目标点在第二象限或第四象限的情况。
为了解决这个问题,可以使用以下公式:```方位角= arctan(y / x) + 180°,如果x < 0 且 y > 0方位角= arctan(y / x) + 360°,如果x < 0 且 y < 0```如果使用弧度来表示方位角,上述公式可以稍作修改。
以上是计算平面上的方位角的基本公式,可以通过编程语言或数学软件来实现。
以下是一个示例代码,使用Python语言来计算方位角。
```pythonimport mathdef calculate_azimuth(x, y):if x == 0 and y == 0:return 0azimuth = math.degrees(math.atan(y / x))if x < 0 and y > 0:azimuth += 180elif x < 0 and y < 0:azimuth += 360return azimuthx = float(input("请输入目标点的x坐标:"))y = float(input("请输入目标点的y坐标:"))azimuth = calculate_azimuth(x, y)print("目标点的方位角为:", azimuth, "度")```以上代码通过输入目标点的坐标,计算出该目标点的方位角,并将结果以度数形式输出。
计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα;式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角;2、方位角计算:1、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数±号判断象限;2、方位角:arctany2-y1/x2-x1;加减180大于180就减去180还大于360就在减去360、小于180就加180如果x轴坐标增量为负数,则结果加180°;如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°;S=√y2-y1+x2-x1,1)、当y2-y1>0,x2-x1>0时;α=arctany2-y1/x2-x1;2)、当y2-y1<0,x2-x1>0时;α=360°+arctany2-y1/x2-x1;3)、当x2-x1<0时;α=180°+arctany2-y1/x2-x1;再用两点之间的距离公式可算距离根号下两个坐标距离差的平方相加;拨角:arctany2-y1/x2-x11、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法前视边方位角减后视边方位在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”+360°就可化为右偏,正值为右偏“顺时针”;2、在图上标识方位的方法:就是导线边与Y轴的夹角;3、高程计算:目标高程=测点高程+h+仪器高—占标高;4、直角坐标与极坐标的换算:直角坐标用坐标增量表示;极坐标用方位角和边长表示1、坐标正算极坐标化为直角坐标已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知AXa,Ya、Sab、αab,求BXa,Ya解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离称反算边长和方位角称反算方位角的方法已知AXa,Ya、BXb,Yb,求αab、Sab;解:tanαab=Ya b/Xab所以;Αab=tanˉYab/Xab;则有:Sab=Yab/SINαab=Xab/COSαab=√X2ab+Y2ab;5、缘和曲线的方位角和坐标计算公式:S12=sqr<X2 -X12×Y2-Y12> =sqr X221× Y221;A12=arcsinY2-Y1/S12;S12为测站点1至放样点2的距离,A12为测站点1至放样点2的坐标方位角;X1,Y1为测站坐标,X2,Y2为放样点坐标;新公式:A12=arccosX21/S12×sgnY21360°只需将测量的成果用直线或其他线形连接起来;坐标输入时需注意交换输入,也就是将实测的X坐标在CAD中当Y坐标输入,而Y坐标则当X坐标输入;标高则用文字在标注在各相应的坐标点傍;一、建立新图时坐标偏移法1、先按比例大小绘制坐标网格,2、然后将测量整理得来的坐标拐点在CAD中输入绘制矿区范围,3、根据相应的测点坐标绘制实测图,4、填写图例;二、坐标增量上图相对坐标法①:如果比例尺为1:2000,平距除以2之后乘以方位角得坐标增量;②:点击直线或多线段按回车键点击后点,再输入ΔY,ΔX;倾斜巷道贯通计算:可根据倾斜角度进行换算,再结合地测交庄书中给的贯距或标高差来算,而且还要结合巷道的断面高差来综合计算;坡度的表示方法有百分比法、度数法、密位法和分数法四种;其中百分比法和度数法较为常用;1、百分比法表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=高程差/水平距离﹡100%,是指水平距离每100米垂直方向上下降…米;2、度数法用度数来表示坡度,利用反三角函数计算而得,其公式如下:TAN坡度=高程差 /水平距离,所以坡度=TAN-;一、平巷开门点仪器安设过程:用全站仪确定巷道开门点,C为开门点位置;1、在B点安置仪器,2、后视A点,用卷尺量出开门点的距离位置,定为C点然后在C点顶板钉点挂占标,再前视C点;3、把仪器移动安设在C点,后视B点,再用仪器把设计的方位、角度拨出来,用手拿着垂线或粉笔在开门点帮上,用仪器观测,左右移动垂线或粉笔,确定好准确点后用钉子钉上再用喷漆在帮上喷出;也就是中线点;为防止以后施工的破坏,多确定几个中线点,也是为了以后方便跟踪测量;一、标定腰线方法:1、用半圆仪标定倾斜巷道腰线,1点为新开斜巷的起点,称为起破点;1点高程H1由设计给出,Ha为已知点A高程,从图可知Ha-H1=ha在A点悬挂垂球,自A点向下量取ha,得到a点过a点拉一条水平线I'I,使1点位于新开巷道的一帮上,挂上半圆仪,此时半圆仪上读数应为0;将1点固定在巷道帮上,在1点系上测绳,沿巷道同侧拉向掘进方向,在帮上选定一点2,拉直测绳,悬挂半圆仪,上下移动测绳,使半圆仪的读数等于巷道设计倾角,此时固定2点,连接1、2点,划出腰线;2、用经纬仪标定腰线在主要倾斜巷道中,通常采用经纬仪标定腰线,其方法较多,这里只介绍三种; 1)、利用中线点标定腰线,图a为巷道横断图,图b为巷道纵断面图;标定方法如下:a:在中线点1安置仪器,量取仪器高i;b:使竖盘读数为巷道的设计倾角,此时的望远镜视线方向与腰线平行;然后瞄准掘进方向已标定的中线点2、3、4的垂线,分别作临时记号,得到 2'、3'、4',倒镜再测一次倾角a作为检查;c:由下式计算k值:k=H1-H'1+h-i;式中H1―1点处的高程;H'1 ―1点处轨面设计高程;i―仪器高;h ―轨面到腰线点的铅垂距离;d:由中线点的记号2'、3'、4' 分别向下量k值,得到 2"、3"、4"即为所求的腰线点;e:用半圆仪分别从腰线点拉一条垂直中线的水平线到两帮上;f:用测绳连接帮壁上的2"、3"、4"点并用喷漆沿测绳划出腰线;3、平巷与斜巷连接处腰线的标定:平巷与斜巷连接处是巷道坡度变化的地方,腰线到这里要改变坡度,巷道底板在竖起面上的转折点称为巷道变坡点,设平巷腰线到轨面或底板的距离为a,斜巷腰线到轨面或底板的法线距离也保持为a,那么,在变坡点处,平巷腰线必须抬高Δh,才能得到斜巷腰线起坡点,或者自变坡点处向前或向后量取距离ΔL,得到斜巷腰线起坡点,由此标定出斜巷腰线; Δh和ΔL值按下式计算Δh=a/COSδ-a=asecδ-1ΔL= Δδ;标定时,测量人员首先应在平巷的中线点上标定出A点的位置,然后在A点垂直于巷道中线的两帮上标出平巷腰线点,再从平巷腰线向上量取Δh 也可向前或向后量取ΔL,得到斜巷腰线起坡点位置;斜巷掘进时的最初10米,可以用半圆仪在帮手按δ角划出腰线;倾斜巷道的贯通:上下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘;这种贯通的特殊性在于上部开切点P的位置是未知的;为此,首先应确定P点的位置;确定P点的位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置;这种方法解联立方程的工作相当复杂,一般不予采用;第二种方法是根据三角学的基本知识,解算ΔAPB;由于在ΔAPB中,A、B的坐标已知,从而可求出它们间的水平距离Lba,和方位角eab,而且eba=edb,eap=eac也是已知的;这样我们就可以根据正弦定理求得Lap,确定出P点的位置;Lap=LbaSINδb/SINδp=<Ya-YbCOSeb-Xa-XbSINedb>/SINebd-eca;P点确定后,即可测定出其高程Hp,然后即可按与第一个例子类似的方法,标定贯通巷道的中线和腰线;水平巷道间的贯通:1、准备工作布设仪器和水准路线,计算出A、B点的平面直角坐标XA,YA、XB,YB以及它们的高程Ha、Hb;2、计算贯通测量的几何要素1计算贯通巷道中心线的方位角aAB:tanaAB=YB-YA/XB-XA;(2)计算A、B处的指向角β1、β2:β1=αAB- αAC β2=αBA- αBD(3)计算A、B间的水平距离LAB:LAB=√XB-XA2+YB-YA2;(4)计算贯通巷道的倾角δ:tanδ=HB-HA/LAB;(5)计算A、B间的斜长LAB:LAB=√LAB2+HB2-HA2或LAB=LAB/COSδ。
角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。
式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。
2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。
2)、方位角:arctan(y2-y1)/(x2-x1)。
加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。
如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。
S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。
2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。
3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。
再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。
拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。
2、在图上标识方位的方法:就是导线边与Y轴的夹角。
3、高程计算:目标高程=测点高程+h+仪器高—占标高。
4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。
锐角三角函数的简单应用(方位角)(2)【知识要点】1.认清俯角与仰角3. 解决此类问题的关键是将一般三角形问题,通过添加辅助线转化直角三角形问题。
【典型例题】如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高。
若已知楼CD 高为30米,其他条件不变,你能求出两楼之间的距离BD 吗?2.如图,飞机在距地面9km 高空上飞行,先在A 处测得正前方某小岛C 的俯角为30°,飞行一段距离后,在B 处测得该小岛的俯角为60°.求飞机的飞行距离。
30° 45° 45° 北东西 O 南 2.方位角: 如图,从O 点出发的视线与铅垂线 所成的锐角,叫做观测的方位角3.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从A测得船C在北偏东60°的方向,从B测得船C在北偏西45°的方向.求船C离海岸线的距离.4.气象局发出预报:如图, 沙尘暴在A市的正东方向400km的B处以40km/h的速度向北偏西600的方向转移,距沙尘暴中心300km的范围内将受到影响,A市是否受到这次沙尘暴的影响?如果受到影响,将持续多长时间?5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A点处测得P在它的北偏东60度的方向, 继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东45度方向. 问客轮不改变方向继续前进有无触礁的危险?课后练习:【基础演练】1.如图,一座塔的高度TC=120m ,甲、乙两人分别站在塔的西、东两侧的点A 、B 处,测得塔顶的仰角分别为28º、15º。
求A 、B 两点间的距离_________(精确到0.1米) (参考数据:tan 280.53,tan150.27︒≈︒≈)2.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为60°和45°,则广告牌的高度BC 为_____________米(结果保留根号).3.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处向东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC= 米(结果保留根号).题1图 题2图 题3图 4.如图,在某广场上空飘着一只汽球P ,A 、B 是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45o ,仰角∠PBA=30o ,求汽球P 的高度。