2013版 3.4.1实际问题与一元一次方程(人教版七年级上)
- 格式:doc
- 大小:63.00 KB
- 文档页数:5
3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题教学设计一、内容和内容解析本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.4.1 实际问题与一元一次方程(一) 配套问题和工程问题,内容包括:列一元一次方程解决配套问题和工程问题.这一节是人教版新课标实验教材中学数学七年级上册第三章第四节第一课时的内容,是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.所有列方程解应用题的基本方法都与列一元一次方程解应用题的基本方法类似,所以这一节又是整个列方程解应用题的重点.列方程解应用题体现了现实世界中事物的相互联系,学生从这些联系中看问题的同时也为今后学习函数奠定了基础.在能力方面,无论是逻辑思维能力、计算能力.还是分析问题、解决问题的能力,都可在本单元教学中得以培养和提高.基于以上分析,确定本节课的教学重点为:掌握用一元一次方程解决实际问题的基本过程.二、目标和目标解析(1)理解配套问题和工程问题的背景.(2)掌握用一元一次方程解决实际问题的基本过程.(3)分清有关数量关系,能正确找出作为列方程依据的主要等量关系.掌握配套问题和工程问题中有关量的基本关系式,并会寻求等量关系列方程求解提高利用一元一次方程解决实际问题的能力.让学生亲身经历和体验运用方程解决实际问题的过程,培养学生用数学的眼光去看待、分析现实生活中的情境:并能作出相应的选择.经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想.培养学生的抽象、概括、分析和解决问题的能力.通过学习,进一步认识到方程与现实世界的密切联系感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情体会在解决问题的过程中同学之间交流合作的重要性让学生在探究中感受学习的快乐.三、教学问题诊断分析本节课教学的对象是七年级学生,他们思想活跃,兴趣广泛,善于思考.在进行教学设计时力争从教学内容、教学形式、教学评价中体现出趣味性和切近生活的原则.通过教学活动,让学生自主探究,引导他们由浅入深、步步推进,从广度、高度和深度上开拓学生的思维,也有助于学生形成完整的知识体系.基于以上学情分析,确定本节课的教学难点为:将实际问题抽象为方程的过程中,如何找等量关系.四、教学过程设计(一)自学导航1.一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?解:设最短边为3x,则最长边为____,根据题意,列得方程____________.2.铅笔每支1元,钢笔每支8元. 小明买回铅笔钢笔共8支,用了22元. 问小明买了铅笔钢笔各多少支?解:设小明买了x支铅笔,则买了_______支钢笔,根据题意,列得方程______________.3.甲队有32人,乙队有40人,现在从乙队抽调x 人到甲队,使得甲队的人数是乙队人数的2倍,根据题意,列得方程_________________.(二)情境引入生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家能举出生活中配套问题的例子吗?(三)考点解析例1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母. 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?提示:这类问题中配套的物品之间具有一定的数量关系,这可以作为列方程的依据.分析:每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套.螺母总量=螺钉总量×2列表分析:解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母.根据螺母数量应是螺钉数量的2倍,列出方程2000(22-x)=2×1200x .解方程,得x=10.所以22-x=12.答:应安排10名工人生产螺钉,12名工人生产螺母.思考:如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺钉.根据螺母数量应是螺钉数量的2倍,列出方程2×1200(22-x)=2000x解方程,得x=12所以22-x=10答:应安排10名工人生产螺钉,12名工人生产螺母.思考:本题还有其他做法吗?分析:从螺钉的角度来看,螺钉数等于套数;从螺母的角度来看,螺母数等于套数的2倍.可以根据生产的套数是一样的建立方程解决.列表分析:解:设应安排x 名工人生产螺钉,(22-x)名工人生产螺母.依题意,得2000(22-)1200.2x x 解方程,得 x =10.所以 2-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.【方法归纳】解决配套问题的思路:物品之间具有的数量关系作为列方程的依据;套数不变作为列方程的依据.例2.某服装厂要生产一批校服,已知每3m 的布料可以做2件上衣或3条裤子,要求一件上衣和两条裤子配一套,现有1008m 的布料,应怎样计划用料才能做尽可能多的成套校服?校服有多少套?解:设用x m 布料做上衣,则用(1008-x)m 布料做裤子.由题意,得23x×2=1008-x , 解得x=432.所以1008-x=576,23x=288.答:用432m 布料做上衣,576m 布料做裤子,刚好能做288套校服.【迁移应用】1.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?解:设需要安排x 人生产防护服,则安排(54-x)人生产防护面罩.由题意,得8x=10(54-x),解得x=30.答:需要安排30人生产防护服.2.一张方桌由1个桌面、4条桌腿组成,如果1m3木料可以做50个桌面或300条桌腿,现有5m3木料,要使做出的桌面和桌腿恰好配成方桌,应用多少木料来做桌面?能配成多少张方桌?解:设应用xm3木料做桌面,则用(5-x)m3木料做桌腿.根据题意得50x×4=300(5-x),解得x=3.则能配成方桌50×3=150(张).答:应用3m3木料做桌面,能配成150张方桌.(四)自学导航做某件工作,甲单独做要8时才能完成,乙单独做要12时才能完成,问:①甲做1时完成全部工作量的几分之几?_______.①乙做1时完成全部工作量的几分之几?_______.①甲、乙合做1时完成全部工作量的几分之几?_______.①甲做x时完成全部工作量的几分之几?_______.①甲、乙合做x时完成全部工作量的几分之几?_______.①甲先做2时完成全部工作量的几分之几?_______;乙后做3时完成全部工作量的几分之几?_______;甲、乙再合做x时完成全部工作量的几分之几?_______;三次共完成全部工作量的几分之几?______________;结果完成了工作,则可列出方程:________________.(五)考点解析例3.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:这里可以把总工作量看作1;工作量=人均效率×人数×时间.人均效率(一人做1h完成工作量)为( )x人1h完成的工作量( )x人4h完成的工作量( )增加2人后再做8h,完成工作量为()这两个工作量之和为( ).解:设安排x人先做4h. 根据先后两个时段的工作量之和应等于总工作量,列出方程48(2)14040x x ++= 解方程,得 4x+8(x+2)=404x+8x+16=4012x=24x=2答:应安排2人先做4h.【总结提升】解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间.它们之间的关系是:工作量=工作效率×工作时间.2. 相等关系:工作总量=各部分工作量之和.(1) 按工作时间,工作总量=各时间段的工作量之和;(2) 按工作者,工作总量=各工作者的工作量之和.3. 通常在没有具体数值的情况下,把工作总量看作“1”.例4.某村经济合作社决定把22t 竹笋加工后再上市销售,刚开始每天加工3t ,后来在乡村振兴工作队的指导下改进加工方法,每天加工5t ,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?分析:相等关系:改进方法前的工作量+改进方法后的工作量=22t.解:设改进加工方法前用了x 天,则改进加工方法后用了(6-x)天.根据题意,得3x+5(6-x)=22,解得x=4.所以6-x=2答:改进加工方法前用了4天,改进加工方法后用了2天.【迁移应用】1.将一段长为1.2km 的河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24m ,乙队每天整治16m ,则甲队整治河道_______m ,乙队整治河道_______m.2.有一段长为146m 的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26m.已知甲工程队每天比乙工程队多掘进2m ,按此速度施工,甲、乙两个工程队还需联合工作______天.例5.?解:设甲做了xh ,则乙做了(x+2)h.x 根据题意,得140+x+330=1,解得x=16.答:甲做了16h.【迁移应用】1.一项工程,甲单独做10天可以完成,乙单独做15天可以完成,现甲队先做2天,余下的工程由两队共同做x 天刚好可以完成,则由题意可列出的方程是___________________.2.加工一批零件,由一个人做要100h 完成,现计划由若干人先做2h ,再增加5人与他们一起做9h ,可完成这项工作的3950.假设这些人50的工作效率相同,先做2h 的有多少人? 解:设先做2h 的有x 人.根据题意,得x 100×2+(x+5)100×9=3950. 解得x=3.答:先做2h 的有3人.例6.【分类讨论思想】某玩具公司要生产若干件高级玩具,现有甲、乙两个加工厂都想加工这批玩具,已知甲厂单独加工这批玩具比乙厂单独加工这批玩具多用20天,甲厂每天可加工16 件玩具,乙厂每天可加工24件玩具,玩具公司每天需付给甲厂800元加工费,每天需付给乙厂1200元加工费.(1)这个玩具公司要生产多少件高级玩具?(2)在加工过程中(无论单独加工,还是两厂合作),玩具公司需派一名技术员每天给加工厂提供指导,并为该技术员提供每天20元的额外补助,玩具公司制订玩具加工方案如下:可由一个厂单独加工完成,也可由两厂合作完成请你帮助玩具公司选择一种既省钱又省时的加工方案.解:(1)设这个玩具公司要生产x 件高级玩具.由题意,得x 16-x 24=20,解得x=960.答:这个玩具公司要生产960件高级玩具.(2)分三种情况讨论:①甲厂单独加工:耗时96016=60(天),费用为60×(20+800)=49200(元);①乙厂单独加工:耗时96024=40(天),费用为40×(1200+20)=48800(元);9①两厂共同加工:耗时96016+24=24(天),费用为24×(800+1200+20)=48480(元).所以由两厂合作完成时,既省钱又省时.【迁移应用】为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整周计算)解:(1)设甲、乙两工程队合作施工需要x 周完成.根据题意,得(13+16)x=1, 解得x=2.所以(8+3)×2=22(万元).答:甲、乙两工程队合作施工,需要2周完成,共需耗资22万元.(2)因为乙工程队每周耗资较少,为最大限度节省资金,则乙工程队应尽可能多做.设先由甲、乙两工程队合作施工y 周,剩下的工作量由乙工程队单独完成.根据题意,得(13+16)y+4−y 6=1,解得y=1.所以4-y=3.答:先由甲、乙两工程队合作施工1周,再由乙工程队单独施工了周,既保证按时完成任务,又最大限度节省资金.(六)小结梳理用一元一次方程解决实际问题的基本过程如下:列方程解决实际问题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).五、教学反思。
实质问题【学习目标】1.娴熟掌握剖析解决实质问题的一般方法及步骤;2.熟习行程,工程,配套及和差倍分问题的解题思路.【重点梳理】知识点一、用一元一次方程解决实质问题的一般步骤列方程解应用题的基本思路为:问题剖析方程求解解答.由此可得解决此类抽象查验题的一般步骤为:审、设、列、解、查验、答.重点解说:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,找寻等量关系;(2)“设”就是设未知数,一般求什么就设什么为x,但有时也能够间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要一致;(4)“解”就是解方程,求出未知数的值.(5)“查验”就是指查验方程的解能否切合实质意义,当有不切合的解时,实时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常有列方程解应用题的几种种类(待续)1.和、差、倍、分问题( 1)基本量及关系:增加量=原有量×增加率,现有量=原有量+增加量,现有量=原有量- 降低量.(2)找寻相等关系:抓住重点词列方程,常有的重点词有:多、少、和、差、不足、节余以及倍,增加率等.2.行程问题( 1)三个基本量间的关系:行程=速度×时间( 2)基本种类有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇行程=速度和×相遇时间Ⅱ.找寻相等关系:甲走的行程+乙走的行程=两地距离.②追及问题:Ⅰ.基本量及关系:追及行程=速度差×追实时间Ⅱ.找寻相等关系:第一,同地不一样时出发:前者走的行程=追者走的行程;第二,第二,同时不一样地出发:前者走的行程 +二者相距距离=追者走的行程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度 +水流速度,逆流速度 =静水速度-水流速度,顺流速度-逆水速度= 2×水速;Ⅱ.找寻相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的重点是抓住甲、乙两物体的时间关系或所走的行程关系,而且还经常借助画草图来剖析.3.工程问题假如题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量 =工作效率×工作时间;(2)总工作量 =各单位工作量之和.4.分配问题找寻相等关系的方法:抓住分配后甲处的数目与乙处的数目间的关系去考虑.【典型例题】种类一、和差倍分问题1.2011 年北京市生产营运用水和居民家庭用水的总和为 5. 8 亿立方米,此中居民家庭用水比生产营运用水的 3 倍还多 0. 6 亿立方米,问生产营运用水和居民家庭用水各多少亿立方米 ?【答案与分析】设生产营运用水x 亿立方米,则居民家庭用水( 5. 8- x) 亿立方米.5. 8- x= 3x+0 . 6依题意,得解得 x= 1. 35. 8- x= 5. 8- 1. 3= 4. 5(亿立方米)答:生产营运用水 1. 3 亿立方米,居民家庭用水 4. 5 亿立方米.【总结升华】此题要求两个未知数,不如设此中一个未知数为x,此外一个用含x 的式子表示.此题的相等关系是生产营运用水量+居民家庭用水总量= 5. 8 亿立方米.贯通融会:【变式】 ( 麻城期末考试) 麻商公司三个季度共销售冰箱2800 台,第一个季度销售量是第二个季度的 2 倍.第三个季度销售量是第一个季度的 2 倍,试问麻商公司第二个季度销售冰箱多少台 ?【答案】解:设第二个季度麻商公司销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台,依题意可得:x+2x+4x = 2800,解得: x= 400400 台.答:麻商公司第二个季度销售冰箱种类二、行程问题1.一般问题2.小山娃要到城里参加运动会,假如每小时走 4 千米,那么走完预定时间隔县城还有0.5 千米,假如他每小时走 5 千米,那么比预定时间早半小时便可抵达县城.试问学校到县城的距离是多少千米 ?【答案与分析】解:设小山娃预定的时间为x 小时,由题意得:4x+0 . 5= 5( x- 0. 5) ,解得 x= 3.因此 4x+0 . 5= 4× 3+0. 5= 12. 5( 千米 ) .答:学校到县城的距离是12. 5 千米.【总结升华】当直接设未知数有困难时,可采纳间接设的方法.即所设的不是最后所求的,而是经过求其余的数目间接地求最后的未知量.贯通融会:【变式】某汽车在一段坡路上来回行驶,上坡的速度为10 千米 / 时,下坡的速度为20 千米/时,求汽车的均匀速度.【答案】解:设这段坡路长为 a 千米,汽车的均匀速度为x 千米 / 时,则上坡行驶的时间为a小时,10下坡行驶的时间为a20小时.依题意,得:a a10 20x 2a,化简得:3ax40a .明显a≠ 0,解得x 1313答:汽车的均匀速度为131 千米/时.32.相遇问题(相向问题)【高清讲堂:实质问题与一元一次方程( 一 ) 388410相遇问题】3. A 、B 两地相距100km,甲、乙两人骑自行车分别从A、B 两地出发相向而行,甲的速度是 23km/h,乙的速度是 21km/h,甲骑了 1h 后,乙从 B 地出发,问甲经过多少时间与乙相遇?【答案与分析】解: 设甲经过x 小时与乙相遇 .由题意得: 23 12321 ( x1)100解得, x=2.75答:甲经过 2.75 小时与乙相遇.【总结升华】等量关系:甲走的行程+乙走的行程 =100km贯通融会:【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行, 2 小时相遇,每小时甲比乙多走 2.5km,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶( x+2.5) 千米,依据题意,得:2( x 2.5)2x45解得: x10x 2.5 10 2.512.5(千米)答:甲每小时行驶12.5 千米,乙每小时行驶10 千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度前进,走了18分钟时,学校要将一紧迫通知传给队长,通信员从学校出发,骑自行车以14 千米 / 时的速度按原路追上去,通信员用多少分钟能够追上学生队伍?【答案与分析】解:设通信员x 小时能够追上学生队伍,则依据题意,得 14x518 5x ,601得: x, 1小时 =10 分钟.6 6答:通信员用 10 分钟能够追上学生队伍.【总结升华】 追及问题:行程差 =速度差×时间,别的注意:方程中x 表示小时, 18 表示分钟,两边单位不一致,应先一致单位.4. 航行问题(顺顶风问题)5.一艘船航行于 A 、 B 两个码头之间,轮船顺流航行需3 小时,逆水航行需5 小时,已知水流速度是 4 千米 / 时,求这两个码头之间的距离. 【答案与分析】解法 1:设船在静水中速度为x 千米 / 时,则船顺流航行的速度为( x+4) 千米 / 时,逆水航行的速度为 ( x- 4) 千米 / 时,由两码头的距离不变得方程: 3( x+4) = 5( x- 4) ,解得: x=16,( 16+4)× 3=60 (千米)答:两码头之间的距离为60 千米.解法 2:设 A 、B 两码头之间的距离为 x 千米,则船顺流航行时速度为 x千米 / 时,逆水航行时速度为 x千米 / 时,由船在静水中的速度不变得方程:xx 344 ,解得: x 60 560 千米.35答:两码头之间的距离为【总结升华】 顺流速度 =静水速度 +水流速度; 逆流速度 =静水速度 -水流速度, 依据两个码头的距离不变或船在静水中的速度不变列方程.种类三、工程问题6.一个水池有两个灌水管,两个水管同时灌水,10 小时能够注满水池;甲管独自开15 小时能够注满水池,现两管同时灌水 7 小时,关掉甲管,独自开乙管灌水,还需要几小时能注满水池 ?【思路点拨】 视水管的蓄水量为“ 1”,设乙管还需 x 小时能够注满水池;那么甲乙合注1 小时灌水池的1 ,甲管独自灌水每小时灌水池的 1 ,合注 7 小时灌水池的7,乙管每小101510时灌水池的11 .10 15【答案与分析】解:设乙管还需 x 小时才能注满水池.1 17由题意得方程:15x 110 10解此方程得: x = 9答:独自开乙管,还需 9 小时能够注满水池.【总结升华】 工作效率×工作时间 =工作量,假如没有详细的工作量,一般视总的工作量为“1” .贯通融会:【变式】修筑某处住所区的自来水管道, 甲独自达成需 14 天,乙独自达成需 18 天,丙独自达成需 12 天,前 7 天由甲、乙两人合作,但乙半途走开了一段时间,后两天由乙、丙合作达成问乙半途走开了几日 ?【答案】解:设乙半途走开x 天,由题意得171(7 x 2) 1 2 114 1812解得: x 3答:乙半途走开了3 天种类四、分配问题( 比率问题、劳动力分配问题)7.星光服饰厂接受生产某种型号的学生服的任务,已知每3m 长的某种布料可做上衣2 件或裤子3 条,一件上衣和一条裤子为一套,计划用 750m 长的这类布料生产学生服,应分别用多少布料生产上衣和裤子才能恰巧配套?共能生产多少套 ?【思路点拨】 每 3 米布料可做上衣 2 件或裤子 3 条,意思是每1 米布料可做上衣2件,或3做裤子 1 条,别的恰巧配套说明裤子的数目应当等于上衣的数目.【答案与分析】 解:设做上衣需要xm ,则做裤子为 ( 750- x) m ,做上衣的件数为x2 件,做裤子的件数为750 x2x3(750 x)33 ,则有:3 33解得: x = 450,750- x =750- 450= 300( m) ,450 2300 (套) 3答:用 450m 做上衣, 300m 做裤子恰巧配套,共能生产 300 套.【总结升华】 用参数表示上衣总件数与裤子的总件数, 等量关系: 上衣总件数=裤子的总件数.贯通融会:【高清讲堂:实质问题与一元一次方程 ( 一 ) 388410 分配问题 】【变式】甲队有 72 人,乙队有 68 人,需要从甲队调出多少人到乙队,才能使甲队恰巧是乙队人数的 3.4解:设从甲队调出x 人到乙队 . 由题意得,72 x368 x4解得, x=12.答:需要从甲队调出12 人到乙队,才能使甲队恰巧是乙队人数的3.4。
实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯3.4实际问题与一元一次方程一、学习目标:会用一元一次方程解决两类问题:1、配套问题;2、工程问题。
二、预习检查:1、1只小鸡2只脚,1只小兔4只脚,那么x小鸡只脚,y只小兔只脚。
2、工程问题中的等量关系:工作总量= 。
3、一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为、;甲、乙合作m天可以完成的工作量为。
三、新课教学:例 1 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?解:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,根据题意,得:2×1200x=2000(22-x)解得x=10,22-x=12.答:所以为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母.例2:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:我们把总工作量看作 1 , 完成下列填空(1)1个人做1小时完成的工作量为(2)由x 人先做4小时,完成的工作量为(3)再增加2人和前一部分人一起做8小时,完成的工作量为(4)题中的相等关系是解:设应先安排x 人工作4小时,依题意得48(2)14040x x ++=去分母,得 4x+8(x+2)=40去括号,得 4x+8x+16=40移项,得 4x+8x=40-16合并,得 12x=24系数化为1,得 x=2答:应先安排2名工人工作4小时.四、小组合作:小组合作1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?小组合作2:抗洪抢险中修补一段大堤,甲队单独施工12天完成,乙队单独施工8天完成;现在由甲队先工作两天,剩下的由两队合作完成,还需几天才能完成?五、当堂检测:检测1:用铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底刚好配套?检测2:一件工作,甲单独做需50天才能完成,乙独做需要45天完成。
温馨提示:
此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
知能提升作业(三十)
(30分钟 50分)
一、选择题(每小题4分,共12分)
1.若9人14天完成一件工程的35,而剩下的工作要在4天内完成,需增加( )
(A)10人 (B)11人 (C)12人 (D)13人
2.某班组每天需生产50个零件,才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前三天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程( ) (A)
x 120x 350506
+-=+ (B)x x 350506
-=+ (C)x x 120350506
+-=+ (D)x 120x 350650+-=+ 3.(2011·绵阳中考)灾后重建,从悲壮走向豪迈,灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.请问这次采购派男女村民各多少人?
( )
(A)男村民3人,女村民12人
(B)男村民5人,女村民10人
(C)男村民6人,女村民9人
(D)男村民7人,女村民8人
二、填空题(每小题4分,共12分)
4.某校为加强素质教育,鼓励学生在课外活动时间参加音、体、美培训,以发展自己的特长.七年级有240名同学参加,其中参加体育活动的人数是参加美术活动人数的3倍,参加音乐活动的人数是参加美术活动人数的2倍,那么参加美术活动的同学共有名.
5.一件工作,甲独做需4天完成,乙独做需6天完成,甲、乙合做完成工作后共得报酬450元,按各人完成的工作量计算报酬,则甲应得元,乙应得元.
6.一个六位数,其最左边一位数字是1,将该数乘以3后,1从最左边移到最右边,其他数位不变,则该数为 .
三、解答题(共26分)
7.(8分)某工人按原计划每天生产20个零件,到预定期限还有100个零件不能完成,若提高工效25%,到期将超额完成50个,则此工人原计划生产零件多少个?预定期限是多少天?
8.(8分)(2011·长沙中考)某工程队承包了某段全长1 755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?
【拓展延伸】
9.(10分)某地生产的一种绿色蔬菜在市场上若直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.当地一家农产品公司收获这种蔬菜140吨.该公司加工厂的生产能力是:对蔬菜如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕.为此,公司研究了三种可行方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地对蔬菜进行精加工,来不及进行加工的蔬菜在市场上直接销售;
方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成. 你认为哪种方案获利最多?为什么?
答案解析
1.【解析】选C.设需增加x 人,根据题意,得
4(9+x)=9×14×5235
⨯,
解得x=12.
2.【解析】选C.计划的天数为
x 50,实际用的天数为x 120506++,实际比计划少用3天,故选C.
3.【解析】选B.设派男村民x 人,则女村民(15-x)人.根据题意,得2x+ 12(15-x)=15.解得x=5,所以15-x=10.所以男村民5人,女村民10人.
4.【解析】设参加美术活动的同学有x 名,
则x+3x+2x=240,解得x=40.
答案:40
5.【解析】设甲、乙合做共需x 天完成,则
11()46+x=1,所以x=125
. 所以甲得报酬:11245
⨯×450=270(元). 乙得报酬:450-270=180(元).
答案:270 180
6.【解析】设该数1后面的五位数为x ,则3(100 000+x)=10x+1,解得x=42 857,故原六位数为142 85
7.
答案:142 857
7.【解析】设此工人原计划生产零件x 个,根据题意,得
()
x 100x 502020125%-+=+. 解得x=700,所以预定期限是70010020-=30(天). 答:此工人原计划生产零件700个,预定期限是30天.
8.【解析】(1)设乙组平均每天掘进x米,则甲组平均每天掘进(x+0.6)米.根据题意,得5x+5(x+0.6)=45,解得x=4.2,则x+0.6=4.8.
答:甲组平均每天掘进4.8米,乙组平均每天掘进4.2米.
(2)改进施工技术后,甲组平均每天掘进4.8+0.2=5(米);乙组平均每天掘进4.2+0.3=4.5(米).改进施工技术后,剩余的工程所用时间为(1 755-45)÷
(5+4.5)=180(天).
按原来速度,剩余的工程所用时间为(1 755-45)÷(4.8+4.2)=190(天).
少用天数为190-180=10(天).
答:能够比原来少用10天完成任务.
9.【解析】选择方案三获利最多.
方案一:因为每天粗加工16吨,140吨可以在15天内加工完.
总利润W1=4 500×140=630 000(元).
方案二:因为每天精加工6吨,15天可以加工90吨,其余50吨直接销售.
总利润W2=90×7 500+50×1 000=725 000(元).
方案三:设精加工x天,则由6x+16(15-x)=140,得x=10.
总利润W3=7 500×(6×10)+4 500×(140-6×10)=810 000(元).
故选择方案三获利最多.。