2015年浙江名校高考模拟试卷 数学卷(九)(理科)(含答案答卷)
- 格式:doc
- 大小:1.09 MB
- 文档页数:11
2015年普通高等学校全国统一招生考试模拟卷理科数学(浙江)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.考试结束后,将本试卷和答题纸一并交回.第Ⅰ卷(选择题 共50分)注意事项:1.答题前,考生在答题纸上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,a 2-2a +3},A ={1,a},∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2 2.复数z 满足z =2-i 1-i,则z 等于( )A .1+3iB .3-i C.32+12i D.12+32i3.如图,在平行四边形ABCD 中,AC →=(1,2),BD →=(-3,2),则AD →·AC →等于( )A .1B .3C .5D .6 4.已知函数y =f(x)sinx 的一部分图象如图所示,则函数f(x)的表达式可以是( )A .2sinxB .2cosxC .-2sinxD .-2cosx 5.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.326.等比数列{a n }的前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .-18 B.18 C.578 D.5587.已知 a 、b 、l 表示三条不同的直线,α、β、γ表示三个不同平面,有下列四个命题: ①若α∩β=a ,β∩γ=b 且a ∥b ,则α∥γ;②若a 、b 相交且都在α、β外,a ∥α,a ∥β,b ∥α,b ∥β,则α∥β;③若α⊥β,α∩β=a ,b ⊂β,a ⊥b ,则b ⊥α;④若a ⊂α,b ⊂β,l ⊥a ,l ⊥b ,则l ⊥α. 其中正确的是( ) A .①② B .②③ C .①④ D .③④8.已知函数f(x)=⎩⎪⎨⎪⎧x 2,x ≤02x -1,x>0,若f(x)≥1,则x 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .(-∞,0]∪[1,+∞)D .(-∞,-1]∪[1,+∞)9.已知命题p :函数y =log 0.5(x 2+2x +a)的定义域为R ,命题q :函数y =-(5-2a)x 是减 函数.若p 或q 为真命题,p 且 q 为假命题,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2)C .(1,2]D .(-∞,1]∪[2,+∞)10.定义max{a ,b}=⎩⎪⎨⎪⎧a (a ≥b )b (a<b ),已知实数x ,y 满足|x|≤2,|y|≤2,设z =max{4x +y,3x -y},则z 的取值范围是( )A .[-7,10]B .[-6,10]C .[-6,8]D .[-7,8]第Ⅱ卷(非选择题 共100分)注意事项:1.答题前,考生先在答题纸上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共6页,请用直径0.5毫米黑色签字笔在答题纸上各题的答题区域内作答,在试题卷上作答无效.二、填空题(本大题共7小题,每小题4分,共28分) 11.如图,一个简单组合体的正(主)视图和侧(左)视图相同, 是由一个正方形与一个正三角形构成,俯视图中,圆的 半径为 3.则该组合体的表面积等于________.12.一个社会调查机构就某地居民的月收入调查了10 000 人,并根据所得数据画了样本的频率分布直方图(如右 图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出 100人 作进一步调查,则在(2 500,3 000)(元)月收入段应抽出的 人数为________.13.一排7个座位,甲、乙两人就座,要求甲与乙之间至少 有一个空位,则不同的坐法种数是________.14. 若在(x 2-13x)n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是_____.15.执行下面的程序框图,输出的结果是________.16.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px(p>0)的准线相切,则p =________. 17.定义矩阵变换:⎝⎛⎭⎪⎫a b cd ⎝ ⎛⎭⎪⎫m n =⎝ ⎛⎭⎪⎫am +bn cm +dn .对于矩阵变换 ⎝ ⎛⎭⎪⎫1 120⎝ ⎛⎭⎪⎫sinαcosα=⎝ ⎛⎭⎪⎫u ′v ′,函数y =12(u ′+v ′)的最大值为________. 三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分14分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a =(4,2cos2A),b =(1+cosA,1),a·b =1.若a =19,b +c =5. (1)求角A 的大小; (2)求b 、c 的长.19. (本小题满分14分) 已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .20.(本小题满分14分)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ∥CD ,AD =CD =2AB ,E 、F 分别为PC 、CD 的中点. (1)试证:AB ⊥平面BEF(2)设PA =k·AB ,且二面角E -BD -C 的平面角大于45°,求k 的取值范围.21.(本小题满分15分)已知椭圆C 的焦点在x 轴上,它的一个顶点恰好是抛物线y =14x 2的焦点,它的离心率为255.(1)求椭圆C 的方程;(2)设A 、B 为椭圆上的两个动点,OA →·OB →=0,过原点O 作直线AB 的垂线OD ,垂足 为D ,求点D 的轨迹方程.22.(本小题满分15分)已知f(x)=lnx -x 2+bx +3.(1)若函数f(x)在点(2,f(2))处的切线与直线2x +y +2=0垂直,求函数f(x)在区间[1,3] 上的最小值;(2)若f(x)在区间[1,m]上单调,求b 的取值范围.数学模拟卷(1)1.D 解析:由题意知⎩⎪⎨⎪⎧a =2a 2-2a +3=3,则a =2.故选D 项.2.C 解析:由题意得z =2-i 1-i =(2-i )(1+i )(1-i )(1+i )=3+i 2=32+12i.3.B 解析:令AB →=a ,AD →=b ,则⎩⎪⎨⎪⎧a +b =(1,2)-a +b =(-3,2)⇒a =(2,0),b =(-1,2),所以AD →·AC→=b ·(1,2)=3.4.D 解析:由题意易知f (x )sin x =-sin2x ,∴f (x )=-2cos x .5.C 解析:由题知,双曲线的渐近线方程为y =±a b x ,由a b ·(-ab)=-1,得a 2=b 2,∴c =2a ,e = 2.6.B 解析:∵S 3=8,S 6=7,又∵(S 6-S 3)2=S 3(S 9-S 6), ∴(7-8)2=8(S 9-S 6),∴S 9-S 6=18,∴a 7+a 8+a 9=S 9-S 6=18.7.B 解析:①在正方体A1B 1C 1D 1-ABCD 中,平面A 1B 1CD ∩平面DCC 1D 1=CD .平面A 1B 1C 1D 1∩平面DCC 1D 1=C 1D 1,且CD ∥C 1D 1,但平面A 1B 1CD 与平面A 1B 1C 1D 1不平行,错误.②因为a ,b 相交,可设其确定的平面为γ,根据a ∥α,b ∥α,可得γ∥α.同理可得γ∥β,因此α∥β,正确.③根据平面与平面垂直的判定定理:两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,正确.④当直线a ∥b 时,l 垂直于平面α内两条不相交直线,得不出l ⊥α,错误.8.D 解析:当x ≤0时,由x 2≥1,得x ≤-1;当x >0时,由2x -1≥1,得x ≥1.综上可知,x ∈(-∞,-1]∪[1,+∞).9.D 解析:命题p 为真命题时,x 2+2x +a >0恒成立,故函数g (x )=x 2+2x +a 的判别式Δ=4-4a <0,从而a >1;命题q 为真命题时,5-2a >1,即a <2.若p 或q 为真命题,p 且q 为假命题,则p 和q 中一个是真命题,一个是假命题.若p 为真命题,q 为假命题时,a ≥2;若p 为假命题,q 为真命题时,a ≤1,故选D 项.10.A 解析:由题设,z =max{4x +y,3x -y }=⎩⎨⎧4x +y (y ≥-12x )3x -y (y <-12x ),且|x |≤2,|y |≤2.作可行域,由图知,目标函数z =4x +y 在点(2,2)处取最大值10,在点(-2,1)处取最小值-7.目标函数z =3x -y 在点(2,-2)处取最大值8,在点(-2,1)处取最小值-7.所以z 的取值范围是[-7,10],故选A 项.11.答案:21π解析:由三视图可知,该几何体是圆锥与等底面的圆柱组合而成的组合体,所以该几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面圆的面积的和,所以该几何体的表面积为S =π×23×23+2π×3×3+π×(3)2=21π.12.答案:25解析:抽出的人数为0.000 5×500×100=25.13.答案:30解析:甲坐首尾两个座位时,乙各有5种坐法,故共有2×5=10(种).甲坐另外5个座位时,乙各有4种不同的坐法,共有5×4=20(种).故共有30种坐法.14.答案:7解析:所给二项式的展开式只有第5项的二项式系数最大,∴n =8,T r +1=C r 8(x 2)8-r (-13x)r =C r 8(12)8-r ·(-1)rx 8-43r , 令8-43r =0,得r =6,∴T 7=C 68(12)2(-1)6=7. 15.答案:9解析:由程序框图可知,当i =1时,执行S =S ×2i 得S =2;当i =3时,执行S =S ×2i得S =24;当i =5时,执行S =S ×2i 得S =29;当i =7时,执行S =S ×2i 得S =216,执行i =i +2得i =9;检验不满足条件,所以输出i =9.16.答案:2解析:由题知,圆的标准方程为(x -3)2+y 2=42,∴圆心坐标为(3,0),半径r =4.∴与圆相切且垂直于x 轴的两条切线是x =-1,x =7.而y 2=2px (p >0)的准线方程是x =-p2,∴由-p 2=-1得p =2,由-p2=7得p =-14与题设矛盾(舍去).∴p =2. 17.答案:102解析:由⎝ ⎛⎭⎪⎫1 12 0⎝ ⎛⎭⎪⎫sin αcos α=⎝ ⎛⎭⎪⎫u ′v ′可知u ′=sin α+cos α,v ′=2sin x ,所以y =12(u ′+v ′)=12[(sin α+cos α)+2sin α]=102sin(α+φ),所以y max =102. 18.解:(1)因为a =(4,2cos2A ),b =(1+cos A,1), 所以a·b =1=4(1+cos A )+2cos2A ,2分 即:4+4cos A +2(2cos 2A -1)=1, 可化为4cos 2A +4cos A +1=0,5分解得cos A =-12,所以A =120°.7分(2)由余弦定理得a 2=b 2+c 2-2bc ·(-12)=(b +c )2-2bc +bc ,9分所以19=25-bc ,解得bc =6,11分 由⎩⎪⎨⎪⎧ b +c =5bc =6⇒⎩⎪⎨⎪⎧ b =2c =3或⎩⎪⎨⎪⎧b =3c =2.14分 19.解:(1)设公比为q ,则a n =a 1q n -1.由已知有⎩⎨⎧a 1+a 1q =2(1a 1+1a 1q)a 1q 2+a 1q 3+a 1q 4=64(1a 1q 2+1a 1q 3+1a 1q4).2分化简得⎩⎪⎨⎪⎧a 21q =2a 21q 6=64. 4分又a 1>0,故q =2,a 1=1.所以a n =2n -1. 7分(2)由(1)知b n =(a n +1a n )2=a 2n +1a 2n +2=4n -1+14n -1+2. 10分因此T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =4n-14-1+1-14n 1-14+2n=13(4n -41-n )+2n +1. 14分 20.解:(1)由已知DF ∥AB 且∠DAB 为直角,故四边形ABFD 是矩形,从而AB ⊥BF .2分又P A ⊥底面ABCD ,所以平面P AD ⊥平面ABCD .3分 因为AB ⊥AD ,故AB ⊥平面P AD ,所以AB ⊥PD .4分在△PDC 内,E 、F 分别是PC 、CD 的中点,EF ∥PD ,所以AB ⊥EF . 由此得AB ⊥平面BEF .6分(2)以A 为原点,以AB 、AD 、AP 为Ox 、Oy 、Oz 正向建立空间直角坐标系,设AB 的长为1,则BD →=(-1,2,0),BE →=(0,1,k 2),8分设平面CDB 的法向量为n 1=(0,0,1),平面EDB 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧ n 2·BD →=0n 2·BE →=0,∴⎩⎪⎨⎪⎧-x +2y =0y +kz 2=0,取y =1,可得n 2=(2,1,-2k).10分设二面角E -BD -C 的大小为θ, 则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2k 22+1+4k2<22,12分 化简得k 2>45,则k >255.14分21.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0).由题意可得:b =1,c a =255,∴a =5,∴x 25+y 2=1.4分(2)(ⅰ)当直线AB 的斜率k 存在时,设直线AB 的方程为y =kx +m ,设A (x 1,y 1),B (x 2,y 2).则由⎩⎪⎨⎪⎧x 25+y 2=1y =kx +m得(5k 2+1)x 2+10kmx +5m 2-5=0.∴x 1+x 2=-10km5k 2+1,x 1x 2=5m 2-55k 2+1,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.6分 ∵OA →·OB →=0,∴x 1x 2+y 1y 2=0.即(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0, (k 2+1)(5m 2-5)5k 2+1-10k 2m 25k 2+1+m 2=0. ∴6m 2-5k 2-5=0,①又∵OD ⊥AB ,设D (x ,y ),∴k =-xy.②又∵点D (x ,y )在直线AB 上,∴y =kx +m ,∴m =y -kx =y +x 2y,③把②③代入①得6(y +x 2y )2-5x2y2-5=0,∴x 2+y2y2[6(x 2+y 2)-5]=0.∴点D 的轨迹方程为x 2+y 2=56(y ≠0).10分(ⅱ)当直线AB 的斜率不存在时,D (±306,0),满足x 2+y 2=56.13分综上所述,点D 的轨迹方程为x 2+y 2=56.15分22.解:(1)f ′(x )=1x-2x +b ,直线2x +y +2=0的斜率为-2,令f ′(2)=12,得b =4,2分∴f (x )=ln x -x 2+4x +3.令f ′(x )=1-2x +4=-2x 2+4x +1=0,得x =2±6.5分∵6+ln3>6,∴x =1时,f (x )在[1,3]上的最小值为6.9分(2)令f ′(x )=1x -2x +b ≥0得b ≥2x -1x ,在[1,m ]上恒成立.而y =2x -1x 在[1,m ]上单调递增,最大值为2m -1m ,∴b ≥2m -1m .12分令f ′(x )=1x -2x +b ≤0得b ≤2x -1x ,在[1,m ]上恒成立.而y =2x -1x 在[1,m ]上单调递减,最小值为y =1,∴b ≤1.故b ≥2m -1m或b ≤1时f (x )在[1,m ]上单调.15分。
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =柱体的体积公式其中1S ,2S 分别表示台体的上、下底面积,V Sh = h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|}=0P x x -≥,{}12|Q x x =<≤,则R ()P Q =ð ( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3 B .12 cm 3 C .323 cm 3 D .403cm 3 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S .若3a ,4a ,8a 成等比数列,则 ( ) A .10a d >,40dS > B .10a d <,40dS < C .10a d >,40dS <D .10a d <,40dS >4.命题“*n ∀∈N ,()*f n ∈N 且)(f n n ≤”的否定形式是( )A .*n ∀∈N ,()*f n ∉N 且)(f n n >B .*n ∀∈N ,()*f n ∉N 或)(f n n >C .0*n ∃∈N ,0()*f n ∉N 且00)(f n n >D .0*n ∃∈N ,0()*f n ∉N 或00)(f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有 三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF △与A CF △的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF --C .||1||1BF AF ++ D .22||1||1BF AF ++ 6.设A ,B 是有限集,定义:((,))()d A B card AB card AB =-,其中()card A 表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C +≤. A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立D .命题①不成立,命题②成立 7.存在函数()f x 满足:对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)|1|f x x +=+D .2(2)|1|f x x x +=+8.如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成二面角A CDB '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上.9.双曲线2212x y -=的焦距是 ,渐近线方程是 .10.已知函数223, 1,()lg(1),1,x x x f x x x ⎧+-⎪⎪=⎨⎪+⎪⎩≥<,则(())3f f =- ,)(f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若4log 3a =,则22a a +=- .13.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数x ,y 满足221x y +≤,则22|||6|3x y x y +-+--的最小值是 .15.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意,x y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= ,|b |= .三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知π4A =,22212b ac -=. (Ⅰ)求tan C 的值;(Ⅱ)若ABC △的面积为3,求b 的值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值.18.(本小题满分15分)已知函数2()(,)f x x ax b a b =++∈R ,记(,)M a b 是|()|f x 在区间[]1,1-上的最大值. (Ⅰ)证明:当||2a ≥时,(,)2M a b ≥;(Ⅱ)当a ,b 满足(,)2M a b ≤时,求||||a b +的最大值.19.(本小题满分15分)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB △面积的最大值(O 为坐标原点).20.(本小题满分15分)已知数列{}n a 满足112a =且21*)(n n n a a a n +-=∈N . (Ⅰ)证明:112(*)nn a n a +∈N ≤≤; (Ⅱ)设数列2{}na 的前n 项和为n S ,证明:11()2(2)2(1)*n S n n n n ∈++N ≤≤.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析一、选择题 1.【答案】C【解析】由题意得,()(0,2)P =R ð,()(1,2)P Q ∴=R ð,故选C .【提示】求出P 中不等式的解集确定出P ,求出P 补集与Q 的交集即可 【考点】集合的运算 2.【答案】C【解析】由题意得,该几何体为一立方体与四棱锥的组合,∴体积323132222c m33V =+⨯⨯=,故选C . 【提示】判断几何体的形状,利用三视图的数据,求几何体的体积即可 【考点】三视图 3.【答案】B 【解析】等差数列{}n a ,3a ,4a ,8a 成等比数列,211115(3)(2)(7)3a d a d a d a d ∴+=++⇒=-,4141122()2(3)3S a a a a d d ∴=+=++=-,21503a d d ∴=-<,24203dS d =-<故选B .【提示】由3a ,4a ,8a 成等比数列,得到首项和公差的关系,即可判断1a d 和4dS 的符号 【考点】等差数列的通项公式及前n 项和,等比数列的概念 4.【答案】D【解析】根据全称命题的否定是特称命题,可知选D . 【提示】根据全称命题的否定是特称命题即可得到结论 【考点】命题的否定5.【答案】A【解析】||1||1BCF B ACF A S x BC BF S AC x AF -===-△△,故选A . 【提示】根据抛物线的定义,将三角形的面积关系转化为||||BC AC 的关系进行求解即可 【考点】抛物线的标准方程及其性质 6.【答案】A【解析】命题①显然正确,通过下面文氏图亦可知(,)d A C 表示的区域不大于(,)(,)d A B d B C +的区域,故命题②也正确,故选A .第6题图【提示】①命题根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可 【考点】集合的性质 7.【答案】D【解析】A :取0x =,可知(sin0)sin0f =,即(0)0f =,再取π2x =,可知π(sin π)sin 2f =,即(0)1f =,矛盾,∴A 错误;同理可知B 错误,C :取1x =,可知(2)2f =,再取1x =-,可知(2)f =,矛盾,∴C 错误,D :令|1|(t x t =+≥,2(1)(0)()f t t t f x ∴-=≥⇔=D .【提示】利用x 取特殊值,通过函数的定义判断正误即可 【考点】函数的概念 8.【答案】B【解析】根据折叠过程可知A CB '∠与α的大小关系是不确定的,而根据二面角的定义易得A DB α'∠≥,当且仅当AC BC =时,等号成立,故选B .【提示】解:画出图形,分AC BC =,AC BC ≠两种情况讨论即可 【考点】立体几何中的动态问题 二、填空题9.【答案】2y x =±【解析】由题意得:a =1b =,c ===焦距为2c =线方程2b y x x a =±=± 【提示】确定双曲线中的几何量,即可求出焦距、渐近线方程 【考点】双曲线的标准方程及其性质 10.【答案】0,3【解析】[(3)](1)0f f f -==,当1x ≥时,()3f x ≥,当且仅当x =立,当1x <时,()0f x ≥,当且仅当0x =时,等号成立,故()f x最小值为3 【提示】根据已知函数可先求(3)1f -=,然后代入可求[(3)]f f -;由于1x ≥时,2()3f x x x=+-,当1x <时,2()lg(1)f x x =+,分别求出每段函数的取值范围,即可求解【考点】分段函数11.【答案】π,3π7ππ,π88k k k ⎡⎤++∈⎢⎥⎣⎦Z , 【解析】π3()s i n 2242f x x ⎛⎫=-+ ⎪⎝⎭,故最小正周期为π,单调递减区间为3π7ππ,π88k k k ⎡⎤++∈⎢⎥⎣⎦Z ,【提示】由三角函数公式化简可得π3()2242f x x ⎛⎫=-+ ⎪⎝⎭,易得最小正周期,解不等式ππ3π2π22π242k x k +≤-≤+可得函数的单调递减区间 【考点】三角恒等变形,三角函数的性质 12.【解析】4log 3a =Q,432a a ∴=⇒22a a-∴+==【提示】直接把a 代入22a a -+,然后利用对数的运算性质得答案 【考点】对数的计算 13.【答案】78【解析】如下图,连结DN,取DN中点P,连结PM,PC,则可知PMC∠即为异面直线AN,CM所成角(或其补角)易得:12P M A==,PC==,CM=,7cos8PMC∴∠==,即异面直线AN,CM所成角的余弦值为78第13题图【提示】连结ND,取ND的中点为E,连结ME说明异面直线AN,CM所成的角就是EMC∠通过解三角形,求解即可【考点】异面直线的夹角14.【答案】3【解析】221x y+≤表示圆221x y+=及其内部,易得直线63x y--与圆相离,故|63|63x y x y--=--,当220x y+-≥时,|22||63|24x y x y x y+-+--=-+,如下图所示,可行域为小的弓形内部,目标函数24z x y=-+,则可知当35x=,45y=时,min3z=,当220x y+-<时,|22||63|834x y x y x y+-+--=--,可行域为大的弓形内部,目标函数834z x y=--,同理可知当35x=,45y=时,min3z=,综上所述,|22||63|x y x y+-+--的最小值为3.第14题图【提示】根据所给x,y的范围,可得|22||63|x y x y+-+--,再讨论直线220x y+-=将圆221x y+=分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值【考点】线性规划的运用,分类讨论的数学思想,直线与圆的位置关系15.【答案】12【解析】问题等价于12()||b xe ye-+r u r u r当且仅当x x=,y y=时,取得最小值1,两边平方,即22245b x y x y xy++--+r,在x x=,y y=时,取得最小值1,2222222224345(4)5(2)724yb x y x y xy x y x y y b x y b-⎛⎫++--+=+-+-+=++--+⎪⎝⎭r r r,0024012202||71yx xy ybb-⎧+=⎧⎪=⎪⎪∴-=⇒=⎨⎨⎪⎪=-+=⎩⎪⎩rr【提示】由题意和数量积的运算可得12π3e e=u r u rg,不妨设112e⎛⎫= ⎪⎪⎝⎭u r,2(1,0,0)e=u r,由已知可解52b t⎛⎫= ⎪⎪⎝⎭r,可得2222143||(2()24)b xe yeyx y t-⎛⎫=++-+⎪⎝⎭-+r u r u r,由题意可得当1x x==,2y y==时,22243(2)24yx y t-⎛⎫++-+⎪⎝⎭取最小值1,由模长公式可得||br【考点】平面向量的模长,函数值的最值三、解答题16.【答案】(Ⅰ)2(Ⅱ)3【解析】(Ⅰ)由22212b a c-=及正弦定理得2211sin sin22B C-=,2cos2sinB C∴-=,又由π4A=,即3π4B C+=,得cos2sin22sin cosB C C C-==,解得tan2C=;(Ⅱ)由tan2C=,(0,π)C∈,得sin C=cos C=又πsin sin()sin4B AC C⎛⎫=+=+⎪⎝⎭Q,sin B∴=,由正弦定理得c=,又π4A=Q,1sin72bc A=,bc∴=故3b=【提示】(Ⅰ)由正弦定理可得:2211sin sin22B C-=,已知22212b a c-=.由π4A=.可得cos2sin22sin cosB C C C-==,即可得出答案.(Ⅱ)由πsin sin()sin4B AC C⎛⎫=+=+⎪⎝⎭,可得c,即可得出b【考点】正弦定理17.【答案】(Ⅰ)见解析(Ⅱ)18-【解析】(Ⅰ)设E为BC中点,由题意得1A E⊥平面ABC,1A E AE∴⊥,AB AC=Q,AE BC∴⊥,故AE⊥平面1A BC,由D,E分别为11B C,BC的中点,得1DE B B∥且1DE B B=,从而1DE A A∥,所以四边形1A AED为平行四边形,故1A D AE∥,又Q AE⊥平面1A BC,数学试卷第10页(共18页)数学试卷第11页(共18页)数学试卷第12页(共18页)数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)∴1A D ⊥平面1A BC .(Ⅱ)作1A F BD ⊥,且1A FBD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=︒, 得114A B A A ==,由11A D B D =,11A B B B =, 得11A DB B DB △≌△, 由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1143A FB F ==,且112A B =, 由余弦定理得,111cos 8A FB ∠=-第17题图【提示】(Ⅰ)设E 为BC 中点,解得四边形1A AED 为平行四边形,故1A D AE ∥,又AE ⊥平面1A BC ,∴1A D ⊥平面1A BC(Ⅱ)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可【考点】线面垂直的判定与性质,二面角的求解 18.【答案】(Ⅰ)见解析 (Ⅱ)3【解析】(Ⅰ)由22()24a a f x x b ⎛⎫=++- ⎪⎝⎭,得对称轴为直线2a x =-,由||2a ≥得2a-≥1,故()f x 在[]1,1-上单调,∴(,)max{|(1)|,|(1)|}M a b f f =-,当2a ≥时,由(1)(1)24f f a --=≥, 得max{|(1)|,|(1)|}2f f -≥,即(,)2M a b ≥; 当2a ≤-时,由(1)(1)24f f a --=-≥, 得max{|(1)|,|(1)|}2f f --≥,即(,)2M a b ≥, 综上,当||2a ≥时,(,)2M a b ≥;(Ⅱ)由(,)2M a b ≥,得|1|(1)2a b f ++=≤,|1|(1)2a b f -+=-≤, 故||3a b +≤,||3a b -≤由||0||||||0a b ab a b a b ab +≥⎧+=⎨-<⎩,,,得||||3a b +≤, 当2a =,1b =-时,||||3a b +=,且221||x x +-在[]1,1-上的最大值为2,即(2,1)2M -=,所以||||a b +的最大值为3.【提示】(Ⅰ)明确二次函数的对称轴,区间的端点值,由a 的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(Ⅱ)讨论0a b ==以及分析(,)2M a b ≤得到31a b -≤+≤且31b a -≤-≤,进一步求出||||a b +的求值【考点】二次函数的性质,分类讨论的思想19.【答案】(Ⅰ)m <m >(Ⅱ)2【解析】(Ⅰ)由题知0m ≠,可设直线AB 的方程为1y x b m =-+,由22121x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222112102bx x b m m ⎛⎫+-+-= ⎪⎝⎭, Q 直线1y x b m =-+与椭圆2212x y +=有两个不同的交点, 224220b m∴∆=-++>①将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+解得2222m b m +=-②由①②得m <m >;(Ⅱ)令160,22tm ⎛⎫⎛⎫=∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2||2AB t +,且O 到直线AB 的距离为212d=设AOB △的面积为()S t ,1()||2S t AB d ∴=≤g 212t =时,等号成立, 故AOB △面积的最大值为2【提示】(Ⅰ)由题意,可设直线AB 的方程为1y x b m =-+,代入椭圆方程可得222112102b x x b m m ⎛⎫+-+-= ⎪⎝⎭,将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程,解出答案. (Ⅱ)令160,t m ⎛⎫⎛⎫=∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且O 到直线AB 的距离为21t d +=设△AOB 的面积为()S t ,即可得出答案【考点】直线与椭圆的位置关系,点到直线的距离公式,求函数最值 20.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】(Ⅰ)由题意得,21n n n a a a +-=-≤0,即1n n a a +≤,12n a ≤, 由11(1)n n n a a a --=-,得1211(1)(1)(1)0n n n a a a a a --=--->,由102n a ≤≤,得211[1,2]1n n n n n n a a a a a a +==∈--, 即112nn a a +≤≤; (Ⅱ)由题意得21n n n a a a +=-,11n n S a a +∴=-①,数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)由1111n n n n a a a a ++-=和112n n a a +≤≤,得11112n na a +≤-≤, 1112n nn n a a +∴≤-≤,因此()111()212n a n n n *+≤≤∈++N ②, 由①②得112(2)2(1)n S n n n ≤≤++【提示】(Ⅰ)通过题意易得102n a ≤≤()n *∈N ,利用21n n n a a a +=-可得11n n a a +≥,利用21121n n n n n na a a a a a +==≤--,即得结论; (2)通过21n n n a a a +=-累加得112n n S a +∴=-,利用数学归纳法可证明11(2)12n a n n n≥≥≥+,从而11111122(1)222n a n n n n n+---++≥≥,化简即得结论【考点】数列与不等式结合综合题。
【2015浙江省高考模拟理科数学 10份】浙江省各地2015届高三高考一模二模及联考试题汇总Word版含答案2015杭州一模数学(理) (1)2015嘉兴一模理科数学 (8)2015嘉兴二模理科数学 (18)2015六校联考数学(理) (27)2015宁波十校联考数学(理科) (35)2015衢州模拟数学理 (44)2015温州二模数学(理科) (52)2015温州十校联考理科数学 (64)2015温州一模数学(理科) (73)2015浙江五校联考数学(理科) (84)2015年杭州市第一次高考科目教学质量检测2015杭州一模数学(理)考生须知:1.本试卷满分150分,考试时间120分钟.2.答题前,在答题卷密封区内填写学校、班级和姓名.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束,只需上交答题卷.选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分. 1.若31sin =α,则=+)2cos(απA.31 B.31- C.322 D.322- 2.设实数y x ,满足不等式组⎩⎨⎧≤-+≥+-0401y x y x ,若y x z 2+=,则z 的最大值为A.-1B.4C.213 D.215 3.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是A.24cm ³B.40cm ³C.36cm ³D.48㎝³ 4.设R b a ∈,,则“ba ba+=+222”是“2≥+b a ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.设函数xe xf ln )(=(e 为自然对数的底数).若21x x ≠且)()(21x f x f =,则下列结论一.定不..成立的是 A.1)(12>x f x B.1)(12=x f x C.1)(12<x f x D.)()(2112x f x x f x < 6.设P 为锐角△ABC 的外心..(三角形外接圆圆心),)AC AB k AP +=( )(R k ∈.若52cos =∠BAC ,则k = A.145 B.142 C.75 D.73 7.设F 为双曲线)>,>00(1:2222b a by a x C =-的右焦点,过点F 且斜率为-1的直线l 与双曲线C 的两条渐近线分别交于B A ,两点,若AF AB 3-=,则双曲线C 的离心率=eA.310 B.25 C.5 D.3348.已知函数))((R x x f ∈是以4为周期的奇函数,当)2,0(∈x 时,)ln()(2b x x x f +-=.若函数)(x f 在区间]2,2[-上有5个零点,则实数b 的取值范围是A.11≤-b <B.4541≤≤b C.4511=-b b 或<< D.45141=≤b b 或<非选择题部分(共110分)二、填空题:本大题共7小题,第9至12题每小题6分,第13至15题每题4分,共36分.9.已知函数))(32sin(2R x x y ∈+=π,则该函数的最小正周期为 ,最小值为 ,单调递减区间为10.设函数)(2)1()(2R k x k x x f ∈++-=,则=+)21(k f ;若当0)(0≥x f x 时,>恒成立,则k 的取值范围为11.设圆1)12()(:22=+-+-k y k x C ,则圆C 的圆心轨迹方程是 ,若直线013:=-+ty x l 截圆C 所得的弦长与k 无关,则=t12.设函数2)(-=x x x f ,则当)2,0(∈x 时,函数)(x f 的最大值等于 ,若0x 是函数1))(()(-=x f f x g 的所有零点中的最大值,且0x ),)(1,(Z k k k ∈+∈则=k 13.设实数d a ,1为等差数列{}n a 的首项和公差.若563a a -=,则d 的取值范围是 14.已知抛物线)>0(2:2p px y C =,过点)0,3(p G 的直线l 与抛物线C 交于B A ,两点(点B 在第四象限),O 为坐标原点,且︒=∠90OBA ,则直线l 的斜率=k15.在长方体1111D C B A ABCD -中,其中ABCD 是正方形,.1AB AA >设点A 到直线D B 1的距离和到平面11A DCB 的距离分别为,,21d d 则21d d 的取值范围是三.解答题:本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤. 16.(本题满分15分)在△ABC 中,内角C B A ,,所对的边分别为c b a ,,.已知.cos 2232cos A A =+(I )求角A 的大小(II )若,1=a 求△ABC 的周长l 的取值范围.17.(本题满分15分)已知四边形ABCD 是矩形,)(R k kAB BC ∈=,将A B C ∆沿着对角线AC 翻折,得到,1C AB ∆设顶点1B 在平面ABCD 上的投影为O . (I )若点O 恰好落在边AD 上, (i )求证:CD B AB 11平面⊥;(ii )若.1,11>AB O B =当BC 取到最小值时,求k 的值(II )当3=k 时,若点O 恰好落在△ACD 的内部(不包括边界),求二面角D AC B --1的余弦值的取值范围.18.(本题满分15分)在直角坐标系xOy 中,设点)0,1(),0,1(B A -,Q 为△ABC 的外心.已知AB QG OG CG ∥,02=+. (I)求点C 的轨迹Γ的方程(II )设经过)2,0(F 的直线交轨迹Γ与,,H E 直线EH 与直线223:=y l 交于点M ,点P 是直线2=y 上异于点F 的任意一点.若直线PM PH PE ,,的斜率分别为321,,k k k ,问是否存在实数t ,使得,11321k tk k =+若存在,求t 的值;若不存在,说明理由.19.(本题满分15分)设数列{}n a 的前n 项和为n S ,若n S +n a =n (*N n ∈).(I )求数列{}n a 的通项公式; (II )求证:221...21212133221<nn a a a a ++++. 20.(本题满分14分)已知实数0>a ,函数⎪⎩⎪⎨⎧--≥-=)<),(0(),(4090)()(x a x x x a x x x f(I )若函数)(x f 在区间)>0(),,(b b b -上存在最小值,求b 的取值范围;(II )对于函数)(x f ,若存在区间],[n m (m n >),使{}],[],[),(n m n m x x f y y =∈=,求a 的取值范围,并写出满足条件的所有区间].,[n m2015年高三教学测试(一)2015嘉兴一模理科数学注意事项:1.本科考试分试题卷和答题纸,考生须在答题纸上作答.答题前,请在答题纸的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,全卷满分150分,考试时间120分钟. 参考公式:①棱柱的体积公式:Sh V =;②棱锥的体积公式:Sh V 31=;③棱台的体积公式:)(312211S S S S h V ++=;④球的体积公式:334R V π=;⑤球的表面积公式:24R S π=;其中S ,21,S S 表示几何体的底面积,h 表示几何体的高,R 表示球的半径.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集}4,3,2,1,0{=U ,集合}2,1,0{=A ,集合}3,2{=B ,则(=B A U)A .∅B .}4,3,2,1{C .}4,3,2{D .}4,3,2,1,0{2.已知直线01=-+y ax 与直线01=-+ay x 互相垂直,则=aA . 1或1-B .1C .1-D .03.已知向量)2,cos 3(α=a 与向量)sin 4,3(α=b 平行,则锐角α等于A .4πB .6πC .3πD .125π4.三条不重合的直线c b a ,,及三个不重合的平面γβα,,,下列命题正确的是A .若βα//,//a a ,则βα//B .若γβγαβα⊥⊥=,,a ,则γ⊥aC .若b c a c c b a ⊥⊥⊂⊂⊂,,,,βαα,则βα⊥D .若βαγβα//,//,,c c c a ⊂= ,则γ//a5.已知条件043:2≤--x x p ,条件096:22≤-+-m x x q .若p 是q 的充分不必要条件,则m 的取值范围是A .]1,1[-B .]4,4[-C .),4[]4,(+∞--∞D .),4[]1,(+∞--∞ 6.已知直线)(2sin cos :R y x l ∈=⋅+⋅ααα,圆0sin 2cos 2:22=⋅+⋅++y x y x C θθ)(R ∈θ,则直线l 与圆C 的位置关系是A .相交B .相切C .相离D .与θα,相关7.如图,已知双曲线)0,0(12222>>=-b a b y a x 上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足BF AF ⊥,设α=∠ABF ,且]6,12[ππα∈,则该双曲线离心率e 的取值范围为A .]32,3[+B .]13,2[+C .]32,2[+D .]13,3[+ 8.已知函数⎩⎨⎧>≤-=)0(ln )0(2)(x x x e x f x ,则下列关于函数)0(1]1)([≠++=k kx f f y 的零点个数的判断正确的是 A .当0>k 时,有3个零点;当0<k 时,有4个零点 B .当0>k 时,有4个零点;当0<k 时,有3个零点 C .无论k 为何值,均有3个零点 D .无论k 为何值,均有4个零点第Ⅱ卷二、填空题(本大题共7小题,第9-12题每题6分,第13-15题每题4分,共36分) 9.若实数y x ,满足不等式组⎪⎩⎪⎨⎧-≥≤+≥-1422y y ax y x ,目标函数y x z 2+=.若1=a ,则z 的最大值为 ▲ ;若z 存在最大值, 则a 的取值范围为 ▲ .10.一个几何体的三视图如图,其中正视图和侧视图是相同的等腰三角形,俯视图 由半圆和一等腰三角形组成.则这个几 何体可以看成是由 ▲ 和 ▲ 组成 的,若它的体积是62+π,则=a ▲ .11.在ABC ∆中,若︒=∠120A ,DC BD BC AB 21,13,1===, 则=AC ▲ ;=AD ▲ .OxyA BF(第7题)11正视图 a(第10题)111俯视图11侧视图12.设等差数列}{n a 的前n 项和为n S ,若24942=++a a a ,则=9S ▲ ;108108S S ⋅的最大值为 ▲ .13.M 是抛物线x y 42=上一点,F 是焦点,且4=MF .过点M 作准线l 的垂线,垂足为K ,则三角形MFK 的面积为 ▲ .14.设0,,>z y x ,满足822=++z y xyz ,则z y x 224log log log ++的最大值是 ▲ . 15.正四面体OABC ,其棱长为1.若O C z O B y O A x O P ++=(1,,0≤≤z y x ),且满足1≥++z y x ,则动点P 的轨迹所形成的空间区域的体积为 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)已知函数)]8cos()8)[sin(8sin(21)(πππ+-++-=x x x x f .(I )求函数)(x f 的最小正周期; (Ⅱ)当]12,2[ππ-∈x ,求函数)8(π+x f 的值域.17.(本题满分15分)在四棱锥ABCD P -中, ⊥PA 平面ABCD , ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4==AB PA ,︒=∠120CDA ,点N 在线段PB 上,且2=PN .(I )求证://MN 平面PDC ; (Ⅱ)求二面角B PC A --的余弦值.18.(本题满分15分)已知直线)0(1:≠+=k kx y l 与椭圆a y x =+223相交于B A 、两个不同的点,记l 与y 轴的交点为C .(Ⅰ)若1=k ,且210||=AB ,求实数a 的值; (Ⅱ)若CB AC 2=,求AOB ∆面积的最大值,及此时椭圆的方程. 19.(本题满分15分)AN MBDCP(第17题)设二次函数),()(2R b a c bx ax x f ∈++=满足条件:①当R x ∈时,)(x f 的最大值为0,且)3()1(x f x f -=-成立;②二次函数)(x f 的图象与直线2-=y 交于A 、B 两点,且4||=AB .(Ⅰ)求)(x f 的解析式;(Ⅱ)求最小的实数)1(-<n n ,使得存在实数t ,只要当]1,[-∈n x 时,就有x t x f 2)(≥+成立.20.(本题满分15分)在数列}{n a 中,2,2,311+=+==-n n n n a b a a a ,.,3,2 =n (Ⅰ)求32,a a ,判断数列}{n a 的单调性并证明; (Ⅱ)求证:),3,2(|2|41|2|1 =-<--n a a n n ; (III )是否存在常数M ,对任意2≥n ,有M b b b n ≤ 32?若存在,求出M 的值;若不存在,请说明理由.2015年高三教学测试(一)理科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分) 1.C ; 2.D ; 3.A ; 4.B ; 5.C ; 6.D ; 7.B ; 8.C .7.【解析】ABF Rt ∆中,c AB c OF 2,=∴=,ααcos 2,sin 2c BF c AF ==∴ a c AF BF 2|sin cos |2||=-=-∴αα,|)4cos(|21|sin cos |1πααα+=-==∴a c e,12543,612ππαππαπ≤+≤∴≤≤]22,213[|)4cos(|2],21,426[)4cos(-∈+-∈+∴παπα]13,2[+∈∴e . 8.【解析】令1)(-=x f ,则得0=x 或ex 1=.则有1)(-=kx f 或11-e .(1)当0>k 时,①若0≤x ,则0≤kx ,12-=-kx e 或112-=-e e kx ,0=kx 或)11ln(e+,解得0=x 或ke x )11ln(+=(舍); ②若0>x ,则0>kx ,1)ln(-=kx 或11-e ,解得ekx 1=或)11(-e e ,kex 1=或ke e)11(-,均满足.所以,当0>k 时,零点有3个;同理讨论可得,0<k 时,零点有3个. 所以,无论k 为何值,均有3个零点.二、填空题(本大题共7小题,第9-12题每空3分,第13-15题每空4分,共36分) 9.6,)10,0( 10.一个三棱锥,半个圆锥,1 11.3,3712.72,6413.3414.2315.122514.【解析】),4(2)28()](8[,log log log log 2222224224yz yz yz yz z y yz z xy z xy z y x -⨯=-≤+-==++又4)24()4(2=-+≤-yz yz yz yz ,所以822≤z xy ,23log log log 224≤++z y x .当且仅当2==z y ,2=x 时,等号成立.15.【解析】点P 的轨迹所形成的空间区域为平行六面体除去正四面体OABC 的部分.易得其体积为1225.三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)已知函数)]8cos()8)[sin(8sin(21)(πππ+-++-=x x x x f .(I )求函数)(x f 的最小正周期; (Ⅱ)当]12,2[ππ-∈x ,求函数)8(π+x f 的值域.16.【解析】(I ))]8cos()8)[sin(8sin(21)(πππ+-++-=x x x x f)8cos()8sin(2)8(sin 212πππ+⋅+++-=x x xOABC题)(第15)42sin()42cos(ππ+++=x xx x x 2cos 2)22sin(2)442sin(2=+=++=πππ……5分所以,)(x f 的最小正周期ππ==22T .……7分 (Ⅱ)由(I )可知)42cos(2)8(2cos 2)8(πππ+=+=+x x x f .……9分]12,2[ππ-∈x ,]125,43[42πππ-∈+∴x ,……11分 ]1,22[)42cos(-∈+∴πx , ∴]2,1[)8(-∈+πx f .所以,)8(π+x f 的值域为]2,1[-.……14分17.(本题满分15分)在四棱锥ABCD P -中, ⊥PA 平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又4==AB PA ,︒=∠120CDA ,点N 在线段PB 上,且2=PN .(I )求证://MN 平面PDC ; (Ⅱ)求二面角B PC A --的余弦值.17.【解析】(Ⅰ)在正三角形ABC 中,32=BM在ACD ∆中,因为M 为AC 中点,AC DM ⊥, 所以CD AD =,︒=∠120CDA ,所以332=DM , 所以1:3:=MD BM ……4分在等腰直角三角形PAB 中,24,4===PB AB PA , 所以1:3:=NP BN ,MD BM NP BN ::=,所以PD MN //.又⊄MN 平面PDC ,⊂PD 平面PDC ,所以//MN 平面PDC .……7分 (Ⅱ)因为︒=∠+∠=∠90CAD BAC BAD , 所以AD AB ⊥,分别以AP AD AB ,,为x 轴, y 轴, z 轴 建立如图的空间直角坐标系,所以)4,0,0(),0,334,0(),0,32,2(),0,0,4(P D C B . 由(Ⅰ)可知,)0,334,4(-=DB 为平面PAC 的法向量……10分)4,0,4(),4,32,2(-=-=P B P C ,ANMB DCP(第17题)yxMAD B CPN设平面PBC 的一个法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00PB n PC n ,即⎪⎩⎪⎨⎧=-=-+04404322z x z y x ,令3=z ,则平面PBC 的一个法向量为)3,3,3(=n ……13分 设二面角B PC A --的大小为θ, 则77||||cos =⋅⋅=DB n DB n θ, 所以二面角B PC A --余弦值为77.……15分 18.(本题满分15分)已知直线)0(1:≠+=k kx y l 与椭圆a y x =+223相交于B A 、两个不同的点,记l 与y 轴的交点为C .(Ⅰ)若1=k ,且210||=AB ,求实数a 的值; (Ⅱ)若CB AC 2=,求AOB ∆面积的最大值,及此时椭圆的方程. 18.【解析】设),(),,(2211y x B y x A .(Ⅰ)41,210124312121222a x x x x a x x a y x x y -=-=+⇒=-++⇒⎩⎨⎧=++=, 2210432||2||21=⇒=-⋅=-=a a x x AB .……5分 (Ⅱ)012)3(312222=-+++⇒⎩⎨⎧=++=a kx x k a y x kx y , 22122131,32k ax x k k x x +-=+-=+⇒,……7分 由2122112)1,(2)1,(2x x y x y x CB AC -=⇒-=--⇒=,代入上式得: 2222213232k k x k k x x x +=⇒+-=-=+,……9分23323||||333||3||23||||212221=≤+=+==-=∆k k k k x x x OC S AOB ,……12分 当且仅当32=k 时取等号,此时32)3(422,32222222122-=+-=-=+=k k x x x k k x .又6131221a k a x x -=+-=,因此53261=⇒-=-a a . 所以,AOB ∆面积的最大值为23,此时椭圆的方程为5322=+y x .……15分 19.(本题满分15分)设二次函数),()(2R b a c bx ax x f ∈++=满足条件:①当R x ∈时,)(x f 的最大值为0,且)3()1(x f x f -=-成立;②二次函数)(x f 的图象与直线2-=y 交于A 、B 两点,且4||=AB .(Ⅰ)求)(x f 的解析式;(Ⅱ)求最小的实数)1(-<n n ,使得存在实数t ,只要当]1,[-∈n x 时,就有x t x f 2)(≥+成立.19.【解析】(Ⅰ)由)3()1(x f x f -=-可知函数)(x f 的对称轴为1=x ,……2分 由)(x f 的最大值为0,可假设)0()1()(2<-=a x a x f . 令2)1(2-=-x a ,a x 21-±=,则易知422=-a ,21-=a . 所以,2)1(21)(--=x x f .……6分(Ⅱ)由x t x f 2)(≥+可得,x t x 2)1(212≥+--,即0)1()1(222≤-+++t x t x , 解得t t x t t 2121+--≤≤---.……8分 又x t x f 2)(≥+在]1,[-∈n x 时恒成立,可得⎪⎩⎪⎨⎧-≥+--≤---)2(121)1(21t t n t t ,由(2)得40≤≤t .……10分令t t t g 21)(---=,易知t t t g 21)(---=单调递减,所以,9)4()(-=≥g t g , 由于只需存在实数t ,故9-≥n ,则n 能取到的最小实数为9-.此时,存在实数4=t ,只要当]1,[-∈n x 时,就有x t x f 2)(≥+成立.……15分20.(本题满分15分)在数列}{n a 中,2,2,311+=+==-n n n n a b a a a ,.,3,2 =n(Ⅰ)求32,a a ,判断数列}{n a 的单调性并证明; (Ⅱ)求证:),3,2(|2|41|2|1 =-<--n a a n n ; (III )是否存在常数M ,对任意2≥n ,有M b b b n ≤ 32?若存在,求出M 的值;若不存在,请说明理由.20.【解析】(Ⅰ)由2,311+==-n n a a a 易知,25,532+==a a .……2分由2,311+==-n n a a a 易知0>n a .由21+=-n n a a 得,212+=-n n a a (1),则有221+=+n n a a (2),由(2)-(1)得1221-+-=-n n n n a a a a ,111))((-++-=-+n n n n n n a a a a a a ,0>n a ,所以n n a a -+1与1--n n a a 同号.由03512<-=-a a 易知,01<--n n a a ,即1-<n n a a ,可知数列}{n a 单调递减. ……5分(Ⅱ)由212+=-n n a a 可得,2412-=--n n a a ,2)2)(2(1-=+--n n n a a a ,所以,2|2||2|1+-=--n n n a a a .……7分由2)2)(2(1-=+--n n n a a a 易知,2-n a 与21--n a 同号,由于02321>-=-a 可知,02>-n a ,即2>n a ,42>+∴n a ,4121<+∴n a ,所以|2|41|2|1-<--n n a a ,得证. ……10分(III ) 2)2)(2(1-=+--n n n a a a ,2221--=+-n n n a a a ,即221--=-n n n a a b ,则212222222211322132-=--=--⋅⋅--⋅--=-n n n n n a a a a a a a a a b b b .……13分 由|2|41|2|1-<--n n a a 可知, 1113322141|2|41|2|41|2|41|2|41|2|-----=-<<-<-<-<-n n n n n n a a a a a ,所以,14|2|1->-n n a ,因为2>n a ,所以1421->-n n a .当∞→n 时,∞→-14n ,故不存在常数M ,对任意2≥n ,有M b b b n ≤ 32成立. ……15分2015年高三教学测试(二)2015嘉兴二模 理科数学注意事项:1.本科考试分试题卷和答题纸,考生须在答题纸上作答.答题前,请在答题纸的密封线内填写学校、班级、学号、姓名.2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟. 参考公式:①棱柱的体积公式:Sh V =;②棱锥的体积公式:Sh V 31=;③棱台的体积公式:)(312211S S S S h V ++=;④球的体积公式:334R V π=;⑤球的表面积公式:24R S π=;其中S ,21,S S 表示几何体的底面积,h 表示几何体的高,R 表示球的半径.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,“B A sin sin >”是“B A >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.一个几何体的三视图如图,则该几何体的体积为A .πB .2πC .3πD .6π3.计算:=++)2log 2)(log 3log 3(log 9384A .45 B .25 C .5D .154.已知0>a ,实数y x ,满足:⎪⎩⎪⎨⎧-≥≤+≥)3(31x a y y x x ,若y x z +=2的最小值为1,则=aA .2B .1C .21 D .41 (第2题)侧视图正视图俯视图11221=R5.若55cos sin =+θθ,]π,0[∈θ,则=θtan A .21-B .21C .2-D .26.已知圆05422=--+x y x 的弦AB 的中点为)1,3(Q ,直线AB 交x 轴于点P ,则=⋅||||PB PAA .4B .5C .6D .87.设1F 、2F 分别为双曲线C :12222=-by a x 0(>a ,)0>b 的左、右焦点,A 为双曲线的左顶点,以21F F 为直径的圆交双曲线一条渐近线于M 、N 两点,且满足︒=∠120MAN ,则该双曲线的离心率为 A .321B .319C .35D .38.设⎩⎨⎧<-+++≥-+=)0()3()4()0()(22222x a x a a x x k a x k x f ,其中R ∈a .若对任意的非零实数1x ,存在唯一的非零实数)(212x x x ≠,使得)()(21x f x f =成立,则k 的取值范围为 A .RB .]0,4[-C .]33,9[D .]9,33[--第Ⅱ卷二、填空题(本大题共7小题,第9-12题每题6分,第13-15题每题4分,共36分) 9.已知全集R =U ,集合}11{≤≤-=x x A ,}02{2≥-=x x x B ,则=B A ▲ ;( A ∨=)B U ▲ .10.在等差数列}{n a 中,32=a ,1473=+a a ,则公差=d ▲ ,=n a ▲ . 11.若向量a 与b 满足2||=a ,2||=b ,a b a ⊥-)(.则向量a 与b 的夹角等于 ▲ ;(第7题)O y xAMN 1F 2F=+||b a ▲ .12.已知函数⎩⎨⎧<+-≥-=)0(2)0(12)(2x x x x x f x ,则=)2(f ▲ ;若1)(=a f ,则=a ▲ .13.已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 ▲ .14.抛物线x y 42=的焦点为F ,过点)3,0(的直线与抛物线交于B A ,两点,线段AB 的垂直平分线交x 轴于点D ,若6||||=+BF AF ,则点D 的横坐标为 ▲ .15.正方体1111D C B A ABCD -的棱长为1,底面ABCD 的对角线BD 在平面α内,则正方体在平面α内的射影构成的图形面积的取值范围是 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)三角形ABC 中,已知C B A B A 222sin sin sin sin sin =++,其中,角C B A 、、所对的边分别为c b a 、、.(Ⅰ)求角C 的大小; (Ⅱ)求+a bc的取值范围.(第15题)ABCD1A 1B 1C 1D α(第14题)O D FAy xB17.(本题满分15分)如图,在三棱锥ABC P -中,⊥PA 平面ABC ,22==PC AC ,BC AC ⊥,D 、E 、F 分别为AC 、AB 、AP 的中点,M 、N 分别为线段PC 、PB 上的动点,且有BC MN //. (Ⅰ)求证:⊥MN 面PAC ;(Ⅱ)探究:是否存在这样的动点M ,使得二面角F MN E --为直二面角?若存在,求CM 的长度;若不存在,说明理由.18.(本题满分15分)已知椭圆)0(12222>>=+b a b y a x 的离心率为21,过点)(1,0P 的动直线l 与椭圆交于B A ,两点,当l //x 轴时,364||=AB . (Ⅰ)求椭圆的方程;(Ⅱ)当PB AP 2=时,求直线l 的方程.19.(本题满分15分)如图,在平面直角坐标系xOy 中,设21=a ,有一组圆心在x 轴正半轴上的圆nA ( ,2,1=n )与x 轴的交点分别为)0,1(0A 和)0,(11++n n a A .过圆心n A 作垂直于x 轴的直线n l ,在第一象限与圆n A 交于点),(n n n b aB .(第18题)OBAxyPl(第17题)AD PBC FEM N(Ⅰ)试求数列}{n a 的通项公式;(Ⅱ)设曲边形11++n n n B B A (阴影所示)的面积为n S ,若对任意*N ∈n ,m S S S n≤+++11121 恒成立,试求实数m 的取值范围.20.(本题满分15分)已知函数4)(-+=xax x f ,3)(+=kx x g . (Ⅰ)当]4,3[∈a 时,函数)(x f 在区间],1[m 上的最大值为)(m f ,试求实数m 的取值范围;(Ⅱ)当]2,1[∈a 时,若不等式)()(|)(||)(|2121x g x g x f x f -<-对任意]4,2[,21∈x x (21x x <)恒成立,求实数k 的取值范围.2015年高三教学测试(二)理科数学 参考答案一.选择题(本大题有8小题,每小题5分,共40分)1.C ; 2.D ; 3.A ; 4.C ; 5.C ; 6.B ; 7.A ; 8.D . 8.【解析】设k a x k x g -+=22)(,222)3()4()(a x a a x x h -+++=,由条件知二次函数的对称轴不能在y 轴的左侧即042≤+a a ,且两个函数的图象在y 轴上交于同一点,即)0()0(h g =,xy(第19题)O0A 1A 2A 3A 1B 2B 3B 2S 1S所以,96-=a k 在]0,4[-上有解,从而]9,33[--∈k .二、填空题(本大题共7小题,第9-12题每空3分,第13-15题每空4分,共36分) 9.]0,1[-,)2,1[- 10.34,3134+n 11.4π,10 12.3,1 13.1 14.4 15.]3,1[15.【解析】设矩形11B BDD 与α所成锐二面角为θ, 面积记为1S ,则正方形1111D C B A 与α 所成锐二面角为θπ-2,面积记为2S .所求阴影面积θθθπθsin cos )2cos(cos 2121S S S S S +=-+=)sin(3sin cos 2ϕθθθ+=+=,其中33cos ,36sin ==ϕϕ.故]3,1[∈S .三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分14分)三角形ABC 中,已知C B A B A 222sin sin sin sin sin =++,其中,角C B A 、、所对的边分别为c b a 、、.(Ⅰ)求角C 的大小; (Ⅱ)求+a bc的取值范围. 16.【解析】(Ⅰ)由正弦定理得:ab c b a -=-+222,∴由余弦定理得:212c o s 222-=-+=ab c b a C ,∴32π=C . …6分 (Ⅱ)由正弦定理得:)s i n (s i n 332s i n s i n s i n B A C B A c b a +=+=+又 3π=+B A ,∴A B -=3π,∴)3sin()3sin(sin sin sin ππ+=-+=+A A A B A ,而30π<<A ,∴3233πππ<+<A , (第15题)ABCD1A 1B 1C 1D α∴]1,23(sin sin ∈+B A ,∴]332,1(∈+c b a . …14分17.(本题满分15分)如图,在三棱锥ABC P -中,⊥PA 平面ABC ,22==PC AC ,BC AC ⊥,D 、E 、F 分别为AC 、AB 、AP 的中点,M 、N 分别为线段PC 、PB 上的动点,且有BC MN //. (Ⅰ)求证:⊥MN 面PAC ;(Ⅱ)探究:是否存在这样的动点M ,使得二面角F MN E --为直二面角?若存在,求CM 的长度;若不存在,说明理由.17.【解析】(Ⅰ)∵⊥PA 平面ABC ,∴BC PA ⊥,又BC AC ⊥,∴⊥BC 面PAC ; 又∵BC MN //, ∴⊥MN 面PAC . …6分(Ⅱ) 由条件可得,FMD ∠即为二面角F MN E --的平面角;若二面角F MN E --为直二面角,则︒=∠90FMD .在直角三角形PCA 中,设)20(,≤≤=t t CM ,则t PM -=2, 在MDC ∆中,由余弦定理可得,t t CD CM CD CM DM 214160cos 22222-+=︒⋅-+=; 同理可得,)2(2343)2(30cos 22222t t PF PM PF PM FM --+-=︒⋅-+=; 又由222MD FM FD +=,得01322=+-t t ,解得1=t 或21=t .∴存在直二面角F MN E --,且CM 的长度为1或21. …15分18.(本题满分15分)设椭圆)0(12222>>=+b a b y a x 的离心率为21,过点)(1,0P 的动直线l 与椭圆交于BA ,两点,已知当l //x 轴时,364||=AB . (Ⅰ)求椭圆的方程;(第17题)ADPBCFEM N(Ⅱ)当PB AP 2=时,求直线l 的方程.18.【解析】(Ⅰ)由条件:21==a c e ,∴2243b a =, 过点)(1,0P 且平行于x 轴的直线截椭圆 所得弦长为:364122=-b b a , ∴3,422==b a ,∴椭圆的方程为:13422=+y x .…6分(Ⅱ)设),(),,(2211y x B y x A , PB AP 2=,∴0221=+x x ①(1)若直线l 存在斜率,可设l :1+=kx y ,则由⎪⎩⎪⎨⎧+==+113422kx y y x 可得,088)43(22=-++kx x k ∴⎪⎪⎩⎪⎪⎨⎧+-=+-=+221221438438k x x k k x x ,与①联立解得,21±=k ;(2)若直线l 不存在斜率,则l :0=x , ∴13||,13||+=-=BP AP ,易知PB AP 2≠∴直线l 的方程为:121+±=x y .…15分19.(本题满分15分)如图,在平面直角坐标系xOy 中,设21=a ,有一组圆心在x 轴正半轴上的圆nA ( ,2,1=n )与x 轴的交点分别为)0,1(0A 和)0,(11++n n a A .过圆心n A 作垂直于x 轴的直线n l ,在第一象限与圆n A 交于点),(n n n b aB .(Ⅰ)试求数列}{n a 的通项公式;(Ⅱ)设曲边形11++n n n B B A (阴影所示)的面积为n S ,若对任意*N ∈n ,(第18题)OBAxyPlm S S S n≤+++11121 恒成立,试求实数m 的取值范围.19.【解析】(Ⅰ)由条件可得,)1(211-=-+n n a a ,又因为111=-a ,可得数列}1{-n a 是等比数列.故,121-=-n n a ,从而121+=-n n a .…6分(Ⅱ)因为121-=-=n n n a b ,所以)2,12(11--+n n n B , 所以)2,12(1n n n B ++,且)0,12(1+-n n A ,)0,12(1++n n A111+++-=n n n n n n n A B A A B B A n S S S 扇形梯形2111)2(41)22(221---⨯-+⨯⨯=n n n n π1446-⨯-=n π 所以1)41(641-⋅-=n n S π,所以 411)41(164))41(411(64111121--⋅-=+++-=+++-nn n S S S ππππ31816))41(1(31816-<--=n . 故可得实数π31816-≥m .…15分20.(本题满分15分)已知函数4)(-+=xax x f ,3)(+=kx x g . (Ⅰ)当]4,3[∈a 时,函数)(x f 在区间],1[m 上的最大值为)(m f ,试求实数m 的取值范围;(Ⅱ)当]2,1[∈a 时,若不等式)()(|)(||)(|2121x g x g x f x f -<-对任意]4,2[,21∈x x (21x x <)恒成立,求实数k 的取值范围.20.【解析】(Ⅰ)∵43≤≤a ,∴)(x f y =在),1(a 上递减,在)(∞+,a 上递增, 又∵)(x f 在区间],1[m 上的最大值为)(m f ,∴)1()(f m f ≥,得0))(1(≥--a m m ,∴max a m ≥,即 4≥m ; …6分(Ⅱ)∵)()(|)(||)(|2121x g x g x f x f -<- ∴)(|)(|)(|)(|2211x g x f x g x f -<-恒成立xy(第19题)OA 1A 2A 3A 1B 2B 3B 2S 1S令)(|)(|)(x g x f x F -=,∴)(x F 在]4,2[上递增。
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式 其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|}=0P x x -≥,{}12|Q x x =<≤,则R ()P Q =ð ( ) A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3 B .12 cm 3 C .323 cm 3 D .403cm 3 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S .若3a ,4a ,8a 成等比数列,则 ( )A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >4.命题“*n ∀∈N ,()*f n ∈N 且)(f n n ≤”的否定形式是( )A .*n ∀∈N ,()*f n ∉N 且)(f n n >B .*n ∀∈N ,()*f n ∉N 或)(f n n >C .0*n ∃∈N ,0()*f n ∉N 且00)(f n n >D .0*n ∃∈N ,0()*f n ∉N 或00)(f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有 三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF △与A CF △的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF -- C .||1||1BF AF ++ D .22||1||1BF AF ++ 6.设A ,B 是有限集,定义:((,))()d A B card AB card AB =-,其中()card A 表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C +≤. A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立 7.存在函数()f x 满足:对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)|1|f x x +=+D .2(2)|1|f x x x +=+8.如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成二面角A CDB '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上.9.双曲线2212x y -=的焦距是 ,渐近线方程是 .10.已知函数223, 1,()lg(1),1,x x x f x x x ⎧+-⎪⎪=⎨⎪+⎪⎩≥<,则(())3f f =- ,)(f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若4log 3a =,则22a a +=- .13.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数x ,y 满足221x y +≤,则22|||6|3x y x y +-+--的最小值是 .15.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意,x y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= , |b |= .三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知π4A =,22212b ac -=. (Ⅰ)求tan C 的值;(Ⅱ)若ABC △的面积为3,求b 的值.17.(本小题满分15分)姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值.18.(本小题满分15分)已知函数2()(,)f x x ax b a b =++∈R ,记(,)M a b 是|()|f x 在区间[]1,1-上的最大值. (Ⅰ)证明:当||2a ≥时,(,)2M a b ≥;(Ⅱ)当a ,b 满足(,)2M a b ≤时,求||||a b +的最大值.19.(本小题满分15分) 已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB △面积的最大值(O 为坐标原点).20.(本小题满分15分)已知数列{}n a 满足112a =且21*)(n n n a a a n +-=∈N . (Ⅰ)证明:112(*)nn a n a +∈N ≤≤; (Ⅱ)设数列2{}na 的前n 项和为n S ,证明:11()2(2)2(1)*n S n n n n ∈++N ≤≤.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析)(1,2)Q =,求出P 补集与【考点】抛物线的标准方程及其性质 6.【答案】A【解析】命题①显然正确,通过下面文氏图亦可知(,)d A C 表示的区域不大于(,)(,)d A B d B C +的区域,故命题②也正确,故选A .第6题图【提示】①命题根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的。
2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。
1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =ð ( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等 比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()nf n n ≤的否定形式是( )A. **,()n N f n N ∀∈∉,且()f n n > B. **,()n N f n N ∀∈∉或()f n n > C. **00,()n N f n N ∃∈∉且00()f n n > D. **00,()n N f n N ∃∈∉或00()f n n > 5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设,A B 是有限集,定义:(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 7.存在函数()f x 满足,对于任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. 'ACB α∠≥二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2015年浙江省高考数学试卷(理科)附详细解析2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>04.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 05.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C .D .6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( )A . f (sin2x )=sinxB . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x )=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D 是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b 2﹣a 2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x 2﹣2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A . [0,1) B . (0,2] C . (1,2) D . [1,2] 考点:交、并、补集的混合运算.专题:集合.分析: 求出P 中不等式的解集确定出P ,求出P 补集与Q 的交集即可.解答: 解:由P 中不等式变形得:x (x ﹣2)≥0, 解得:x ≤0或x ≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2), ∵Q=(1,2],∴(∁R P )∩Q=(1,2), 故选:C . 点评: 此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 8cm 3B . 12cm 3C .D .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析: 判断几何体的形状,利用三视图的数据,求几何体的体积即可.解解:由三视图可知几何体是下部为棱长为2答: 的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C . 点评: 本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>0考点:等差数列与等比数列的综合.专题:等差数列与等比数列. 分析: 由a 3,a 4,a 8成等比数列,得到首项和公差的关系,即可判断a 1d 和dS 4的符号. 解答: 解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d ,由a 3,a 4,a 8成等比数列,得,整理得:.∵d ≠0,∴,∴,=<0.故选:B .点评: 本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题.4.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0考点:命题的否定.专题:简易逻辑.分根据全称命题的否定是特称命题即可得到析: 结论. 解答: 解:命题为全称命题, 则命题的否定为:∃n 0∈N *,f (n 0)∉N *或f(n 0)>n 0, 故选:D . 点评: 本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C .D .考点:直线与圆锥曲线的关系.专圆锥曲线的定义、性质与方程.题: 分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可. 解答: 解:如图所示,抛物线的准线DE 的方程为x=﹣1,过A ,B 分别作AE ⊥DE 于E ,交y 轴于N ,BD ⊥DE 于E ,交y 轴于M , 由抛物线的定义知BF=BD ,AF=AE , 则|BM|=|BD|﹣1=|BF|﹣1, |AN|=|AE|﹣1=|AF|﹣1, 则===,故选:A点评: 本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析: 命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可. 解答: 解:命题①:对任意有限集A ,B ,若“A ≠B ”,则A ∪B ≠A ∩B ,则card (A ∪B )>card (A ∩B ),故“d (A ,B )>0”成立,若d (A ,B )>0”,则card (A ∪B )>card (A ∩B ),则A ∪B ≠A ∩B ,故A ≠B 成立,故命题①成立,命题②,d (A ,B )=card (A ∪B )﹣card (A ∩B ),d (B ,C )=card (B ∪C )﹣card (B ∩C ),∴d (A ,B )+d (B ,C )=card (A ∪B )﹣card (A ∩B )+card (B ∪C )﹣card (B ∩C )=[card (A ∪B )+card (B ∪C )]﹣[card (A ∩B )+card (B ∩C )]≥card (A ∪C )﹣card (A ∩C )=d (A ,C ),故命题②成立, 故选:A 点评: 本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( )A . f (sin2x )=sinxB . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x )=|x+1|考点:函数解析式的求解及常用方法.专题: 函数的性质及应用.分析: 利用x 取特殊值,通过函数的定义判断正误即可.解答: 解:A .取x=0,则sin2x=0,∴f (0)=0; 取x=,则sin2x=0,∴f (0)=1;∴f (0)=0,和1,不符合函数的定义; ∴不存在函数f (x ),对任意x ∈R 都有f (sin2x )=sinx ;B .取x=0,则f (0)=0; 取x=π,则f (0)=π2+π;∴f (0)有两个值,不符合函数的定义; ∴该选项错误;C .取x=1,则f (2)=2,取x=﹣1,则f (2)=0;这样f (2)有两个值,不符合函数的定义; ∴该选项错误;D .令|x+1|=t ,t ≥0,则f (t 2﹣1)=t ; 令t 2﹣1=x ,则t=;∴;即存在函数f (x )=,对任意x ∈R ,都有f (x 2+2x )=|x+1|; ∴该选项正确. 故选:D . 点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α考点:二面角的平面角及求法.专题:创新题型;空间角.分析: 解:画出图形,分AC=BC ,AC ≠BC 两种情况讨论即可.解答: 解:①当AC=BC 时,∠A ′DB=α; ②当AC ≠BC 时,如图,点A ′投影在AE上,α=∠A ′OE ,连结AA ′, 易得∠ADA ′<∠AOA ′,∴∠A ′DB >∠A ′OE ,即∠A ′DB >α 综上所述,∠A ′DB ≥α, 故选:B .点评: 本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是2 ,渐近线方程是 y=±x . 考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程. 分析: 确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=, ∴焦距是2c=2,渐近线方程是y=±x .故答案为:2;y=±x . 点评: 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))= 0 ,f (x )的最小值是 .考函数的值.点: 专题:计算题;函数的性质及应用. 分析:根据已知函数可先求f (﹣3)=1,然后代入可求f (f (﹣3));由于x ≥1时,f (x )=,当x <1时,f (x )=lg (x 2+1),分别求出每段函数的取值范围,即可求解 解答:解:∵f (x )=,∴f (﹣3)=lg10=1,则f (f (﹣3))=f (1)=0, 当x ≥1时,f (x )=,即最小值,当x <1时,x 2+1≥1,(x )=lg (x 2+1)≥0最小值0,故f (x )的最小值是. 故答案为:0;.点评: 本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是 π ,单调递减区间是 [k π+,k π+](k ∈Z ) . 考点: 两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析: 由三角函数公式化简可得f (x )=sin (2x ﹣)+,易得最小正周期,解不等式2k π+≤2x ﹣≤2k π+可得函数的单调递减区间. 解答: 解:化简可得f (x )=sin 2x+sinxcosx+1 =(1﹣cos2x )+sin2x+1=sin (2x ﹣)+,∴原函数的最小正周期为T==π, 由2k π+≤2x ﹣≤2k π+可得k π+≤x ≤k π+,∴函数的单调递减区间为[k π+,k π+](k ∈Z )故答案为:π;[k π+,k π+](k ∈Z ) 点本题考查三角函数的化简,涉及三角函数的评: 周期性和单调性,属基础题.12.(4分)(2015•浙江)若a=log 43,则2a +2﹣a = .考点:对数的运算性质.专题:函数的性质及应用.分析: 直接把a 代入2a +2﹣a ,然后利用对数的运算性质得答案.解答: 解:∵a=log 43,可知4a =3, 即2a =,所以2a +2﹣a =+=.故答案为:.点评: 本题考查对数的运算性质,是基础的计算题.13.(4分)(2015•浙江)如图,三棱锥A ﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.考点:异面直线及其所成的角.专题:空间角.分析: 连结ND ,取ND 的中点为:E ,连结ME 说明异面直线AN ,CM 所成的角就是∠EMC 通过解三角形,求解即可. 解答: 解:连结ND ,取ND 的中点为:E ,连结ME ,则ME ∥AN ,异面直线AN ,CM 所成的角就是∠EMC , ∵AN=2,∴ME==EN ,MC=2, 又∵EN ⊥NC ,∴EC==,∴cos ∠EMC===.故答案为:.点评: 本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 3 . 考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆. 分析: 根据所给x ,y 的范围,可得|6﹣x ﹣3y|=6﹣x ﹣3y ,再讨论直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值. 解答: 解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y|=6﹣x ﹣3y , 如图直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x+y ﹣2≥0,即|2+y ﹣2|=2x+y ﹣2,此时|2x+y ﹣2|+|6﹣x ﹣3y|=(2x+y ﹣2)+(6﹣x ﹣3y )=x ﹣2y+4,利用线性规划可得在A (,)处取得最小值3;在直线的下方(含直线),即有2x+y ﹣2≤0, 即|2+y ﹣2|=﹣(2x+y ﹣2),此时|2x+y ﹣2|+|6﹣x ﹣3y|=﹣(2x+y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y ,利用线性规划可得在A (,)处取得最小值3.综上可得,当x=,y=时,|2x+y ﹣2|+|6﹣x ﹣3y|的最小值为3. 故答案为:3.点评: 本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x ,y ∈R ,,则x 0=1 ,y 0=2 ,|= 2 . 考点: 空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t ),可得|﹣(|2=(x+)2+(y ﹣2)2+t 2,由题意可得当x=x 0=1,y=y 0=2时,(x+)2+(y ﹣2)2+t 2取最小值1,由模长公式可得|.解答: 解:∵•=||||cos <•>=cos <•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m ,n ,t ), 则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t ), ∵﹣()=(﹣x ﹣y ,,t ), ∴|﹣(|2=(﹣x ﹣y )2+()2+t 2 =x 2+xy+y 2﹣4x ﹣5y+t 2+7=(x+)2+(y ﹣2)2+t 2,由题意当x=x 0=1,y=y 0=2时,(x+)2+(y ﹣2)2+t 2取最小值1, 此时t 2=1,故|==2故答案为:1;2;2 点评: 本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(14分)(2015•浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=,b 2﹣a 2=c 2.(1)求tanC 的值;(2)若△ABC 的面积为3,求b 的值.考点:余弦定理.专题:解三角形.分析: (1)由余弦定理可得:,已知b 2﹣a 2=c 2.可得,a=.利用余弦定理可得cosC .可得sinC=,即可得出tanC=. (2)由=×=3,可得c ,即可得出b . 解答:解:(1)∵A=,∴由余弦定理可得:,∴b 2﹣a 2=bc ﹣c 2, 又b 2﹣a 2=c 2.∴bc ﹣c 2=c 2.∴b=c .可得,∴a 2=b 2﹣=,即a=. ∴cosC===.∵C ∈(0,π), ∴sinC==. ∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评: 本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.考点: 二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析: (1)以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可. 解答: (1)证明:如图,以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系.则BC=AC=2,A 1O==,易知A 1(0,0,),B (,0,0),C (﹣,0,0),A (0,,0),D (0,﹣,),B 1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A 1D ⊥OA 1, 又∵•=0,∴A 1D ⊥BC ,又∵OA 1∩BC=O ,∴A 1D ⊥平面A 1BC ; (2)解:设平面A 1BD 的法向量为=(x ,y ,z ),由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(0,,1), ∴cos <,>===,又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.点评: 本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015•浙江)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M (a ,b )≥2; (2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值. 考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析: (1)明确二次函数的对称轴,区间的端点值,由a 的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明; (2)讨论a=b=0以及分析M (a ,b )≤2得到﹣3≤a+b ≤1且﹣3≤b ﹣a ≤1,进一步求出|a|+|b|的求值. 解答: 解:(1)由已知可得f (1)=1+a+b ,f (﹣1)=1﹣a+b ,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f (x )在[﹣1,1]上单调, 所以M (a ,b )=max{|f (1),|f (﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M (a ,b )≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b )﹣(1﹣a+b )|≥|2a|≥|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x ∈[﹣1,1].有﹣2≤x 2+ax+b ≤2得到﹣3≤a+b ≤1且﹣3≤b ﹣a ≤1,易知|a|+|b|=max{|a ﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3. 点评: 本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M (a ,b )是|f(x )|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)(2015•浙江)已知椭圆上两个不同的点A ,B 关于直线y=mx+对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题. 分析: (1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程可得(m 2+2)y 2﹣2mny+n 2﹣2=0,设A (x 1,y 1),B (x 2,y 2).可得△>0,设线段AB 的中点P (x 0,y 0),利用中点坐标公式及其根与系数的可得P ,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB 与x 轴交点横坐标为n ,可得S △OAB =,再利用均值不等式即可得出.解答: 解:(1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程,可得(m 2+2)y 2﹣2mny+n 2﹣2=0,设A (x 1,y 1),B (x 2,y 2).由题意,△=4m 2n 2﹣4(m 2+2)(n 2﹣2)=8(m 2﹣n 2+2)>0, 设线段AB 的中点P (x 0,y 0),则.x 0=﹣m ×+n=, 由于点P 在直线y=mx+上,∴=+,∴,代入△>0,可得3m 4+4m 2﹣4>0, 解得m 2,∴或m .(2)直线AB 与x 轴交点横坐标为n ,∴S△OAB==|n|•=,由均值不等式可得:n 2(m 2﹣n 2+2)=,∴S△AOB=,当且仅当n 2=m 2﹣n 2+2,即2n 2=m 2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法. 分析: (1)通过题意易得0<a n ≤(n ∈N *),利用a n ﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n ﹣a n+1累加得S n =﹣a n+1,利用数学归纳法可证明≥a n ≥(n ≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n ≤(n ∈N *),又∵a 2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a 1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n ∈N *).点评: 本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的. 1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.3. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4. 命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6. 设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7. 存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8. 如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线2212xy-=的焦距是,渐近线方程是.10. 已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 11. 函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12. 若4log 3a =,则22a a-+= .【答案】334. 【解析】13. 如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13. 若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15. 已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值. (1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).20.(本题满分15分)已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a的前n项和为n S,证明112(2)2(1)nSn n n≤≤++(n∈*N).。
2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{an}满足a1=且an+1=an﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{an2}的前n项和为Sn,证明(n∈N*).2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁RP=(0,2),∵Q=(1,2],∴(∁RP)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{an}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card (A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card (B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是2,渐近线方程是y=±x.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.考点:函数的值.专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2.考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.考点:余弦定理.专题:解三角形.分析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解答:解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc ﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f (x )|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)(2015•浙江)已知椭圆上两个不同的点A ,B 关于直线y=mx+对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).考点:直线与圆锥曲线的关系. 专题:创新题型;圆锥曲线中的最值与范围问题. 分析: (1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A (x1,y1),B (x2,y2).可得△>0,设线段AB 的中点P (x0,y0),利用中点坐标公式及其根与系数的可得P ,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB 与x 轴交点横坐标为n ,可得S △OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB 的方程为x=﹣my+n ,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0, 设A (x1,y1),B (x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB 的中点P (x0,y0),则.x0=﹣m×+n=,由于点P 在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0, 解得m2,∴或m.(2)直线AB 与x 轴交点横坐标为n ,∴S △OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S △AOB =,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S △AOB 取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015•浙江)已知数列{an}满足a1=且an+1=an ﹣an2(n ∈N*)(1)证明:1≤≤2(n ∈N*);(2)设数列{an2}的前n 项和为Sn ,证明(n ∈N*).考点: 数列的求和;数列与不等式的综合. 专题: 创新题型;点列、递归数列与数学归纳法. 分析:(1)通过题意易得0<an≤(n ∈N*),利用an ﹣an+1=可得≥1,利用==≤2,即得结论;(2)通过=an ﹣an+1累加得Sn=﹣an+1,利用数学归纳法可证明≥an≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<an≤(n ∈N*),又∵a2=a1﹣=,∴==2,又∵an﹣an+1=,∴an>an+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=an﹣an+1,=an﹣1﹣an,…,=a1﹣a2,累加,得Sn=++…+=a1﹣an+1=﹣an+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥an≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则ak+1=﹣+,由二次函数单调性知:an+1≥﹣+=≥,an+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥an≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
2015年浙江名校高考模拟试卷 数学卷(九)(理科)注意事项:本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
参考公式:参考公式:柱体的体积公式 球的表面积公式V Sh = 24S R π=其中S 表示柱体的底面积,h 表示柱体的高 球的体积公式 锥体的体积公式 343V R π=13V Sh =其中R 表示球的半径 其中S 表示锥体的底面积,h 表示锥体的高 台体的体积公式()1213V h S S =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高选择题部分(共40分)第I 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(原创题).已知全集为R ,集合{}{}221,680xA xB x x x =≥=-+≤,则R AC B = ( )A .{}0x x ≤B .{}24x x ≤≤C .{}024x x x ≤<>或D .{}024x x x ≤<≥或 2.(原创题)、已知a ,R b ∈,则“4a b +>”是“4ab >”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.(原创题)已知56cos 3sin =+x x ,则=-)6cos(πx ( ) A.53- B. 53 C. 54- D. 54-4.(原创题)若函数1)(2-+=x a x f x在[)+∞,0上单调递增,则实数a 的取值范围为( )A.[]2,0B.[]0,2-C.[)+∞,0D.(]0,∞-5.(改编题2104学军第五次月考)、若直线cos sin 10x y θθ+-=与圆221(cos )(1)16x y θ-+-=相切,且θ为锐角,则这条直线的斜率是 ( )A .B .C D6. (改编题·2014南京市模拟).已知ABC ∆中,2290==︒=∠BC AB ACB ,,将ABC ∆绕BC 旋转得PBC ∆,当直线PC 与平面PAB 所成角的正弦值为66时,A P 、两点间的距离是 ( ) A.2 B.4 C.22 D.327.(引用题·2013年杭高模拟题)已知双曲线C :22221x y a b-=的右焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为H ,若FH 的中点M 在双曲线C 上,则双曲线C 的离心率为 ( )A .2B .3 C .26 D .2 8.(引用题·2011年山东竞赛模拟)已知101033221-++-+-+-=n n n n S n ,N n *∈,则S n的最小值为 ( ) A.108 B.96 C,120 D.112非选择题部分(共110分)注意事项:1.用黑色的字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题(本大题共7小题,第9-12题,每小题6分,第13-15题,每小题4分,共36分.)9. (原创题)函数)62sin()(π+=x x f ,则)43(πf = ;若0)(=x f ,则x = ; 若)(x f y =图象向右平移m (0m >)个单位,得到函数)(x g y =的图象,若)(x g y =在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增,则m 的最小值为 .10. (原创题)已知直线l :4mx y -=,若直线l 与直线(1)2x m m y +-=垂直,则m 的值为_________ ;若直线l 被圆C :22280x y y +--=截得的弦长为4,则m 的值为 ;11.(原创题).若实数,x y 满足约束条件42y x x y x y k ≥⎧⎪+≤⎨⎪-≥⎩,已知点(,)x y 所表示的平面区域为三角形,则实数k 的取 值范围为 ,又2z x y =+有最大值8,则实数k = . 12.(改编题·2015年湖州期末)已知某几何体的三视图如图所示,则该几何体的体积为 ;表面积为 .13.(改编题·2015年台州一模)已知平面向量,1),3,1(=-=→→→b a a 则→b 的取值范围是 .14.(改编题·2014年台州一中期中). 点P 为椭圆()0,012222>>=+b a by a x 在第一象限的弧上任意一点,过P 引x 轴,y 轴的平行线,分别交直线x aby -=于R Q ,,交y 轴,x 轴于N M ,两点,记OMQ ∆与ONR ∆的面积分别为21,S S ,当2=ab 时,2221S S +的最小值为 .15.(改编题·2014年绍兴一模)已知函数a x x f x+--=2)(,⎩⎨⎧>+-≤=22)1(2)()(x x f x x f x g ,且ax x g y -=))(恰有三个不同零点,则实数a 的取值范围为 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) (本题主要考查余弦定理,三角变换等基础知识,同时考查求解运算能力,属容易题)16.(改编题·2014年全国1理高考)(本题满分15分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且bc c b a )32()(22-=--,2cos sin sin 2CB A =,BC 边上的中线AM 的长为7。
(1)求角A 和角B 的大小; (2)求ABC ∆的面积。
17.(改编题·2014年金华一模)(本题满分15分)如图,平面PAC ⊥平面ABC ,BC AC ⊥,△PAC 为等边三角形,PE ∥BC ,过BC 作平面交AP 、AE 分别于点M 、N . (1)求证:MN ∥PE ; (2) 设ANAPλ=,求λ 的值,使得平面ABC 与平面MNC 所成的锐二面角的大小为45︒. 18.(引用题·2015湖州期末)(本题满分15分)已知椭圆C :22221x y a b+=(0a b >>)的右焦点为()F 1,0,上顶点为()0,1B .(1)过点B 作直线与椭圆C 交于另一点A ,若F 0AB⋅B =,求F ∆AB 外接圆的方程; (2)若过点()2,0M 作直线与椭圆C 相交于两点G ,H ,设P 为椭圆C 上动点,且满足G t O +OH =OP (O 为坐标原点).当1t ≥时,求G ∆O H 面积S 的取值范围.19.(改编题·广东竞赛试卷)(本题满分15分)在单调递增数列}{n a 中,11=a ,22=a ,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列}{n a 的通项公式(将n a 用n 表示); (3)设数列}1{na 的前n 项和为n S ,证明:24+<n n S n ,*n N ∈.20.(改编题台州中学统练3)(本题满分14分)已知,a b 是实数,函数2()3f x x a =+,()2g x x b =+,若()()0f x g x ⋅≥在区间I 上恒成立,则称()f x 和()g x 在区间I 上为“Ω函数”. (Ⅰ)设0a >,若()f x 和()g x 在区间[1,)-+∞上为“Ω函数”,求实数b 的取值范围;(Ⅱ)设0a <且a b ≠,若()f x 和()g x 在以,a b 为端点的开区间上为“Ω函数”,求a b - 的最大值.2015年高考模拟试卷 数学卷(理科) 答题卷一、选择题:本大题共8小题,每小题5分,共40分.二、填空题(本大题共7小题,第9-12题,每小题6分,第13-15题,每小题4分,共36分.)9 _________ ___________ ____________ 10 _____________ _______________11 ________________ ____________________ 12 _____________ _______________13 __________________ 14 ______________________ 15 ________________________三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分15分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且bc c b a)32()(22-=--,2cos sin sin 2CB A =,BC 边上的中线AM 的长为7。
(Ⅰ) 求角A 和角B 的大小; (Ⅱ) 求ABC ∆的面积。
17.(本题满分15分)如图,平面PAC ⊥平面ABC ,BC AC ⊥,△PAC 为等边三角形,PE ∥BC ,过BC 作平面交AP 、AE 分别于点M 、N .(1)求证:MN ∥PE ; (2) 设ANAPλ=,求λ 的值,使得平面ABC 与平面MNC 所成的锐二面角的大小为45︒.18.(本题满分15分)已知椭圆C :22221x y a b+=(0a b >>)的右焦点为()F 1,0,上顶点为()0,1B .(1)过点B 作直线与椭圆C 交于另一点A ,若F 0AB⋅B =,求F ∆AB 外接圆的方程;(2)若过点()2,0M 作直线与椭圆C 相交于两点G ,H ,设P 为椭圆C 上动点,且满足G t O +OH =OP (O 为坐标原点).当1t ≥时,求G ∆O H 面积S 的取值范围.19.(本题满分15分)在单调递增数列}{n a 中,11=a ,22=a ,且12212,,+-n n n a a a 成等差数列,22122,,++n n n a a a 成等比数列, ,3,2,1=n .(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列}{n a 的通项公式(将n a 用n 表示); (3)设数列}1{na 的前n 项和为n S ,证明:24+<n n S n ,*n N ∈.20.(本题满分14分)已知,a b 是实数,函数2()3f x x a =+,()2g x x b =+,若()()0f x g x ⋅≥在区间I 上恒成立,则称()f x 和()g x 在区间I 上为“Ω函数”.(Ⅰ)设0a >,若()f x 和()g x 在区间[1,)-+∞上为“Ω函数”,求实数b 的取值范围;(Ⅱ)设0a <且a b ≠,若()f x 和()g x 在以,a b 为端点的开区间上为“Ω函数”,求a b - 的最大值.2015年高考模拟试卷 数学参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. C 2.D 3. B 4. B 5.A 6. C 7.D 8.A 二、填空题:本大题共7小题,第9-12题,每小题6分,第13-15题,每小题4分,共36分. 9. 23-; ⎭⎬⎫⎩⎨⎧∈-=Z k k x x ,122ππ;6π 10. 0或2; 2±11.2<k ; 4- 12.2π;2 13.[]3,1 14.2115. )0,223(+-三、解答题:本大题共5小题,共72分.16.(本题满分15分)解:(1)由22222()(2,a b c bc a b c --=--=得222cos 2b c a A bc +-∴==.6A π= …………4分由2cos sin sin 2C B A =,得2cos 1sin 21C B +=即sin 1cos B C =+则0cos <C ,即C 为钝角,故B 为锐角,且π65=+C B则πππ321)3cos(cos 1)65sin(=⇒-=+⇒+=-C C C C故6π=B . …………8分(2)设x AC =,由余弦定理得22227)21(224=-⋅⋅-+=x x x x AM 解得2=x 故3232221=⋅⋅⋅=∆ABC S . …………15分17.(本题满分15分).法一: (1) 证明:因为 PE ∥CB , 所以BC ∥平面APE …………… 3分又依题意平面ABC 交平面APE 于MN ,故MN ∥BC ,所以 MN ∥PE ……………… 6分(2)解:由(Ⅰ)知MN ∥BC ,故C 、B 、M 、N共面,平面ABC 与平面MNC 所成的锐二面角即N —CB —A . 因为平面PAC ⊥平面ABC ,平面PAC∩ 平面ABC = AC ,且CB ⊥AC ,所以CB ⊥平面PAC .故CB ⊥CN ,即知NCA ∠为二面角N —CB —A 的平面角……11分 所以45NCA ∠=︒.在△NCA 中运用正弦定理得,sin 451sin 75AN AC ︒=︒.所以,1ANAPλ==. ……14分方法二:(1) 证明:如图以点C 为原点建立 空间直角坐标系C -xyz ,不妨设CA =1,CB =t (t >0),P E C B μ=,则(0,0,0)C , (1,0,0)A ,(0,,0)B t ,1(,0,2P,1(,,2E t μ. …………… 3分 由AM ANAE APλ==,得1(1,)2M t λλμ-,1(1,0,)2N λ-,(0,,0)MN t λμ=-.0n =(0,0,1) 是平面ABC 的一个法向量,且0n 0MN ⋅=,故0n MN ⊥.又因为MN ⊄平面ABC ,即知MN ∥平面ABC . ……………… 6分(2)解:(0,M N tλμ=-,1(1,,)2CM t λλμ=-,设平面CMN 的法向量1111(,,)n x y z =,则10n MN ⋅=,10n CM ⋅=,可取1(1,0n =,…… 9分又0n =(0,0,1) 是平面ABC 的一个法向量.由0101|||cos |||||n n n n θ⋅=⋅,以及45θ=︒可得, …………12分 即22440λλ+-=.解得1λ(将1λ=-,故1λ. (15)分18.(本题满分15分).解:(1) 由右焦点为()1,0F ,上顶点为()0,1B 得1,1b c ==, 所以22a =. …………………………………………………………………………3分 (,,a b c 每个1分)所以椭圆方程为22121x y +=,因为0AB BF ⋅=,可求得点41(,)33A --,………………………………………………4分 因为ABF ∆为直角三角形,AF 中点坐标11(,)66--,且AF =所以ABF ∆外接圆方程为221125()()6618x y +++=.………………………………………………6分(2)设过点M 的直线方程为2x my =+, -………………………………………………7分,G H 两点的坐标分别为11(,)x y ,22(,)x y ,联立方程221,22,x y x my ⎧+=⎪⎨⎪=+⎩得22(2)m y +4my +20+=,28160m ∆=->⇒22m >,因为12242m y y m +=-+,12222y y m =+,-………………………………………………----9分 所以12||y y-===,………………………………………………11分 因为OG OH tOP +=,所以点1212(,)x x y y P t t++, 因为点P 在椭圆C 上, 所以有221212()2()2x x y y t t+++=, 化简得2221212[()4]2()2m y y y y t ++++=, 因为12242my y m +=-+,所以得 2222244()(2)8()162022m m m m t m m -++-+-=++,化简22162m t=-,……………………-13分 因为1t ≥,所以2214m <≤,因为1212||2OGHS y y ∆=⋅⋅-=,((0,t t =∈,所以OGH S ∆== 令4()g t t t=+,因为()g t 在(0,2]t ∈上单调递减,在[2,t ∈上单调递增,所以0OGH S ∆<≤………………………………………………15分 19.(本题满分15分)解1)(2)得33a =,492a =,56a =,68a =.⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2……………9分证明:(3)由(2),得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812.显然,2114341111+⨯=<==a S ; 10分 当n 为偶数时,42n n S n -=+22211111148244466(2)(2)2nn n n n ⎡⎤++++++-⎢⎥⨯⨯⨯+++⎣⎦ 1111114824244646(2)(2)2n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫<++++++-⎢⎥ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯+++⎝⎭⎝⎭⎝⎭⎣⎦ 111111114824466822n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++--⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 11480222n n n ⎛⎫=--= ⎪++⎝⎭; …………………………12分当n 为奇数(3≥n )时,14144(1)8422(1)2(1)(3)2n n n n n n nS S n a n n n n n ---=+-<+-++-++++ 128401(1)(3)2(1)(2)(3)n n n n n n n n n ⎡⎤-=+-=-<⎢⎥+++++++⎣⎦. …………………………14分综上所述,402n n S n -<+,即24+<n nS n ,*n N ∈.…………………………15分20.(本题满分14分)(Ⅰ)因为()f x 和()g x 在区间[1,)-+∞上为“Ω函数”,所以()()0f x g x ⋅≥,在[1,)x ∈-+∞上恒成立,即[1,)x ∈-+∞,2(3)(2)0x a x b ++≥ ∵0a > ∴230x a +≥11 ∴20x b +≥ 即2b x ≥- ∴max (2)b x ≥- ∴2b ≥ ………………4分(2)①当b a <时,因为()f x 和()g x 在以,a b 为端点的开区间上为“Ω函数”,所以,()()0f x g x ⋅≥在(,)x b a ∈上恒成立,即(,)x b a ∈,2(3)(2)0x a x b ++≥恒成立 0,(,),20b a x b a x b <<∴∀∈+<,2(,),3,x b a a x ∴∀∈≤-∴23b a b <≤- ∴2211133()61212a b b b b -≤--=-++≤②当0a b <<时,因为()f x 和()g x 在以,a b 为端点的开区间上为“Ω函数”,所以, 即(,)x a b ∈,2(3)(2)0x a x b ++≥恒成立 0,(,),20b x a b x b <∴∀∈+<, 2(,),3,x a b a x ∴∀∈≤- 213,0,3a a a ∴≤-∴-≤≤ ∴13b a -<③当0a b <<时,因为()f x 和()g x 在以,a b 为端点的开区间上为“Ω函数”, 所以,即(,)x a b ∈,2(3)(2)0x a x b ++≥恒成立0,b >而0x =时,2(3)(2)0x a x b ab ++=<不符合题意,④当0a b <=时,由题意:(,0)x a ∈,22(3)0x x a +≥恒成立∴230x a +≤ ∴103a -≤<∴13b a -≤ 综上可知,max 13a b -=. …………………………14分。