八年级第二学期数学四边形--正方形与梯形
- 格式:doc
- 大小:231.50 KB
- 文档页数:8
四边形的存在性内容分析本节包含两部分,平行四边形的存在性及梯形的存在性,常见题型是存在菱形和正方形,根据题目中的条件及特殊的平行四边形的性质构造等量关系,求出相应的点的坐标;常见的梯形的问题中,经常需要添加辅助线,考察学生的分类讨论思想及逻辑思维能力.知识结构模块一平行四边形的存在性知识精讲平行四边形的问题是近几年来考试的热点,考察学生的分类讨论的思想.常见的题型是在平面直角坐标系中已知三点和第四点构成平行四边形,求第四点;或者已知两点,另外两点在某函数图像上,四点构成平行四边形;利用两点间的距离公式和平移的思想,结合题目中的条件构造等量关系进行求解即可.在几何中,平行四边形的判定方法有如下几条:①两组对边互相平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分;⑤两组对角相等。
在压轴题中,往往与函数(坐标轴)结合在一起,运用到④⑤的情况较少,更多的是从边的平行、相等角度来得到平行四边形.- 2 -ABCM 1M 2M 31、 知识内容:已知三点后,其实已经固定了一个三角形(平行四边形的一半),如图ABC .第四个点M 则有3种取法,过3个顶点作对边的平行线且取相等长度即可(如图中3个M 点).2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标; (2) 用一点及其对边两点的关系,求出一个可能点; (3) 更换顶点,求出所有可能的点;(4) 根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】 如图所示,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =24 cm ,BC =26 cm ,动点P 从点A 出发沿AD 方向向点D 以1cm /s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm /s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形; (2)经过多长时间,四边形PQBA 是矩形.例题解析思路剖析【例2】 如图,在平面直角坐标系中,点A 的坐标为A (3, 0),点B 的坐标为B (0, 4).(1)求直线AB 的解析式;(2)点C 是线段AB 上一点,点O 为坐标原点,点D 在第二象限,且四边形BCOD 为菱形,求点D 坐标;(3)在(2)的条件下,点E 在x 轴上,点P 在直线AB 上,且以B 、D 、E 、P 为顶点 的四边形是平行四边形,请写出所有满足条件的点P 的坐标.【例3】 如图,在平面直角坐标系中,过点(2,3)的直线y =kx +2与x 轴交于点A ,与y 轴交于点B ,将此直线向下平移3个单位,所得到的直线l 与x 轴交于点C . (1)求直线l 的表达式;(2)点D 为该平面直角坐标系内的点,如果以点A 、B 、C 、D 为顶点的四边形是平行 四边形,求点D 的坐标.ABOxyAB Oxy【例4】如图,已知直线l1经过点A(-5,-6)且与直线l2:362y x=-+平行,直线l 2与x轴、y轴分别交于点B、C.(1)求直线l1的表达式及其与x轴的交点D的坐标;(2)判断四边形ABCD是什么四边形.并证明你的结论;(3)若点E是直线AB上一点,平面内存在一点F,使得四边形CBEF是正方形,求点E的坐标,请直接写出答案.【例5】直线364y x=-+与坐标轴分别交与点A、B两点,点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O B A→→运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式.(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.xOy- 4 -【例6】 已知:如图,四边形ABCD 是菱形,∠B 是锐角,AF ⊥BC 于点F , CH ⊥AD 于点H , 在AB 边上取点E ,使得AE =AH ,在CD 边上取点G ,使得CG =CF .联结EF 、FG 、GH 、HE .(1)求证:四边形EFGH 是矩形;(2)当∠B 为多少度时,四边形EFGH 是正方形.并证明.【例7】 如图所示,平面直角坐标系中,O 是坐标原点,正比例函数y =kx (x 为自变量)的图像与双曲线2y x=-交于点A ,且点A 的横坐标为2-.(1)求k 的值;(2)将直线y =kx (x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、C ,如点D 在直线BC 上,在平面直角坐标系中求一点,使以O 、B 、D 、P 为顶点的四边形是菱形.ABC OxyABCDEFGH- 6 -【例8】 在直角△ABC 中,∠C =90°,∠A =30°,AB =4,将一个30°角的顶点P 放在AB边上滑动,保持30°角的一边平行于BC ,且交边AC 于点E ,30°的另一边交射线BC 于点D ,连ED .(1)如图,当四边形PBDE 为等腰梯形时,求AP 长;(2)四边形PBDE 有可能为平行四边形吗.若可能,求出PBDE 为平行四边形时,AP 的长,若不可能,说明理由;(3)若点D 在BC 边上(不与B 、C 重合),试写出线段AP 的取值范围.ABCDE P梯形的分类讨论题多见于各类压轴题中,由于这类题目都与图形的运动有关,需要学生有一定的想象力、分析力和运算力.梯形的主要特征是两底平行,特殊梯形又可分为等腰梯形和直角梯形两大类.常见题型为在直角坐标平面内已知三点求第四点,抓住梯形两底平行的特征,对应的一次函数的解析式的k 相等而b 不相等.若是等腰梯形,常需添设辅助线,过上底的两个顶点作下底的垂线,构造两个全等的直角三角形.若是直角梯形,则需连接对角线或过上底的一顶点作下底的高构造直角三角形.【例9】 在梯形ABCD 中,AD ∥BC ,AD =12cm ,DC =8cm ,且∠C =60°,动点P 以1cm/s的速度从点A 出发,沿AD 方向向点D 移动,同时,动点Q 以2cm /s 的速度从点C 出发,沿C 出发,沿CB 方向向点B 移动,连接PQ ,(1)得四边形ABQP 和四边形PQCD .若设移动的时间为t 秒(0<t <7),四边形PQCD 的面积为ycm ²,求y 与t 的函数关系式;(2)当t 为何值时,四边形QPCD 是等腰梯形.说明理由; (3)当t 为何值时,四边形PQCD 是直角梯形.模块二 梯形的存在性知识精讲例题解析QPBCDA- 8 -【例10】 如图,一次函数33y x b =+的图像与x 轴相交于点A (53,0)、与y 轴相交于点B . (1)求点B 的坐标及∠ABO 的度数;(2)如果点C 的坐标为(0,3),四边形ABCD 是直角梯形,求点D 的坐标【例11】 如图,在平行四边形ABCD 中,O 为对角线的交点,点G 为BC 的中点,点E 为线段BC 延长线上的一点,且CE =12BC ,过点E 作EF //CA ,交CD 于点F ,联结OF .(1)求证:OF //BC ;(2)如果四边形OBEF 是等腰梯形,判断四边形ABCD 的形状,并给出证明.【例12】 如图,在平面直角坐标系中,直线l 1经过O 、A (1,2)两点,将直线l 1向下平移6AB C OxyABCDEFGO个单位得到直线l 2,交x 轴于点C ,B 是直线l 2上一点,且四边形ABCO 是平行四边形.(1)求直线l 2的表达式及点B 的坐标;(2)若D 是平面直角坐标系内的一点,且以O 、A 、C 、D 四个点为顶点的四边形是等腰梯形,求点D 的坐标.【例13】 已知一次函数142y x =-+的图像与x 轴、y 轴分别相交于点A 、B ,梯形AOBC 的边AC =5.(1) 求点C 的坐标;(2) 如果点A 、C 在一次函数y =kx +b (k 、b 为常数,且k <0)的图像上,求这个一次 函数的解析式【例14】 如图1,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段APAOC xy为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)当点P在x轴上运动(P不与O重合)时,求证:∠ABQ=90°;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形.若存在,请求出点P 的坐标;若不存在,请说明理由.ABOPQ xyABO xy图1备用图- 10 -【例15】 在直角平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,连接OD . (1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标;(3)若动点P 在x 轴的正半轴上,以每秒2个单位长的速度向右运动;动点Q 在射线CM 上,且以每秒1个单位长的速度向右运动,若P 、Q 分别由O 点、C 点同时出发,问几秒后,以P 、Q 、O 、D 为顶点的四边形可以成为平行四边形;以P 、Q 、O 、D 为顶点的四边形是否可以成为等腰梯形.写出理由.1AO4CxMy- 12 -【习题1】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点C ,且点C 为线段OB 的中点. (1)求直线AC 的表达式;(2)如果四边形ACPB 是平行四边形,求点P 的坐标.【拓展】如果以A 、C 、P 、B 为顶点的四边形是平行四边形,求点P 的坐标.【习题2】 如图,在平面直角坐标系中,直线162y x =-+与y 轴交于点A ,与直线12y x =相交于点B ,点C 是线段OB 上的点,且△AOC 的面积为12. (1)求直线AC 的表达式;(2)设点P 为直线AC 上的一点,在平面内是否存在点Q ,使四边形OAPQ 为菱形, 若存在,求点Q 的坐标,若不存在,请说明理由.随堂检测ABCOxy ABO xy【习题3】 如图,已知在梯形ABCD 中,AD//BC ,∠B =90°,AD =24cm ,AB =8cm ,BC =26cm ,动点P 从A 点开始沿AD 边以1cm /s 的速度向D 运动,动点Q 从C 点开始沿CB 边以3 cm /s 的速度向B 运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动.设运动时间为t 秒,当t 为何值时,线段PQ =CD .【作业1】 如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像相交于A 、B两点,点A 的坐标为(2,3),点B 的横坐标为6. (1)求反比例函数与一次函数的解析式;(2)如果点C 、D 分别在x 轴、y 轴上,四边形ABCD 是平行四边形,求直线CD 的表达式.课后作业ABCDQPAB CDABOxy【作业2】已知一条直线y=kx+b在y轴上的截距为2,它与x轴、y轴的交点分别为A、B,且△ABO的面积为4.(1)求点A的坐标;(2)若k<0,在直角坐标平面内有一点D,使四边形ABOD是一个梯形,且AD∥BO,其面积又等于20,试求点D的坐标.【作业3】定义[p,q]为一次函数y=px+q的特征数.(1)若特征数为[3,k-1]的一次函数为正比例函数,求k的值;(2)一次函数y=kx+b的图像与x轴交于点A(3-,0),与y轴交于点B,且与正比例函数43y x=的图像的交点为C (m,4).求过A、B两点的一次函数的特征数;(3)在(2)的条件下,若点D与A、O、C构成的四边形为平行四边形,直接..写出所有符合条件的点D的坐标.A BCO x y- 14 -【作业4】 如图所示,直线y =-2x +12,分别与x 轴、y 轴交于点A 、B ,点C 是线段AB 的中点,点D 在线段OC 上,点D 的纵坐标是4. (1) 求点C 的坐标和直线AD 的解析式;(2) P 是直线AD 上的点,请你找出一点Q ,使得以O 、A 、P 、Q 这四个点为顶点的 四边形是菱形,写出所有满足条件的Q 的坐标.BA Cyx。
八年级数学下册《特殊平行四边形与梯形》测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2分)一张矩形纸片按如图甲和乙所示对折,然后沿着图丙中的虚线剪下,得到①,②两部分,将①展开后得到的平面图形是( )A .三角形B .矩形C .菱形D .梯形2.(2分)顺次连接等腰梯形四边中点所得四边形是( )A .菱形B .正方形C .矩形D .等腰梯形3.(2分)如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( )A .1B .2C .3D .不能确定4.(2分)如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是( )A .24B .20C .16D .125.(2分)四边形ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( )A .AB =AD B .OA =OBC .AC =BD D .DC ⊥BC6.(2分)如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于( )A .57B .512C .513 D .514 7.(2分)如图,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为( )A .20B .22C .24D .308.(2分)如图,一张矩形纸片沿BC 折叠,顶点A 落在A ′处,第二次过A ′再折叠,使折痕DE ∥BC ,若AB=2,AC=3,则梯形BDEC 的面积为( )A .8B .9C .10D .119.(2分)一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( )A .2<a<14B .2<a<26C .6<a<18D .6<a<2610.(2分)判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分11.(2分)下列图形是轴对称图形的是 ( )A .平行四边形B .直角三角形C .菱形D .任意三角形二、填空题12.(3分)已知正方形的面积为4,则正方形的边长为 ,对角线长为 .13.(3分)如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.14.(3分)正方形是特殊的平行四边形,请写出一条正方形具有而平行四边形不具有的性质: .15.(3分)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 互相垂直,AC=9,中位线长215,则对角线BD 的长是 . 16.(3分)等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为 度.17.(3分)在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,边BC=•8cm ,则△ABO 的周长为________.18.(3分)如图,正方形ABCD 的边长为3cm ,∠ABE=15°,且AB=AE ,则DE= cm .19.(3分)在梯形ABCD 中,AD ∥BC ,∠C=90°,且AB=AD ,连结BD ,过A 作BD 垂线交BC 于E ,连结ED ,如果EC=5 cm ,CD=12 cm ,那么梯形ABCD 的面积是 cm 2.20.(3分)对于平行四边形ABCD ,给出下列五个条件:①AB=BC ;②AC ⊥BD ;③AC=BD ;④AB ⊥BC ;⑤BD 平分∠ABC .其中要使该平行四边形成为正方形必须同时满足的两个条件是 (要求填写两组你认为合适条件的编号).21.(3分)在直角坐标系内,点A ,B ,C ,D 的坐标依次为(-2,0),(-4,5),(x ,y),(0,5),要使四边形ABCD 为菱形,则x= ,y= .22.(3分)如图,四边形ABCD 是菱形,△AEF 是正三角形,点E ,F 分别在BC ,CD 上,且AB=AE ,则∠B= .解答题23.(3分)若矩形对角线的交点到两边的距离差为4 cm ,周长为56 cm ,则这个矩形的两边长分别为 和 .24.(3分)若矩形的短边长为6 cm ,两条对角线的夹角为60°,则对角线的长为 cm .三、解答题25.(6分)在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.26.(6分)在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.27.(6分)如图,在面积为4的菱形ABCD中,画一个面积为l的△ABP,使点P在菱形ABCD的边上(不写画法,但要保留作图痕迹).28.(6分)如图,在梯形ABCD中,AB∥CD,若0A=OB,问梯形ABCD是等腰梯形吗?为什么?29.(6分)如图,已知四边形ABCD是等腰梯形,CD∥BA,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.30.(6分)如图,在□ABCD中,BF平分∠ABC,交AD于F, EF∥CD,交BC于E.求证:四边形ABEF是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.A4.C5.A6.B7.C8.B9.A10.D11.C二、填空题12.2,13.514.对角线相等(答案不惟一)15.1216.45º17.1618.319.18620.取①②⑤中的一个与③④中一个组合即可21.-2,1022.80°23.18 cm,10 cm24.12 cm三、解答题.25.EC EB延长CE、BA相交于点F,证明△DCE≌△AFE,得CE=FE,DC=AF,∴BF=BC=3,∴BE⊥CE26.(1)12cm,cm ;(2)cm227.略28.是,证△DAB≌△CBA29.证△ABD≌△BAC30.证四边形ABEF是平行四边形,再证AB=AF。
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
沪科版八年级数学下册第19章四边形必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.42、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A B C .4.5 D .4.33、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、如图,在六边形ABCDEF 中,若1290∠+∠=︒,则3456∠+∠+∠+∠=( )A .180°B .240°C .270°D .360°5、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π=B .23y π=C .23y π=D .23y π=6、将一块三角尺和一张矩形纸片如图排放,若∠1=25°,则∠2的大小为( )A.55°B.65°C.45°D.75°7、如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32°B.42°C.52°D.62°8、如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,的值为()那么BHAEA.1 B C D.29、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<1210、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是()A.梯形的下底是上底的两倍B.梯形最大角是120︒C.梯形的腰与上底相等D.梯形的底角是60︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.DC=.在DC上找一点E,沿直线AE把AED折叠,使D点恰好落在2、如图,在长方形ABCD中,9BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.3、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.4、已知一个多边形的每个外角都是30°,那么这个多边形的边数是__________.5、七边形内角和的度数是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,AM//BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D, DE⊥BD,交BN 于点E.(1)求证:四边形ABCD是菱形.(2)若DE=AB=2,求菱形ABCD的面积.2、阅读材料,回答下列问题:(材料提出)“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.(探索研究)探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为.(模型应用)应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A=(用含有α和β的代数式表示),∠P =.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)(拓展延伸)拓展一:如图6,若设∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论.3、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.4、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.5、阅读探究小明遇到这样一个问题:在ABC中,已知AB,BC,AC ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC的3个顶点都在小正方形的顶点处),从而借助网格就能计算出ABC的面积.他把这种解决问题的方法称为构图法,(1)图1中ABC的面积为________.实践应用参考小明解决问题的方法,回答下列问题:的正方形网格(每个小正方形的边长为1).(2)图2是一个66①利用构图法在答题卡的图2的格点DEF.②DEF的面积为________(写出计算过程).拓展延伸(3)如图3,已知PQR,以PQ,PR为边向外作正方形PQAF和正方形PRDE,连接EF.若PQ=PR=QR=AQRDEF的面积为________(在图4中构图并填空).-参考答案-一、单选题1、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴, ∴CD =CG =12AB =4,∠ACD =60°, ∵∠ECF =60°, ∴∠FCD =∠ECG , 在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ), ∴DF =GE .当EG ∥BC 时,EG 最小, ∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2.故选:C . 【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF =GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键. 2、A 【分析】根据正方形的四条边都相等可得BC =DC ,每一个角都是直角可得∠B =∠DCF =90°,然后利用“边角边”证明△CBE ≌△DCF ,得∠BCE =∠CDF ,进一步得∠DHC =∠DHE =90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案. 【详解】解:∵四边形ABCD 为正方形, ∴∠B =∠DCF =90°,BC =DC , 在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CBE ≌△DCF (SAS ), ∴∠BCE =∠CDF , ∵∠BCE +∠DCH =90°, ∴∠CDF +∠DCH =90°, ∴∠DHC =∠DHE =90°, ∵点G 为DE 的中点, ∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ==∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.3、C【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒, ∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP == ∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.5、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S SS ππ⋅=--=-⨯⨯=阴扇形 故选:C .【点睛】 此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.6、B【分析】延长CE,交矩形边于点B,利用三角形外角性质,平行线的性质计算.【详解】延长CE,交矩形边于点B,∴∠ABE=90°-∠1=65°,∵纸片是矩形,∴AB∥CD,∴∠ABE=∠2=65°,故选B.【点睛】本题考查了矩形的性质,平行线的性质,三角形外角的性质,三角板的特点,熟练掌握平行线的性质是解题的关键.7、C【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【详解】解:∵∠DCE=128°,∴∠DCB=180°-∠DCE=180°-128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C.【点睛】本题主要考查了平行四边形的性质以及平角的定义,熟记平行四边形的各种性质是解题关键.平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形的对角线互相平分.8、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt △DFG ≌Rt △DCG (HL ),∴∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM ,∴BH ,即BHAE.故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.9、C【分析】 作出平行四边形,根据平行四边形的性质可得1122AE CE AC ===,1192BE DE BD ===,然后在ABE ∆中,利用三角形三边的关系即可确定m 的取值范围.【详解】解:如图所示:∵四边形ABCD 为平行四边形, ∴1122AE CE AC ===,1192BE DE BD ===, 在ABE ∆中,AB m =,∴19121912m -<<+,即731m <<,故选:C .【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.10、D【分析】如图(见解析),先根据平角的定义可得123180∠+∠+∠=︒,再根据123∠=∠=∠可求出12360∠=∠=∠=︒,由此可判断选项,B D ;先根据等边三角形的判定与性质可得,60DE CD CDE =∠=︒,再根据平行四边形的判定可得四边形ABCE 是平行四边形,根据平行四边形的性质可得AE BC =,然后根据菱形的判定可得四边形DEFG 是菱形,根据菱形的性质可得DE EF AD ==,最后根据线段的和差、等量代换可得,2CD AD BC AD ==,由此可判断选项,A C .【详解】解:如图,123180,123∠+∠+∠=︒∠=∠=∠,12360∴∠=∠=∠=︒,AD BC ,1801120ADC ∴∠=︒-∠=︒,梯形ABCD 是等腰梯形,160,120,ABC BAD ADC CD CE ∴∠=∠=︒∠=∠=︒=,则梯形最大角是120︒,选项B 正确;没有指明哪个角是底角,∴梯形的底角是60︒或120︒,选项D 错误;如图,连接DE ,,260CD CE =∠=︒,CDE ∴是等边三角形,,60DE CD CDE ∴=∠=︒,180ADC CDE ∴∠+∠=︒,∴点,,A D E 共线,360ABC ∠=∠=︒,AB CE ∴,AB CE =,∴四边形ABCE是平行四边形,∴=,AE BC∠=∠=︒,60CGF CDE∴,DE FGEF DG,EF FG=,∴四边形DEFG是菱形,∴==,DE EF AD==+=,选项A、C正确;BC AE AD DE AD∴=,2CD AD故选:D.【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键.二、填空题1、10或14或10【分析】=,通过BF和CE 利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出AB AF=、DE DC是否相交,分两类情况讨论,最后通过边之间的关系,求出BC的长即可.【详解】解:四边形ABCD是平行四边形,∥,==,AD BCAD BC∴=,6AB CD∠=∠,∴∠=∠,DEC ECBAFE FBCBF平分∠ABC, CE平分∠BCD,∠=∠,∴∠=∠,DCE ECBABF FBC∠=∠,AFE ABF∴∠=∠,DCE DEC∴由等角对等边可知:6==,DE DCAF AB==,6情况1:当BF与CE相交时,如下图所示:=+-,AD AF DE EF∴=,10AD∴=,BC10情况2:当BF与CE不相交时,如下图所示:=++AD AF DE EFAD,∴=1414∴=,BC故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF和CE是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.2、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵1•AB•BF=54,2∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.3、50︒130︒50︒【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,B、D∠是A∠的邻角,C∠是A∠的对角,∴50∠=∠=︒B D,130C∠=︒,故答案为:50︒,130︒,50︒.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.4、12【分析】利用任何多边形的外角和是360°除以外角度数即可求出答案.【详解】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:12.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5、900°900度【分析】根据多边形内角和公式计算即可.【详解】解:七边形内角和的度数是(72)180900-⨯︒=︒,故答案为:900°.【点睛】本题考查了多边形内角和公式,解题关键是熟记n 边形内角和公式:2180()n -⨯︒.三、解答题1、(1)见解析(2)【分析】(1)由ASA 可证明△ADO ≌△CBO ,再证明四边形ABCD 是平行四边形,再证明AD =AB ,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,证明四边形ACED 是平行四边形,得出AC =DE =2,AD =EC ,由菱形的性质得出EC =CB =AB =2,得出EB =4,由勾股定理得BD =【小题1】解:证明:∵点O 是AC 的中点,∴AO =CO ,∵AM ∥BN ,∴∠DAC =∠ACB ,在△AOD 和△COB 中,DAO BCO AO COAOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△CBO (ASA ),∴AD =CB ,又∵AM ∥BN ,∴四边形ABCD 是平行四边形,∵AM ∥BN ,∴∠ADB =∠CBD ,∵BD 平分∠ABN ,∴∠ABD =∠CBD ,∴∠ABD =∠ADB ,∴AD =AB ,∴平行四边形ABCD 是菱形;【小题2】由(1)得四边形ABCD 是菱形,∴AC ⊥BD ,AD =CB ,又DE ⊥BD ,∴AC ∥DE ,∵AM ∥BN ,∴四边形ACED 是平行四边形,∴AC =DE =2,AD =EC ,∵四边形ABCD 是菱形,∴EC =CB =AB =2,∴EB =4,在Rt △DEB 中,由勾股定理得BD=∴S 菱形ABCD =12AC •BD =122⨯⨯ 【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.2、∠A +∠B =∠C +∠D ; 25°;∠P =2B D ∠+∠;α+β﹣180°,∠P =1802a β︒+-; 1802a β︒--;∠P =23x y +;2∠P ﹣∠B ﹣∠D =180°. 【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得∠BAP =∠DAP ,∠BCP =∠DCP ,结合(1)的结论可得2∠P =∠B +∠D ,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM 、CN ,交于点A ,利用三角形内角和定理可得∠A =α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB 、NC ,交于点A ,设T 是CB 的延长线上一点,R 是BC 延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:∠P +∠PAB =∠B +∠PDB ,∠P +∠CDP =∠C +∠CAP ,∠B +∠CDB =∠C +∠CAB ,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案.解:探索一:如图1,∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;探索二:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°,故答案为25°;探索三:由①∠D +2∠1=∠B +2∠3,由②2∠B +2∠3=2∠P +2∠1,①+②得:∠D +2∠B +2∠1+2∠3=∠B +2∠3+2∠P +2∠1∠D +2∠B =2∠P +∠B .∴∠P =2B D∠+∠.故答案为:∠P =2B D∠+∠.应用一:如图4,延长BM 、CN ,交于点A ,∵∠M =α,∠N =β,α+β>180°,∴∠AMN =180°﹣α,∠ANM =180°﹣β,∴∠A =180°﹣(∠AMN +∠ANM )=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;∵BP 、CP 分别平分∠ABC 、∠ACB ,∴∠PBC =12∠ABC ,∠PCD =12∠ACD ,∵∠PCD =∠P +∠PBC ,∴∠P=∠PCD﹣∠PBC=12(∠ACD﹣∠ABC)=12∠A=1802αβ+-︒,故答案为:α+β﹣180°,1802αβ+-︒;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,∵∠M=α,∠N=β,α+β<180°,∴∠A=180°﹣α﹣β,∵BP平分∠MBC,CP平分∠NCR,∴BP平分∠ABT,CP平分∠ACB,由应用一得:∠P=12∠A=1802αβ︒--,故答案为:1802αβ︒--;拓展一:如图6,由探索一可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,∵∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,∠PAB=23∠CAB,∠PDB=23∠CDB,∴∠P+23∠CAB=∠B+23∠CDB,∠P+13∠CDB=∠C+13∠CAB,∴2∠P=∠C+∠B+13(∠CDB﹣∠CAB)=x+y+13(x﹣y)=423x y+,∴∠P=23x y+,故答案为:∠P=23x y+;拓展二:如图7,∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,∴∠PAD=12∠BAD,∠PCD=90°+12∠BCD,由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,③﹣①,得:2∠P﹣∠B=∠D+180°,∴2∠P﹣∠B﹣∠D=180°,故答案为:2∠P﹣∠B﹣∠D=180°.【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.3、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP 是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是矩形,∴OD=OC,∴平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四边形CODP是平行四边形,又∵四边形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四边形CODP是菱形,∴菱形OCDP是正方形.【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.4、见解析【分析】首先根据平行四边形的性质推出AD=CB,AD∥BC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.【详解】证:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,B A ADEC F F B E BD C D =⎧⎪⎨⎪∠==⎩∠ ∴△ADE ≌△CBF (SAS ),∴∠AED =∠CFB ,∴AE ∥CF .【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.5、(1)72;(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出PH PQ =,EH RQ =,进而可得PQR PHE ≌,得出PE PH =,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC 的面积为:1117331321322222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:72;(2)①作图如下(答案不唯一):②DEF 的面积为:111452342258222⨯-⨯⨯-⨯⨯-⨯⨯=, 故答案为:8;(3)在网格中作出PH PQ =,EH RQ =,在PQR 与PHE 中,PH PQ EH RQ PE PR =⎧⎪=⎨⎪=⎩, ∴PQR PHE ≌,∴PF PH =,PEF PEH PQR S S S ∴==,∴六边形AQRDEF 的面积=正方形PQAF 的面积+正方形PRDE 的面积+2PEF 的面积(22111++243412223=31222⎛⎫=⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪⎝⎭,故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.。
《平行四边形的性质(第一课时)》教学设计一、教学分析(一)教学内容分析《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容,它是在学生学过平移和旋转等几何知识的基础上学习的,学习它不仅是对已学平行线、三角形等知识的综合应用和深化,同时对后面学习的矩形、菱形、正方形及梯形等特殊的平行四边形起到引领作用;其次,平行四边形性质在实际生产和生活中有广泛的应用,如:小区的伸缩门、庭院的竹篱笆等制造时都需要用到平行四边形的性质;第三:从培养学生的逻辑思维能力来说,学生已经初步掌握了推理论证方法,需要进一步巩固和提高,本节课及至本章都是为达到这个目标而设置的.(二)教学对象分析由于学生在“第七章三角形”中已经学过多边形的概念以及多边形内角和、外角和的相关知识,且平行四边形的定义也在小学学过,对它们并不陌生,但对于概念的本质属性的理解并不深刻,需加深理解.在认知过程中,对平行四边形通过辅助线与三角形相联系,加以引导,在学生自主探究的学习过程中,不仅要完成对平行四边形性质的认知,还需有效引导学生的探究欲与成就感.(三)教学环境分析本节教学内容是平行四边形的性质,针对数学学科培养学生逻辑思维与理性探究的学科特点,概念与性质的揭示需要一个渐进的探究过程,不适宜通过网络查阅查询,所以本课选择多媒体教室环境,而多媒体课件的作用,应体现在认知过程中,对学生认知前期的引导,和学生认知后期的验证,应避免以动画的过程替代学生大脑中推演的过程.二、教学目标(一)知识与技能理解平行四边形的定义,掌握平行四边形的有关性质,并能初步应用平行四边形的性质进行简单的计算和证明,解决生活中的实际问题.(二)过程与方法在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想.(三)情感态度与价值观引导学生观察、发现,激发学生的好奇心和求知欲,并且引导学生在应用数学知识解决实际问题的活动中体验成功,树立学习的自信心.三、教学重点难点(一)教学重点:让学生亲历平行四边形性质定理的“观察——猜想——验证”过程,理解定理内容,并学会用它们进行有关的论证和计算.(二)教学难点:通过性质定理的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.四、教学方法定理推导上采用引导探索法;设置疑问,引导学生通过观察、猜想、论证、应用等环节积极思考,勇于探索,较好地理解和掌握本节课的学习内容,体验解决问题的方法和乐趣,增强数学学习兴趣.在教学手段方面,利用PPT制作的课件,增大教学容量和直观性,提高教学质量和效率.五、教学过程。
八年级数学下册《特殊平行四边形与梯形》测试卷学校:__________ 姓名:__________班级:__________ 考号:__________题号 一 二 三 总分 得分评卷人 得分一、选择题1.(2分)如图,在梯形ABCD 中,AD ∥BC ,AB=AD=DC ,∠C=60°.若这个梯形的周长为50,则AB 的长为( ) A .8B .9C .10D .122.(2分)正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是( ) A .10 B .20 C .24 D .253.(2分)如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( )A .6B .7C .8D .94.(2分)把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(10213)+ cmB .(1013)+cmC .22cmD .18cm5.(2分)将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )F E DCB A 3cm 3cmA .B .C .D .6.(2分)如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是( ) A .24B .20C .16D .127.(2分)如图,已知等腰梯形ABCD 中,AD ∥BC ,∠A=110°,则∠C=( ) A .90°B .80°C .70°D .60°8.(2分)下列关于菱形的对角线的说法中错误..的是( ) A .互相平分 B .互相垂直 C .相等 D .每一条对角线平分一组对角9.(2分)矩形的三个顶点坐标分别为(-1,-2),(-1,2),(1,2),则第四个顶点的坐标是 ( ) A .(1,-2) B .(2,1) C .(-2,1)D .(2,-l )评卷人 得分二、填空题10.(3分)如图,∠ACB=90°,把Rt △ABC 绕点A 逆时针旋转90°得到Rt △AB 1C 1,若BC=1,AC=2,则CB 1的长度是__________.11.(3分)如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在点.12.(3分)如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .13.(3分)如图,将矩形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的F 点处.若AFD △的周长为9,ECF △的周长为3,则矩形ABCD 的周长为________.14.(3分)如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .15.(3分)矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如: (填一条即可).BCAE D16.(3分)如图,已知矩形ABCD 中,AB=2BC ,E 在CD 上,且AE=AB ,则BCEC= . 17.(3分)在梯形ABCD 中,AD ∥BC ,∠B=85°,∠C=45°,则∠D= ,∠A= . 18.(3分)正方形ABCD 中,对角线AC=8 cm ,点P 是AB 边上任意一点,则P 到AC ,BD 的距离之和为 . 评卷人 得分三、解答题19.(6分)已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.20.(6分)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.21.(6分)如图,在梯形纸片ABCD 中,AD ∥BC ,AD>CD ,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C′处,折痕DE 交BC 于点E ,连结C′E . 求证:四边形CDC′E 是菱形.22.(6分)如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F .请你猜想DE 与DF 的大小有什么关系?并证明你的猜想.23.(6分)在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.24.(6分)如图,在ΔABC 中,AB=AC ,E ,F 分别为AB ,AC 上的点(E ,F 不与A 重合),且EF ∥BC .将AEF △沿着直线EF 向下翻折,得到A EF '△,再展开. (1)请证明四边形AEA F '为菱形;(2)当等腰ΔABC 满足什么条件时,按上述方法操作,四边形AEA F '将变成正方形?(只写结果,不作证明)25.(6分)如图所示,在梯形ABCD中,AB∥DC,AD=BC,延长AB至E,使BE=DC,求证:AC=CE.26.(6分)如图,在□ABCD中,BF平分∠ABC,交AD于F, EF∥CD,交BC于E.求证:四边形ABEF是菱形.27.(6分)如图,菱形ABCD中,E,F是BC,DC上的点,∠EAF=∠B=60°=∠AEF.求证:BE=CF.28.(6分)如图,折叠矩形的一边AD,使D落在BC边上的点F处,已知AB=8 cm,BC=10 cm,求EC的长.29.(6分)如图①、②、③,图中点E,D分别是正△ABC、正方形ABCM、正五边形ABCMN中以 C点为顶点的相邻两边上的点,且BE=CD,DB交AE 于P点.(1)求图①中,∠APD的度数;(2)图②中,∠APD的度数为,图③中,∠APD的度数为;(3)根据前面的探索,你能否将其推广到一般的正n边形中?若能,写出推广问题和结论;若不能,请说明理由.30.(6分)如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移 3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形. 说明在变化过程中所运用的图形变换.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.B3.A4.A5.C6.C7.C8.C9.A评卷人得分二、填空题10.511.A12.913.1214.1015.略(只要符合即可) 16.32- 17.135°,95° 18.4 cm三、解答题19.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD ∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE ∴△AED 是等腰三角形20.(1)略;(2)△BEF 为等边三角形; (3)设BE=BF=EF= x ,则S=243x 当BE ⊥AD 时, x 最小=3,∴S 最小=433. 当BE 与AB 重合时,x 最大=2,∴S 最大=3. ∴3433≤≤S . 21.证明:根据题意可知 DE C CDE 'ΔΔ≅ 则 '''CD C D C DE CDE CE C E =∠=∠=,, ∵AD ∥BC ,∴∠C ′DE=∠CED ∴∠CDE=∠CED ,∴CD=CE∴CD=C ′D=C ′E=CE ,∴四边形CDC ′E 为菱形 22.解:DE =DF . 证明如下:连结BD . ∵四边形ABCD 是菱形∴∠CBD =∠ABD(菱形的对角线平分一组对角) ∵DF ⊥BC ,DE ⊥AB ,∴DF =DE(角平分线上的点到角两边的距离相等) 23.EC EB ⊥.延长CE 、BA 相交于点F ,证明△DCE ≌△AFE ,得CE=FE ,DC=AF ,∴BF=BC=3,∴BE ⊥CE24.思路:(1)可证四边形AEA F'的四条边相等;(2)∠BAC=90°时,按上述方法操作,四边形AEA F'将变成正方形.25.思路:证明ΔADC≌ΔCBE.26.证四边形ABEF是平行四边形,再证AB=AF27.连结AC,证△BAE≌△CAF28.3 cm29.(1)∠APD=60° (2)90°,108° (3)若点E,D分别是正n边形ABC……M中以 C为顶点的相邻的两邻边上的点,且BE=CD,DB交AE于P点,则∠APD=0 (2)180 nn-⨯30.图略。
梯形体积计算公式是什么梯形体积计算公式是什么呢?同学们还记得吗,不清楚的话,快来小编这里瞧瞧。
下面是由小编为大家整理的“梯形体积计算公式是什么”,仅供参考,欢迎大家阅读。
梯形体积计算公式是什么第一种:梯形的体积=(上底+下底)×高÷2×总长度第二种:把四棱台延长成椎上截面面积为s,下截面r,台高为h,那么体积=1/3(r-s)*h.若是正梯形物体则为V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
提高初中语文成绩的方法一一、树立学习语文的信心爱默生曾经说过:“自信是成功第一秘决”;刘秀同志也讲过:“有志者事竟成”;我一直把这话作为引导学生的行动指南。
大家都知道.绝大部分语文基础差、底子薄,以致造成对语文科没有多大兴趣,语文成绩差。
怎样才能改变这个局面呢?我认为应该有一个由浅入深的过程。
在课堂上,尽量出些较容易的问题让学生回答,树立学生的自信心,使学生有“语文也不是很难”的感慨。
我一直以来都在课堂上进行这样的试验,每道题都让学生回答或在黑板上板书,如果其他学生有什么不同意见,随时可以发表自己的不同见解,无论是对或错都无所谓,直到没人回答为止,然后再给予点评。
对的表扬,错的帮助其分析原因,找出根源,通过这样,学生积极性高了,自信心有了,课堂气氛也活跃了,学生学习语文的主动性增强了,成绩自然也提高了。
二、自己出题测试“熟能生巧”这个道理在此能充分体现。
学生通过出题、评卷这两个步骤,使学生对学习语文有了导向,有了目标,无形中产生了看书——做作业——复习的过程。
有学生跟我说:“老师,出考试题是一享受”。
这样,学生感觉主动,兴趣浓,同时也促使了平时懒动手、懒动脑筋的学生学习。
另外,抽签考试,也调动了学生的积极性,增强了主动性,提高了兴趣,你如果能看到学生抽签时那种期待的神态,神秘的表情,可能你也会不觉意地笑起来,大家都希望能抽到同等水平学生的试题,因为差生出的试题可能浅些,成绩较好的学生出的试题深些,如果是差生抽到成绩好的学生出的试题,那就惨了,原因是成绩好的学生自己认为容易的他不会出,专门挑些自己掌握不够的知识点出题,因此,害苦了成绩差的同学。
正方形
1.由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
2、正方形具有矩形的性质,同时又具有菱形的性质.可以将正方形的性质总结如下:
边:对边平行,四边相等;角:四个角都是直角;
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
3.对于怎样判定一个四边形是正方形,只要能判定一个四边形是矩形,又能判定这个矩形也是菱形,或者先判定四边形是菱形,再判定这个菱形也是矩形,就可以判定这个四边形是正方形,实际上就是根据正方形定义来判定.
4、正方形的性质和判定是平行四边形、菱形、矩形的性质与判定的综合。
例1.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
例2.已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE 于G,DG交OA于F.
求证:OE=OF.
例3.已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1 于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.
梯形
1、几种特殊梯形的定义、性质、判定方法和面积公式: 类别
定义 性质
判定
面积公式
梯形
一组对边平行
而另一组对边不平行的四边形
中位线平行于两底
且等于两底和的一半
根据定义判定 两底之和与高的乘积的一半或中位线与高的乘积
等腰梯形
两腰相等的梯形
1. 两腰相等;
2. 同一底上的两
角相等; 3. 两条对角线相等
4. 等腰梯形是轴对称图形
1. 根据定义判定;
2. 同底两角相等的梯形。
直角梯形
一腰垂直于底的梯形
具有梯形的一切性质
根据定义判定 2、解决梯形问题常用的方法:
(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1); (2)“作高”:使两腰在两个直角三角形中(图2);
(3)“平移对角线”:使两条对角线在同一个三角形中(图3); (4)“延腰”:构造具有公共角的两个等腰三角形(图4);
(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).
图1 图2 图3 图4 图5
综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决。
3. 重心:三角形的重心是三角形三条中线的交点。
例1、已知:如图,在梯形ABCD 中,AD∥BC,∠D=90°,∠CAB=∠ABC, BE⊥AC 于E .求证:BE =CD .
例2、证明:对角线相等的梯形是等腰梯形.
例3、已知等腰梯形的锐角等于,它的两底分别是和,求它的腰长。
例4、已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,求另一条对角线的长。
例5、已知AB=BC,AB∥CD,∠D=90°,AE⊥BC.求证:CD=CE.
例6、如图,在梯形中,,,、为、的中点。
求证:。
例7、已知梯形ABCD中,AD∥BC,∠ABC的平分线过CD的中点E.求证:AD+BC=AB.
例8、如图,E 是梯形ABCD 中腰DC 上的中点,求证:ABCD ABE S S 梯形⋅=
∆2
1
例9、已知:如图,四边形ABCD 为矩形,四边形ABDE 为等腰梯形,。
求证:
例10、如图,已知:AD 是
的平分线,
,
,
.
(1)求证:四边形ADCE 是等腰梯形. (2)若
的周长为
,求四边形ADCE 的周长.
例11、如图所示,在梯形ABCD 中,AB ∥CD ,AD=BC ,O 是对角线AC 、BD 的交点,∠AOB=60°,又E 、F 、G 分别是DO 、AO 、BC 的中点。
求证:△EFG 是等边三角形。
例12、已知如图,在直角梯形ABCD 中,AB ∥CD ,∠A =∠D=90°,BC =AB +CD ,P 为AD 的中点,求证:CP ⊥PB 。
正方形答案
1、证明:∵四边形ABCD是正方形,∴ AC=BD,AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且△ABO ≌△BCO≌△CDO≌△DAO.
2、分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.
证明:∵ 四边形ABCD是正方形,
∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).
又DG⊥AE,∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.
∴ ∠EAO=∠FDO.∴ △AEO ≌△DFO.∴ OE=OF
3、分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.
证明:∵PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.
∵PQ∥NM,∴四边形PQMN是矩形.∵ 四边形ABCD是正方形
∴∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).
∴∠1+∠2=90°.又∠3+∠2=90°,∴∠1=∠3.
∴△ABM≌△DAN.∴AM=DN.同理 AN=DP.∴AM+AN=DN+DP
即 MN=PN.∴四边形PQMN是正方形(有一组邻边相等的矩形是正方形).
梯形答案
1、分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB 交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
证明(略)
另证:如图,根据题意可构造等腰梯形ABFD,证明△ABE≌△FDC即可.
2、分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在ΔABC和ΔDCB中,已有两边对应相等,要能证∠1=∠2,就可通过证ΔABC ≌ΔDCB得到AB=DC.
证明:过点D作DE∥AC,交BC的延长线于点E,
又AD∥BC,∴ 四边形ACED为平行四边形,∴ DE=AC .
∵ AC=BD ,∴ DE=BD ∴ ∠1=∠E ∵ ∠2=∠E ,∴ ∠1=∠2
又 AC=DB,BC=CB,∴ ΔABC≌ΔDCB.∴ AB=CD.
∴ 梯形ABCD是等腰梯形.
3、思路点拨:已知:如图,在梯形ABCD中,,,.
求:AB的长.解析:过点A作交BC于E,
∵四边形ABCD是等腰梯形,∴AD∥BC 又∵,
∴四边形AECD是平行四边形. ∴
∵∴∵∴是等边三角形.
又∵,∴∴
4、梯形ABCD中,AD∥BC,BD⊥BC.设AD=x,BC=y,DB=z,
由题得:x+y+z=16,
,(熟记梯形面积公式)
解得x+y=8,z=8,
过D作DE∥AC交BC的延长线于E.
∴四边形ADEC是平行四边形,(注意这种辅助线的作法很常用)
∴DE=AC,AD=CE.(将“上底+下底”转化到一条线段上)
在Rt△DBE中,∠DBE=90°,BE=BC+CE=x+y=8,BD=8,
根据勾股定理得,
∵AC=DE,.
5分析:这是一个直角梯形,通过作CF⊥AB,可以将梯形分成矩形和直角三角形,结合直角梯形的性质,利用两次全等,达到证明CD=CE的目的.
证明:如图,连结AC,过C作CF⊥AB于F.
在△CFB和△AEB中,(这是直角梯形中常见的辅助线)
∴△CFB≌△AEB(AAS)
∴CF=AE.
∵∠D=90°,CF⊥AB且AB∥CD,
∴AFCD是矩形∴AD=CF,∴AD=AE.
在Rt△ADC和Rt△AEC中,
∴Rt△ADC≌Rt△AEC(HL)∴CD=CE.
6、如图,延长,相交于点,连结,. ∵
∵、为、的中点,
∴,∴,
∵∴∴
∴、、三点共线∴
7、
证明:过E作EF∥BC交AB于F,则EF∥BC∥AD,
∵E是CD的中点∴EF为梯形ABCD的中位线,∠2=∠3
∴AD+BC=2EF,AF=FB ∵∠1=∠2,∴∠1=∠3,则BF=EF.
∴BF=EF=AF ∴2EF=BF+AF=AB∵AD+BC=2EF ∴AD+BC=AB.
8、证明:过E作MN∥AB交BC于N,交AD的延长线于M,则四边形ABNM是平行四边形.
∵△ABE与□ABNM同底同高,
∵∠1=∠C,∠M=∠2,DE=CE,
∴△EMD≌△ENC.∴S□ABNM=S梯形ABCD
9、解析:∵四边形ABCD为矩形,
∴∵四边形ABDE为等腰梯形,且为其对角线,
∴在和中,,
又,∴
10、证明:(1)∵(已知),
∴(两直线平行,内错角相等)又∵(角平分线定义),
∴∴(等角对等边)∵(已知)
∴即∴(等边对等角)又∵(对顶角相等)∴
∴(内错角相等,两直线平行)而
∴四边形ADCE是梯形又∵
∴∴(全等三角形的对应边相等).
∴四边形ADCE是等腰梯形
(2)∵四边形ADCE是等腰梯形∴
∴梯形ADCE的周长
而的周长∴∵
∴即
∴梯形ADCE的周长。