初中数学乘法公式例题解析
- 格式:doc
- 大小:224.00 KB
- 文档页数:21
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
乘法公式经典例题【例题1】利用乘法公式进行计算计算:)23()49()23()12()12(22)2(122b a b a b a a a ++--+-)(【例题2】完全平方公式开放探究题多项式142+x 加么?【例题3】利用乘法公式进行化简求值;的值。
求)已知(的值;求)已知(的值;求)已知()(xx b a b a b a y x x x ab xy y x 222222221,313,,4,722121,11)(+=++==++=+-+【例题4】 乘法公式几何中的运用如图所示,长方形ABCD 被分成6个大小不一的正方形,已知中间一个正方行的面积为4,求长方形ABCD 中最大正方形与最小正方形的面积之差。
【例题5】运用完全平方公式的值。
求代数式已知c bc ac b ab a m c m b m a 4442222,321,221,121+--+++=+=+=因式分解专项练习例1 (公式法)分解因式:(1) 34381a b b -; (2) 76a ab -2.分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式例2 (分组分解法)分解因式:(1)2222()()ab c d a b cd ---(2)2222428x xy y z ++-3.十字相乘法(1)2()x p q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:①二次项系数是1;②常数项是两个数之积;③ 一次项系数是常数项的两个因数之和.∵2()x p q x pq +++2()()()()x px qx pq x x p q x p x p x q =+++=+++=++, ∴2()()()x p q x pq x p x q +++=++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.例3 (十字相乘法)把下列各式因式分解:(1) 2524x x +- (2) 2215x x -- (3) 226x xy y +- (4) 222()8()12x x x x +-++(2)一般二次三项式2ax bx c ++型的因式分解由2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,如果它正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成1122()()a x c a x c ++,其中11,a c 位于上一行,22,a c 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.例4 (十字相乘法)把下列各式因式分解:(1)21252x x --;(2)22568x xy y +-例5(拆项法)分解因式3234x x -+。
数学乘法试题答案及解析数学乘法试题答案及解析在学习数学乘法时,理解问题的答案与解析是很重要的一步。
本文将为您提供一些数学乘法试题的答案及解析,帮助您更好地掌握数学乘法知识。
1. 问题:3 × 5 = ?答案:3 × 5 = 15解析:这是一个简单的乘法运算题。
我们可以将3视为有3个5相加的结果,因此3个5相加等于15。
2. 问题:8 × 9 = ?答案:8 × 9 = 72解析:这是一个两位数相乘的问题。
我们可以使用竖式计算法来解决。
将8写在顶部,将9写在底部,然后按位相乘,并将结果相加。
即:8 × 9 = 72。
3. 问题:4 × 0 = ?答案:4 × 0 = 0解析:任何数与0相乘,结果都是0。
因此,4与0相乘的结果也是0。
4. 问题:6 × 10 = ?解析:这是一个乘法运算中的位权问题。
10是一个十位数,6是个位数。
我们将6乘以10,并将结果写在十位上,个位上的数字保持不变。
因此,6乘以10等于60。
5. 问题:17 × 4 = ?答案:17 × 4 = 68解析:这是一个两位数与一位数相乘的问题。
我们可以使用竖式计算法来解决。
将17写在顶部,将4写在底部,然后按位相乘,并将结果相加。
即:17 × 4 = 68。
6. 问题:50 × 3 = ?答案:50 × 3 = 150解析:这是一个乘法运算中的位权问题。
3是个位数,50是十位数。
我们将3乘以50,并将结果写在十位上,个位上的数字保持不变。
因此,3乘以50等于150。
7. 问题:12 × 12 = ?答案:12 × 12 = 144解析:这是一个两位数相乘的问题。
我们可以使用竖式计算法来解决。
将12写在顶部,将12写在底部,然后按位相乘,并将结果相加。
即:12 × 12 = 144。
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
整式的乘除难题解析整式的乘除是初中数学中的一个难点,需要掌握一定的技巧和方法。
下面将针对不同类型的乘除难题进行解析。
测试1:积的乘方若 $2^n=a$,$3^n=b$,则 $6^n=$______。
解析:根据指数的性质,$6^n=(2\cdot 3)^n=2^n\cdot3^n=a\cdot b$。
选择题:1.$\times (-0.2)^{2010}$,$(-5)\times 67\times (-6)$ 的积为:A。
$-.6$,$-2010$B。
$-.8$,$-2010$C。
$-.6$,$2010$D。
$-.8$,$2010$2.若 $(9x^2)^3\cdot (8)^{-4}=4$,求 $x^3$ 的值。
解析:化简得 $x^3=\frac{1}{2}$。
3.比较 $216\times 310$ 与 $210\times 314$ 的大小。
若$3x^1\cdot 2x-3x\cdot 2x^1=22\cdot 32$,求 $x$。
解析:$216\times 310>210\times 314$。
化简得 $x=4$。
测试2:整式的乘法(一)已知 $x^3a=3$,则 $x^6a+x^4a\cdot x^5a=$______。
解析:根据整式乘法的分配律,$x^6a+x^4a\cdotx^5a=x^3a\cdot x^3a+x^3a\cdot x^4a=x^6a+x^7a=3x+a$。
选择题:1.下列各题中,计算正确的是:A。
$(-m^3)^2(-n^2)^3=m^6n^6$B。
$(-m^2n)^3(-mn^2)^3=-m^9n^9$C。
$(-m^2n)^2(-mn^2)^3=-m^9n^8$D。
$[(-m^3)^2(-n^2)^3]^3=-m^{18}n^{18}$2.若 $x=2m+1$,$y=3+4m$,(1)请用含 $x$ 的代数式表示$y$;(2)如果 $x=4$,求此时 $y$ 的值。
专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 311 4 6 4 1 1510 10 5 1… … … … … … …。
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。
华夏教育 初二数学乘法公式一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2数形结合的数学思想认识乘法公式:假设a 、b 都是正数,那么可以用以下图形所示意的面积来认识乘法公式。
如图1,两个矩形的面积之和(即阴影部分的面积)为(a+b)(a-b),通过左右两图的对照,即可得到平方差公式(a+b)(a-b)=a 2-b 2;图2中的两个图阴影部分面积分别为(a+b)2与(a-b)2,通过面积的计算方法,即可得到两个完全平方公式:(a+b)2=a 2+2ab+b 2与(a-b)2=a 2-2ab+b 2。
二、乘法公式的用法(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。
注意掌握公式的特征,认清公式中的“两数”.例1 计算:()()53532222x y x y +- 解:原式()()=-=-53259222244x y x y例2 计算(-2x 2-5)(2x 2-5)分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式(a +b )(a -b )=a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=(-5-2x 2)(-5+2x 2)=(-5)2-(2x 2)2=25-4x 4.例3 计算(-a 2+4b )2分析:运用公式(a +b )2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为(4b -a 2)2时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .(解略)(二)、连用:连续使用同一公式或连用两个以上公式解题。
例1 计算:()()()()111124-+++a a a a 解:原式()()()=-++111224a a a ()()=-+=-111448a a a例2 计算(2+1)(22+1)(24+1)(28+1).分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简.解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)=(22-1)(22+1)(24+1)(28+1)=(24-1)(24+1)(28+1)=(28-1)(28+1)=216-1三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
18.乘法公式知识纵横乘法公式(multiplication formula)是在多项式乘法的基础上,•将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、•又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解【例1】•(•1)•已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.(江苏省竞赛题)(2)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=________.(2000年重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000-a)·(1998-a)为整体,•由平方和想到完全平方公式(formula for the square the sum)及其变形.解:(1)设两个连续奇数为x,y,且x>y,则2220002x yx y⎧-=±⎨-=⎩得x+y=1000或x+y=-1000,解得(x,y)=(499,501)或(-501,-499).(2)4002 提示:(2000-a)2+(1998-a)2=[(2000-a)-(1998-a)]2+2(2000-a)·(1998-a)【例2】若x是不为0的有理数,已知M=(x2+2x+1)(x2-2x+1),N=(x2+x+1)(x2-x+1),则M与N 的大小关系是( ). (“祖冲之”杯邀请赛试题)A.M>NB.M<NC.M=ND.无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.解:选B【例3】计算:(1)6(7+1)(72+1)(74+1)(78+1)+1; (天津市竞赛题)(2)1.345×0.345×2.69-1.3453-1.345×0.3452. (江苏省竞赛试题)思路点拨 若按部就班计算,显然较繁,能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,•可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.解:(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1=716(2)设1.345=x,则原式=x(x-1)·2x-x 3-x(x-1)2=-x=-1.345【例4】(1)已知x 、y 满足x 2+y 2+54=2x+y,求代数式xy x y+的值. (“希望杯”邀请赛试题) (2)整数x,y 满足不等式x 2+y 2+1≤2x+2y,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是 2a b + (a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. (2003年河北省竞赛题)思路点拨 对于(1)、(2)两个未知数一个等式或不等式,•须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.解:(1)提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13(2)原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•所以可能有的结果是1010x y -=⎧⎨-=⎩或1110x y -=±⎧⎨-=⎩或1011x y -=⎧⎨-=±⎩,解得11x y =⎧⎨=⎩或21x y =⎧⎨=⎩ 或 12x y =⎧⎨=⎩或10x y =⎧⎨=⎩,x+y=1或2或3 (3)甲、乙、丙三个商场两次提价后,价格分别为(1+a)(1+b)=1+a+b+ab; (1+2a b +)·(1+2a b +)=1+(a+b)+( 2a b +)2; (1+b)(1+a)=1+a+b+ab; 因(2a b +)2-ab>0,所以(2a b +)2>ab, 故乙商场两次提价后,价格最高.【例5】已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从a 2+b 2=c 2的变形入手;a 2=c 2-b 2,运用质数、奇偶数性质证明.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a 应为奇质数,c+b 与c-b 同奇同偶,b 与c 必为一奇一偶.(2)c+b=a 2,c-b=1,两式相减,得2b=a 2-1,于是2(a+b+1)=2a+2b+2=2a+a 2-1+2=(a+1)2,为一完全平方数.学力训练一、 基础夯实1.观察下列各式:(x-1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1;(x -1)(x 3+x 2+x+1)=x 4-1.根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______.(2001年武汉市中考题)2.已知a 2+b 2+4a -2b+5=0,则a b a b+-=_____. (2001年杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655=_______;(2)19492-19502+19512-19522+……+19972-19982+19992=_________;(3) 2221999199819991997199919992+-=___________. 4.如图是用四张全等的矩形纸片拼成的图形,•请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式________.(2003年太原市中考题) 5.已知a+1a =5,则=4221a a a++=_____. (2003年菏泽市中考题)6.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( ).A.-15B.-2C.-6D.6 (2003年扬州市中考题)7.乘积(1-212)(1-213)……(1-211999)(1-212000)等于( ). A. 19992000 B. 20012000 C. 19994000 D. 20014000(2002年重庆市竞赛题)8.若x -y=2,x 2+y 2=4,则x 2002+y 2002的值是( ).A.4B.2002C.2D.49.若x 2-13x+1=0,则x 4+41x的个位数字是( ). A.1 B.3 C.5 D.710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.a 2-b 2=(a+b)(a -b)B.(a+b)2=a 2+2ab+b 2C.(a -b)2=a 2-2ab+bD.(a+2b)(a -b)=a 2+ab -2b 2 (2002年陕西省中考题)11.(1)设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值?如果是定值,•求出它的值;否则请说明理由.(2)已知x 2-2x=2,将下式先化简,再求值:(x -1)2+(x+3)(x-3)+(x-3)(x-1).(2003年上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写了一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000·2001·2002·2003+1的结果(用一个最简式子表示).(2001年黄冈市竞赛题)二、能力拓展14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,•任意一个个位数为5的自然数可写在10n+5(n为自然数),即求(10n+5)2的值,试分析n=1,n=2,n=3,……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+•25;•……752=•5625•可成写__________;852=7225可写成__________.(2)从第(1)题的结果,归纳,猜想得(10n+5)2=________.(3)根据上面的归纳猜想,请算出19952=________. (福建省三明市中考题)15.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.(2001天津市选拨赛试题)16.(1)若x+y=10,x3+y3=100,则x2+y2=________. (2)若a-b=3,则a3-b3-9ab=________.17.1,2,3,•……,•98•共98•个自然数中,•能够表示成两整数的平方差的个数是________.(全国初中数学联赛试题)18.已知a-b=4,ab+c2+4=0,则a+b=( ).A.4B.0C.2D.-219.方程x2-y2=1991,共有( )组整数解.A.6B.7C.8D.920.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤yB.x≥yC.x<yD.x>y (2003年太原市竞赛题)21.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-•ab-•bc-c a的值为( ).A.0B.1C.2D.3 (2002年全国初中数学竞赛题)22.设a+b=1,a2+b2=2,求a7+b7的值. (西安市竞赛题)23.已知a满足等式a2-a-1=0,求代数式a8+7a-4的值. (2003年河北省竞赛题)24.若x+y=a+b,且x2+y2=a2+b2,求证:x1997+y1997=a1997+b1997. (北京市竞赛题)三、综合创新25.有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1•顺次表示第一号选手胜与负的场数;用x2,y2顺次表示第二号选手胜与负的场数,……;用x10,y10•顺次表示十号选手胜与负的场数.求证:x12+x22+……+x102=y12+y22+……+y102.26.(1)请观察:25=521225=352112225=335211122225=33352……写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?答案1.x n+1-12.-133.(1)4;(2)3897326;(3)124.(a+b)2-4ab=(a-b)25.246.C7.D 提示;逆用平方差公式,分解相约8.C 提示:由已知条件得xy=09.D 提示:x≠0,由条件得x+1x=13,x4+41x=(x2+21x)2-2=[(x+1x)2-2]2-2 10.A11.(1)定值为0 提示:由条件得x-3y=-2z,原式=(x-3y)·(x+3y)+4z2+4xz=-2z·(x+3y)+4z2+4xz=4z2+2xz-6yz=4z2+2z(x-3y)=0(2)原式=3x2-6x-5=3(x2-2x)-5=1.12.提示:设这个自然数为x,由题意得224544x m x n ⎧-=⎪⎨+=⎪⎩②-①得n2-m2=89 即(n+m)(n-m)=89×1从而891n mn m+=⎧⎨-=⎩,解得4544nm=⎧⎨=⎩(m,n都为自然数) 故 x=45-44=1981.13.(1)对于自然数n,有n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,证明略.(2)由(1)得原式=(20002+3×2000+1)2=4006001214.(1)100×7×(7+1)+25;100×8×(8+1)+25.(2)(10n+5)2=10n(n+1)+25(3)19952=(10×199+5)2=10×199×(199+1)+25=398002515.216.(1)40 提示:x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy];(2)27.17.73 提示:x=n2-m2=(n+m)(n-m)(1≤m<n≤98,m,n为整数),因n+m与n-m•的奇偶性相同,故x是奇数或是4的倍数.18.B提示:把a=b+4代入ab+c2+4=0得(b+2)2+c2=019.C 提示:(x+y)(x-y)=1×1991=11×181=(-1)×(-1991)=(-11)×(-181)20.B提示:x-y=(a+2)2+(b-4)2≥021.D 提示:原式=12[(a-b)2+(b-c)2+(a-c)2]22. 718 提示:由a+b=1,a 2+b 2=2,得ab=-12, 利用a n+1+b n+1=(a n +b n )(a+b)-ab(a n-1+b n-1)•可分别求得 a 3+b 3=52,a 4+b 4=72,a 5+b 5=194 ,a 6+b 6=264. 23.48 提示:由a 2-a-1=0,得a -a -1=1,进而a 2+a -2=3,a 4+a -4=7, 所以a 8+7a -4=a 4(a 4+a -4)+7a -4-•1=7a -4+7a -4-1=7(a 4+a -4)-1=48.24.提示:设2222x y a b x y a b+=+⎧⎨+=+⎩, 则由①2-②得2xy=2ab ③ ②-③,得(x-y )2=(a -b)2,即│x-y │=│a-b │则x-y=a-b 或x-y=b-a,分别与x+y=a+b 联立解得x a y b =⎧⎨=⎩或x b y a =⎧⎨=⎩25.提示:由题意知:x i +y i =9(i=1,2,…,10)且x 1+x 2+…+x 10=y 1+y 2+…+y 10 因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=026.(1)提示:经观察,发现规律: (1)111n - 个 2225n 个=((1)3335n - 个)2 ,实际上, ((1)3335n - 个)2=(3332n + 个)2=(13×9992n + 个)2 =[13(10n -1)+2]2=(1053n +)2=2109n +1109n ++259 =21019n -+11019n +-+2529+= 2111n 个+ (1)111n + 个+3 = (1)111n - 个 2225n 个(2)一般地,设m=a 2+b 2,n=c 2+d 2,则mn=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a2c2+b2d2+2abcd+b2c2-•2abcd+a2d2=(ac+bd)2+(bc-ad)2或(a c-bd)2+(bc+ad)2.。
乘法公式例题解析新课指南1.知识与技能:掌握整式乘法的平方差公式、完全平方公式和(x+a)(x+b)=x2+(a+b)x+ab公式,通过公式运用,培养学生运用公式的计算能力.2.过程与方法:经历探索平方差公式、完全平方公式和公式(x+a)(x+b)=x2+(a+b)x+ab 的过程,培养学生研究问题和探索规律的方法.3.情感态度与价值观:(1)通过从多项式的乘法到乘法公式,再运用公式计算多项式的乘法,培养学生从一般到特殊,再从特殊到一般的思维能力;(2)通过乘法公式的几何背景,培养学生运用数形结合的思想方法和整体的数学思想方法的能力.4.重点与难点:重点是掌握公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2.难点是公式中字母的广泛含义.教材解读精华要义数学与生活如图15-16所示,边长为a的大正方形中有一个边长为b的小正方形,(1)请表示图15-16(1)中阴影部分的面积;(2)某同学将阴影部分拼成了一个长方形,如图15-16(2)所示,这个长方形的长和宽分别是多少?请你表示出它的面积?(3)比较(1)(2)的结果,你能发现什么?思考讨论由图15-16(1)可知,阴影部分的面积为(a2-b2),由图15-16(2)可知,拼成长方形的长为(a+b),宽为(a-b),其面积为(a+b)(a-b),由于图(2)是由图(1)拼成的,故两图面积相等,所以有(a+b)(a-b)=a2-b2那么如何证明呢?知识详解知识点1 平方差公式及其导出平方差公式是指(a+b)(a-b)=a2-b2.这就是说,两个数的和与这两个数的差的积等于这两个数的平方差.课本中本节的开始是先让同学们做几个多项式相乘的小题.经过计算,同学们首先发现,四个小题所得到的结果有惊人的相同之处:每个小题的结果都只含有两项,而且都可以写成两个数的平方差形式.为什么会有这些相同之处呢?同学们会想到,这是由于每个小题中的两个多项式都有非常特殊的关联:它们的第一项都相同,第二项的绝对值相同,但是符号相反.归纳类似的多项式相乘的式子,就得到了平方差公式(a+b)(a-b)=a2-a2.直接计算也可以得到这个公式:(a+b)(a-b)=a2-ab+ab-b2=a2-b2.【注意】 a,b仅仅是一个符号,它们可以表示数,也可以表示式子(单项式、多项式等),只是它们的和与差的积,一定等于它们的平方差.认识公式的特征至关重要.平方差公式的特征:公式的左边是两个数的和乘以这两个数的差,而公式的右边恰好是这两个数的平方差.知识规律小结(1)在应用公式(a+b)(a-b)=a2-b2时,需仔细识别公式中的a与b,例如:(2x+3)(2x-3)中,把2x看成a,3看成b;(-m+2n)(-m-2n)中,把-m看成a,2n看成b;(3a-2b)(-3a-2b)中,把-2b看成a,3a看成b,因此有:(2x+3)(2x-3)=(2x)2-32=4x2-9;(-m+2n)(-m-2n)=(-m)2-(2n)2=m2-4n2;(3a-2b)(-3a-2b)=(-2b)2-(3a)2=4b2-9a2.(2)在51×49中,a=24951+=50,b=24951-=1,∴51×49=(50+1)(50-1)=502-12=2499.知识点2 完全平方公式及其推导探究交流计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)= ; (2)(m+2)2= ;(3)(p-1)2=(p-1)(p-1)= ; (4)(m-2)2= .点拨两个数和(或差)的平方,等于这两个数的平方和加上(或减去)这两个数乘积的2倍.一般地,我们有:(a+b)2= a2+2ab+b2,(a-b)2=a2-2ab+b2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.例如:(2x+3)2=(2x)2+2·2x·3+32=4x2+12x+9,(3m-4)2=(3m)2-2·3m·4+42=9m2-24m+16.在记忆公式(a±b)2=a2±2ab+b2时,要在理解和比较的基础上记忆,两个公式相同之处在于两个数的平方和,不同之处在于中间项的符号不同,计算时要注意.如:(x-2y)2=x2-2·x·2y+(2y)2=x2-4xy+4y2.说明完全平方公式,既可以用多项式乘法进行推导:(a+b)(a+b)=a·a+a·b+b·a+b2= a2+2ab+b2.同时,也可以用观察情境来推导,如图15-17所示.由图(1)可知,(a+b)2=a2+2ab+b2,由图(2)可知,(a-b)2=a2-2ab+b2.知识点3 添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号.【说明】添括号法则与去括号法则是一致的,添括号正确与否,可用去括号进行检验.知识点4 公式(x+a)(x+b)=x2+(a+b)x+ab公式(x+a)(x+b)=x2+(a+b)x+ab的推导可以用多项式乘法公式椎导.(x+a)(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab.例如:(x+2)(x+3)=x2+(2+3)x+2×3=x2+5x+6,(x+2)(x-3)=x2+(2-3)x+2×(-3)=x2-x-6.【注意】注意a与b的值,该公式在多项式乘法中广泛应用.典例剖析师生互动基本知识应用题本节知识的基础应用主要包括:(1)会推导平方差公式;(2)会推导完全平方公式,并能运用公式进行简单的计算;(3)掌握公式(x+a)(x+b)=x2+(a+b)x+ab.例1 运用平方差公式计算.(1)(3x+2)(3x-2);(2)(b+2a)(2a-b);(3)(-x+2y)(-x-2y).(分析) (1)中,把3x 看作a ,2看作b ;(2)中,2 a 看作a ,b 看作b ;(3)中,-x 看作 a ,2y 看作b.解:(1)(3x+2)(3x-2)=(3x)2-22=9x 2-4.(2)(b+2a)(2a-b)=(2a )2-b 2=4a 2-b 2.(3)(-x+2y)(-x-2y)=(-x )2-(2y)2=x 2-4y 2例2 运用完全平方公式计算.(1)(4m+n )2; (2)(y-21)2. (分析) 主要是正确地应用公式.解:(1)(4m+n)2=(4m)2+2·4m ·n +n 2=16m 2+8mn+n 2. (2)(y-21)2=y 2-2y ·21+(21)2=y 2-y+41. 【说明】 在应用公式(a+b)(a-b)=a 2-b 2和(a±b)2=a 2±2ab+b 2时,关键是看清题目中哪一个是公式中的a ,哪一个是公式中的b.例3 运用乘法公式计算.(1)102×98; (2)1022; (3)992.(分析)灵活应用乘法公式计算.(1)中,102×98=(100+2)(100-2);(2)中,1022=(100+2)2;(3)中,992=(100-1)2,然后利用公式计算即可.解:(1)102×98=(100+2)(100-2)=1002-22=10000-4=9996.(2)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404.(3)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.例4 计算.(1)(m-5)(m+3); (2)(2x-3)(2x-4).(分析)本题主要考查公式(x+a)(x+b)=x 2+(a+b)x+ab 的应用.解:(1)(m-5)(m+3)=m2+[(-5)+3]m+(-5)·3=m2-2m-15.(2)(2x-3)(2x-4)=(2x)2+[(-3)+(-4)]·2x+(-3)·(-4)=4x2-14x+12.综合应用题本节知识的综合应用主要包括:(1)公式之间的综合应用;(2)与方程的综合应用;(3)与不等式的综合应用.例5 计算.(1)(x+2y-3)(x-2y+3); (2)(a+b+c)2;(3)(y+2)(y-2)-(y-1)(y+5).(分析) 本题主要考查灵活应用整式乘法公式进行计算.(1)题把x看作公式中的a,(2y-3)看成公式中的b;(2)题把(a+b)看成公式中的a,c看成公式中的b;(3)题运用公式(x+a)(x+b)=x2+(a+b)x+ab.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9.(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2.(3)(y+2)(y-2)-(y-1)(y+5)=(y2-4)-(y2+4y-5)=y2-4-y2-4y+5=-4y+1.例6 计算.(1)(b-2)(b2+4)(b+2); (2)(2a-b)(2a+b)-(3a-2b)(3a+2b).(分析) (1)题用乘法的交换律和结合律;(2)题用平方差公式和整式减法.解:(1)(b-2)(b 2+4)(b+2)=(b-2)(b+2)(b 2+4)=(b 2-4)(b 2+4)=b 4-16.(2)(2a-b)(2a+b)-(3a-2b)(3a+2b)=(4a 2-b 2)-(9a 2-4b 2)=4a 2-b 2-9a 2+4b 2=-5a 2+3b 2.学生做一做 计算. (1)(21-x)(41+x 2)(x+21); (2)(x+3)2-(x+2)(x-2). 老师评一评 (1)原式=161-x 4; (2)原式=6x+13. 例7 解方程 2(x-2)+x 2=(x+1)(x-1)+x(分析) 熟练应用整式的乘法公式.解:2x-4+x 2=x 2-1+x ,2x+x 2-x 2-x=-1+4,∴x=3.例8 解不等式x(x-3)>(x+7)(x-7).(分析)考查应用整式乘法及平方差公式去括号.解:x 2-3x >x 2-49,x 2-3x-x 2>-49,-3x >-49,∴x <349. 探索与创新题主要考查灵活应用所学公式解决现实问题.例9 计算19982-1997×1999.(分析)同时应用完全平方公式和平方差公式化简,其中,1997×1999=(1998-1)(1998+1).解:19982-1997×1999=19982-(1998-1)(1998+1)=19982-(19982-1)=19982-19982+1=1.学生做一做 计算20022004200320032⨯-. 老师评一评 原式=)12003)(12003(200320032-+- =)12003(2003200322-- =120032003200322+- =12003 =2003.例10 计算(2+1)(22+1)(24+1)…(22n +1).(分析)要计算本题,一般先计算每一个括号内的,然后再求它们的积,这样做是复杂的,也是不必要的,我们不妨考虑用平方差公式来解决,即在原式上乘以(2-1),再同时除以(2-1)即可.解:原式=12)12()12)(12)(12)(12(242-++++-n Λ =(22-1)(22+1)(24+1)…(22n +1)=(24-1)(24+1)…(22n +1)=(22n )2-1=24n -1.学生做一做 计算.(1)3·(22+1)(24+1)…(232+1)+1;(2)1002-992+982-972+962-952+…+22-12; (3)(1-221)(1-231)(1-241)…(1-291)(1-2101). 老师评一评 (1)由例10可以得到提示.(22+1)(24+1)…(232+1) =12)12()12)(12)(12(232422-+++-Λ =[(232)2-1]·31 =31(264-1). ∴原式=3·31(264-1)+1=264-1+1=264. (2)由平方差公式和等差数列公式S n =2)1(+n n 可知, 原式=(100+99)(100-99)+(98+97)(98-97)+(96+95)(96-95)+…+(4+3)(4-3)+(2+1)(2-1)=100+99+98+97+96+95+…+4+3+2+1 =2)1100(100+ =5050.(3)由平方差公式和分数乘法公式可知,原式=(1+21)(1-21)(1+31)(1-31)(1+41)(1-41)…(1+91)·(1-91)(1+101)(1-101) =23×21×34×32×45×43×…×910×98×1011×109 =21·1011 =2011. 例11 已知(a+b )2=7,(a-b )2=4,求a 2+b 2,ab 的值.(分析)由已知(a+b )2=7,(a-b)2=4,就目前的知识水平,具体求出a 和b 的值是比较困难的,但由整式的乘法公式可以将已知化成:a 2+2ab+b 2=7,①a 2-2ab+b 2=4,②由①+②可以求出a 2+b 2,由①-②可以求出ab.解:由题意可知,a 2+2ab+b 2=7,①a 2-2ab+b 2=4,②①+②得2(a 2+b 2)=11,∴a 2+b 2=211. ①-②得4ab=3.∴ab=43. 小结 (1)由两数和的平方和两数差的平方,可以通过两式的加减求出两数的平方和与两数的积,同理,已知两数和的平方或两数差的平方,以及两数的平方和,可以求出两数的积.(2)由平方差公式,也可以进行变形.例如:已知a 2-b 2=14,a+b=7,那么a-b=2. 例12 观察下列各式:(x-1)(x+1)=x 2-1(x-1)(x 2+x+1)=x 3-1(x-1)(x 3+x 2+x+1)=x 4-1根据前面各式的规律可得:(x-1)(x n +x n-1+x n-2+…+x+1)= .(其中n 为正整数)(分析)由已知各式可以发现:(x-1)(x n +x n-1+x n-2+…+x+1)=x n+1-1.小结 与上例类似地有:由(a-b)(a+b)=a 2-b 2(a-b)(a2+ab+b2)=a3-b3(a-b)(a3+a2b+ab2+b3)=a4-b4……可以得出(a-b)(a n+a n-1b+a n-2b2+…+b n)=a n+1-b n+1学生做一做观察下列各式:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1)计算2000·2001·2002·2003+1.(用一个最简式子表示) 老师评一评 (1)n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,推导如下:∵n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∴n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.(2)当n=2000时,(n2+3n+1)2=(20002+3×2000+1)2=40060012,∴2000·2001·2002·2003+1=40060012.易错与疑难题例13 计算.(1)(2x+y-z+10)(2x-y+z+10);(2)(a+b)2(a-b)2-(a2+b2)(a-b).错解:(1)(2x+y-z+10)(2x-y+z+10)=[2x+(y-z+10)][2x-(y-z+10)]=4x2-(y-z+10)2.(2)(a+b)2(a-b)2-(a2+b2)(a-b)=[(a+b)(a-b)]2-[(a2)2-(b2)2]=(a2-b2)2-(a4-b4)=(a4-b4)-(a4-b4)=0.(分析) 第(1)小题的两个括号中,2x与10是相同的部分,y与-y及-z与z都互为相反数,分组结合后可利用平方差公式.第(2)小题中,(a+b)2(a-b)2在逆用积的乘方性质后可利用平方差公式,(a2+b2)(a-b),则需利用多项式的运算法则计算.正解:(1)(2x+y-z+10)(2x-y+z+10)=[(2x+10)+(y-z)][(2x+10)-(y-z)]=(2x+10)2-(y-z)2=4x2-y2-z2+10x+2yz+100.(2)(a+b)2(a-b)2-( a2+b2)(a-b)=[(a+b)(a-b)]2-(a3+ab2-a2b-b3)=(a2-b2)2-a3-a b2+a2b+b3=a4-a3-2a2b2+a2b-a b2+b3+b4.小结错解第(1)小题是在添括号时发生符号错误.错解第(2)小题的错误有二:一是只凭想象而无根据地用a4-b4代替(a2-b2)2,其实这二者并不相等;二是计算(a2+b2)(a-b)时,在不具备使用平方差公式的条件下,错误地使用了这个公式.应该牢固地掌握公式的特征,解题时每一步都必须有理有据,包括严防发生符号错误.中考展望点击中考中考命题总结与展望本节知识在中考中多以填空、选择题的形式出现,也有少部分的化简求值题及与解方程、解不等式和函数知识结合在一起的综合题.中考试题预测例1 若a 的值使得x 2+4x+a=(x+2)2-1成立,则a 的值为( ) A.5B.4C.3D.2(分析)因为x 2+4x+a=(x+2)2-1,所以x 2+4x+a=x 2+4x+3, 因此,a=3,故正确答案为C 项.例2 已知x+y=1,那么21x 2+xy+21y 2的值为 . (分析) 由21x 2+xy+21y 2得21x 2+xy+21y 2=21(x 2+2xy+y 2)= 21(x+y)2.又由于x+y=1,所以21x 2+xy+21y 2=21(x+y)2=21×12=21.答案:21例3 若5-+y x +(xy-6)2=0,则x 2+y 2的值为( ) A.13B.26C.28D.37(分析) 本题主要考查灵活应用完全平方公式及其变式.由绝对值和平方的非负性可得⎩⎨⎧=-=-+,06,05xy y x ∴⎩⎨⎧==+.6,5xy y x ∴x 2+y 2=(x+y )2-2xy=52-2×6=13.因此,正确答案为A 项.例4 如图15-18所示的是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x ,y 表示小矩形的两边长(x >y),请观察图案,指出以下关系式中,不正确的是( )A.x+y=7B.x-y=2C.4xy+4=49D.x 2+y 2=25(分析)由图示可以发现: (x+y )2=4xy+(x-y)2, 并且(x+y)2=49,(x-y )2=4. 所以x+y=7,x-y=2,4xy+4=49, 而x 2+y 2=21[(x+y)2+(x-y)2]=21(49+4)=21×53≠25. 故关系式不正确的是D. 答案:D例5 方程组⎩⎨⎧=+=-5,1522y x y x 的解为 .(分析)本题主要考查平方差公式的灵活应用. 因为x 2-y 2=(x+y)(x-y),且x+y=5,所以x-y=3.所以原方程组可以化为⎩⎨⎧=-=+,3,5y x y x 所以⎩⎨⎧==.1,4y x∴原方程组的解为⎩⎨⎧==.1,4y x课堂小结 本节归纳1.本节主要学习了:(1)整式乘法的平方差公式(a+b)(a-b)=a 2-b 2; (2)整式乘法的完全平方公式(a ±b )2=a 2±2ab+b 2.2.一定要掌握公式的结构特征和字母表示数的广泛意义,通过学习达到能够熟练、灵活地运用乘法公式的程度.习题选解 课本习题人教版课本第184~185页习题15.3 1.(1)原式=94x 2-y 2; (2)原式=x 2y 2-1; (3)原式=4a 2-9b 2; (4)原式=25-4b 2; (5)原式=3999999; (6)原式=999996. 2.(1)原式=4a 2+20ab+25b 2;(2)原式=16x 2-24xy+9y 2; (3)原式=4m 2+4m+1; (4)原式=49a 2-2ab+94b 2; (5)原式=3969;(6)原式=9604.3.(1)原式=5x 2-58x-24;(2)原式=x 2+2xy+y 2-1;(3)原式=4x 2+y 2+9-4xy-12x+6y ;(4)原式=x 4-8x 2+16.4.原式=12xy+10y 2,当x=31,y=-21时,原式=21. 5.解:设原正方形的边长为xcm ,由题意可知,(x+3)2=x 2+39,∴x=5. 答:原正方形的边长为5cm. 6.解:剩下钢板的面积为π[21(a+b)]2-π·(21a)2-π·(21b)2=21πab. 答:剩下钢板的面积为21πab.7.解:将公式(a+b)2=a 2+2ab+b 2变形为a 2+b 2=(a+b)2-2ab ,∵a+b=5,ab=3,∴a 2+b 2=(a+b )2-2ab=52-2×3=19. 8.x <7789.⎪⎪⎩⎪⎪⎨⎧-==61,23y x 自我评价 知识巩固1.下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x 2-6C.(x+y )2=x 2+y 2D.6(x-2)+x(2-x)=(x-2)(x-6)2.下列运算正确的是( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x-3y)=x 2-3y 23.下列计算正确的是( )A.(-4x)·(2x 2+3x-1)=-8x 3-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a-1)(4a-1)=1-16a 2D.(x-2y )2=x 2-2xy+4y 2 4.(x+2)(x-2)(x 2+4)的计算结果是( )A.x 4+16B.-x 4-16C.x 4-16D.16-x 45.19922-1991×1993的计算结果是( )A.1B.-1C.2D.-26.对于任意的整数n ,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a+1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 2 8.99×101=( )( )= .9.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2. 10.多项式x 2+kx+25是另一个多项式的平方,则k= . 11.(a+b )2=(a-b )2+ ,a 2+b 2=[(a+b)2+(a-b)2]( ),a 2+b 2=(a+b )2+ ,a 2+b 2=(a-b)2+ . 12.计算.(1)(a+b)2-(a-b )2; (2)(3x-4y )2-(3x+y)2;(3)(2x+3y )2-(4x-9y)(4x+9y)+(2x-3y)2; (4)1.23452+0.76552+2.469×0.7655; (5)(x+2y)(x-y)-(x+y )2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值. 14.已知a+a 1=4,求a 2+21a 和a 4+41a的值. 15.已知(t+58)2=654481,求(t+84)(t+68)的值. 16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-ab-ac-bc 的值. 18.如果(2a+2b+1)(2a+2b-1)=63,求a+b 的值. 19.已知(a+b )2=60,(a-b )2=80,求a 2+b 2及ab 的值.20.化简(x+y)+(2x+21⨯y )+(3x+32⨯y )+…+(9x+98⨯y),并求当x=2,y=9时的值. 21.若f(x)=2x-1(如f(-2)=2×(-2)-1,f(3)=2×3-1),求2003)2003()2()1(f f f +++Λ的值.22.观察下面各式:12+(1×2)2+22=(1×2+1)2 22+(2×2)2+32=(2×3+1)2 32+(3×4)2+42=(3×4+1)2 ……(1)写出第2005个式子;(2)写出第n 个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b 8.100-1 100+1 9999 9.x-y z-(x-y) x-y 10.±10 11.4ab21- 2ab 2ab 12.(1)原式=4ab ;(2)原式=-30xy+15y ;(3)原式=-8x 2+99y 2;(4)提示:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y 2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m 2+n 2-6m+10n+34=0, ∴(m 2-6m+9)+(n 2+10n+25)=0, 即(m-3)2+(n+5)2=0, 由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.∵a+a 1=4,∴(a+a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a +2=16.∴a 2+21a =14.同理a 4+41a=194.15.提示:应用整体的数学思想方法,把(t 2+116t)看作一个整体.∵(t+58)2=654481,∴t 2+116t+582=654481. ∴t 2+116t=654481-582. ∴(t+48)(t+68) =(t 2+116t)+48×68 =654481-582+48×68 =654481-582+(58-10)(58+10) =654481-582+582-102=654481-100 =654381. 16.x <23 17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2. ∴a 2+b 2+c 2-ab-ac-be=21(2a 2+2b 2+2c 2-2ab-2bc-2ac) =21[(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ac+a 2)] =21[(a-b 2)+(b-c)2+(c-a)2] =21[(-1)2+(-1)2+22] =21(1+1+4) =3.18.解:∵(2a+2b+1)(2a+2b-1)=63,∴[(2a+2b)+1][(2a+2b)-1]=63, ∴(2a+2b )2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4, ∴a+b 的值为4或一4. 19.a 2+b 2=70,ab=-5.20.提示:去括号后合并同类项,然后应用S n =2)1(+n n 与111)1(1+-=+n n n n 解决问题.原式=x+y+2x+21⨯y +3x+32⨯y +…+9x+98⨯y=(x+2x+3x+…+9x)+(y+21⨯y +32⨯y +…+98⨯y)=(1+2+3+…+9)x+(1+21⨯y +32⨯y +…+98⨯y )y =2)19(9+·x+(1+1-21+21-31+…+71-81+81-91)y=45x+(1-91)y=45x+917y.当x=2,y=9时,原式=45×2+917×9=107.21.∵f(x)=2x-1,∴f(1)+f(2)+f(3)+…+f(2003)=(2×1-1)+(2×2-1)+(2×3-1)+…+(2×2003-1) =(2×1+2×2+2×3+…+2×2003)-1×2003 =2(1+2+3+…+2003)-2003 =2×2)12003(2003+⨯-2003=20032+2003-2003 =20032∴原式=200320032=2003.22.解:(1)当n=1时,12+(1×2)2+22=(1×2+1)2;当n=2时,22+(2×3)2+32=(2×3+1)2; 当n=3时,32+(3×4)2+42=(3×4+1)2; ……第2005个式子即当n=2005时,有 20052+(2005×2006)2+20062=(2005×2006+1)2.(2)第n 个式子为n 2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.证明如下: ∵n 2+[n(n+1)]2+(n+1)2初中数学乘法公式例题解析=n2+n2(n+1)2+(n2+2n+1)=n2+n2(n2+2n+1)+(n2+2n+1)=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1,且[n(n+1)+1]2=[n(n+1)2]+2[n(n+1)]·1+12=n2(n+1)2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,∴n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.21 / 21。