全国高中数学联赛江苏赛区2009年初赛试题答案
- 格式:doc
- 大小:553.00 KB
- 文档页数:5
全国高中数学联赛江苏赛区初赛试卷(含答案)全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题共10小题,满分70分,每小题7分,要求直接将答案写在横线上。
)1.已知点P(4,1)在函数$f(x)=\log_a(x-b)$($b>0$)的图像上,则$ab$的最大值是______。
解:由题意知,$\log_a(4-b)=1$,即$a+b=4$,且$a>0$,$a\neq 1$,$b>0$,从而$ab\leq 4$。
当$a=b=2$时,$ab$的最大值是4.2.函数$f(x)=3\sin(2x-\frac{\pi}{4})$在$x=\frac{3\pi}{4}$处的值是______。
解:$2x-\frac{\pi}{4}=\frac{3\pi}{4}$,所以$f(\frac{3\pi}{4})=3\sin(\frac{3\pi}{4}-\frac{\pi}{4})=-\frac{3}{\sqrt{2}}$。
3.若不等式$|ax+1|\leq 3$的解集为$\{x|-2\leq x\leq 1\}$,则实数$a$的值是______。
解:设函数$f(x)=|ax+1|$,则$f(-2)=f(1)=3$,故$a=2$。
4.第一只口袋里有3个白球、7个红球、15个黄球,第二只口袋里有10个白球、6个红球、9个黑球,从两个口袋里各取出一球,取出的球颜色相同的概率是______。
解:有两类情况:同为白球的概率是$\frac{3}{25}\times\frac{10}{25}=\frac{6}{125}$,同为红球的概率是$\frac{7}{25}\times\frac{6}{25}=\frac{42}{625}$,所求的概率是$\frac{6}{125}+\frac{42}{625}=\frac{72}{625}$。
5.在平面直角坐标系$xOy$中,设焦距为$2c$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$有相同离心率$e$,则$e$的值是______。
2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x = ()()()2f x f f x =⎡⎤⎣⎦……()()99f x故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积 AOB OCD BEF S S S ∆∆∆=--()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x ya b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 . 【答案】 22222a b a b+【解析】 设()cos sin P OP OP θθ,, ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a bOP OQ+=+. 于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x ,2122x k ⎡=-⎣④2400k k k ∆=-⇒≥≤或4k ≥. (ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去.综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯ ……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯. 8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+->① ………………………………………………4分 由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+>② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k <.因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14q =,求{}n a 的前n 项和. 【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nn a n n α=+-=+. 于是数列{}n a 的通项公式为()1n n a n α=+; (5)分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-. (15)分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---. (10)分(Ⅱ)同方法一.3. (本小题满分15分)求函数y 【解析】 函数的定义域为[]013,.因为y ==当0x =时等号成立.故y 的最小值为.……………………………………………5分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2010年全国高中数学联赛一 试一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---=的值域是 .2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα .5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 .6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin .8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分)9. (16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(20分)证明:方程02523=-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r . 解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立. 从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41-提示:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的. 当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217 提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.7.4提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=B A B .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x =、),,(222z y x =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x B x A B 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,即2cos cos 4αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11,.OEPC 1B 1A 1CBA设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g . 设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a .又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+=]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314=. 当且仅当20202249y y -=+,即0y =,66((33A B +-或66((33A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t ,66((33A B +-或66((33A B -时等号成立. 所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152rr -=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r ,去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.2011年全国高中数学联合竞赛一试试题(A 卷)考试时间:2011年10月16日 8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上. 1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设ba ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为 .二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++n n n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式; (2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l与椭圆C:143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.yOPAB2012年全国高中数学联赛一试参考答案及详细评分标准一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.1. 设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 .解:方法1:设0002(,),p x x x +则直线PA 的方程为0002()(),y x x x x -+=--即0022.y x x x =-++由00000011(,).22y xA x x y x x x x x=⎧⎪⇒++⎨=-++⎪⎩又002(0,),B x x +所以00011(,),(,0).PA PB x x x =-=-故001() 1.PA PB x x ⋅=⋅-=- 2. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=,则tan tan A B的值是 . 解:由题设及余弦定理得222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=故222222222222228tan sin cos 2542tan sin cos 52a c b a c A A B c a b ac b c a B B A b c a c b bc+-⋅+-=====+-+-⋅.3.设,,[0,1]x y z ∈,则||||||M x y y z z x =-+-+-的最大值是 .解:不妨设01,x y z ≤≤≤≤则.M y x z y z x =-+-+-因为2[()()]2().y x z y y x z y z x -+-≤-+-=-所以2()(21)2 1.M z x z x z x ≤-+-=+-≤-当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 2 1.M =+ 4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是 . 解:由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +== 当且仅当AF BF =时等号成立.故MNAB的最大值为1.5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 . 解:如图.连结PQ ,则PQ ⊥平面ABC ,垂足H 为正ABC ∆的中心,且PQ 过球心O ,连结CH 并延长交AB 于点M ,则M 为AB 的中点,且CM AB ⊥,易知,PMH QMH ∠∠分别为正三棱锥,P ABC Q ABC --的侧面与底面所成二角的平面角,则45PMH ∠=,从而12PH MH AH ==,因为90,,PAQ AH PQ ∠=⊥ 所以2,AP PH QH =⋅即21.2AH AH QH =⋅所以24.QH AH MH ==,故tan 4QHQMH MH∠==6. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 .解:由题设知22(0)()(0)x x f x x x ⎧≥⎪=⎨-<⎪⎩,则2()).f x f =因此,原不等式等价于()).f x a f +≥因为()f x 在R 上是增函数,所以,x a +≥即1).a x ≥又[,2],x a a ∈+所以当2x a =+时,1)x 取得最大值1)(2).a +因此,1)(2),a a ≥+解得a ≥故a 的取值范围是).+∞7.满足11sin 43n π<<的所有正整数n 的和是 .解:由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin ,sin ,1313412124πππππ<<>⨯= 131sin ,sin .10103993πππππ<<>⨯=所以11sin sin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)解:用k P 表示第k 周用A 种密码的概率,则第k 周末用A 种密码的概率为1k P -.于是,有11(1),3k k P P k N *+=-∈,即1111()434k k P P +-=--由11P =知,14k P ⎧⎫-⎨⎬⎩⎭是首项为34,公比为13-的等比数列。
2009年全国高中数学联赛江苏赛区复赛2009年全国高中数学联赛江苏赛区分为初赛、复赛与决赛(即全国高中数学联赛)。
初赛与复赛由江苏省数学学会普及工作委员会、江苏省高中数学联赛专家委员会领导并主办,由江苏省数学学会高中数学联赛专家委员会邀请专家组成“高中数学联赛命题组”。
命题组负责人是南京师范大学余红兵等教授。
初赛试题以《全日制普通高中(新)课程标准》的内容和要求为依据;复赛试题以全国高中数学联赛竞赛大纲为依据,以全国高中数学联赛的题型、试卷为模式,分为一试与加试,考试时间也与全国高中数学联赛相同,在方法和能力的考察上有所提高,一方面起选拔作用,从参赛者中选出参加全国高中数学联赛的学生;另一方面也为参加全国高中数学联赛作一次赛前准备。
初赛于2009年5月3日8:00-11:00,由各大市自行组织,选出5%,连同名单、试卷一同交到省联赛专家委员会。
复赛于2009年7月23日8:00 — 12:10,在江苏省高中数学奥林匹克夏令营中统一进行,选出70%左右参加全国高中数学联赛。
决赛于2009年10月11日8:00 —12:10,在全省的4个考点举行,派专人送试卷到考点,考试结束后将试卷密封带回南京统一阅卷、统一评分。
从参加决赛人员中选出全国一等奖(55名)、江苏省一等奖(200名左右)、江苏省二等奖(600名左右)、江苏省三等奖(900名左右),以资鼓励。
试 题一、填空题(每小题7分,共56分)1.已知数列{}n a 的前n 项和234n S n n =++()*n ∈N,则13521a a a a ++++= .2. 若集合{}1,A ax x ==+∈R 为空集,则实数a 的取值范围是 .3. 设x 、y 为实数,21x y +≥,则二元函数2242u x x y y =++-的最小值是 .4. 设1F 、2F 分别是双曲线22221x y ab-=的左、右焦点,以12F F 为直径的圆交双曲线左支于A 、B 两点,且1120AF B ∠=︒. 双曲线的离心率的值介于整数k 与1k +之间,则k = .5. 已知长方体1111ABCD A B C D -的体积为216,则四面体11AB CD 与四面体11A BC D 的重叠部分的体积等于 .6. 设[]x 表示不大于x 的最大整数,则 3333[log 1][log 2][log 3][log 258]++++= .7. 设方程21221221100n n n n n xa x a x a x a +-------= 的根都是正数,且其中1a =()21n -+,则0a 的最大值是 .8. 20091911⨯的方格棋盘的一条对角线穿过 个棋盘格. 二、解答题(第9题14分,10、11题各15分) 9. 求函数()44sin tan cos cot f x x x x x =⋅+⋅的值域.10. 如图,抛物线22y x =及点()1,1P ,过点P 的不重合的直线1l 、2l 与此抛物线分别交于点A 、B 、C 、D .证明:A 、B 、C 、D 四点共圆的充要条件是直线1l 与2l 的倾斜角互补.11. 设a ,b 是正数,且1a ≠,1b ≠,求证:()()55441125111164a b a b a b --⋅>++--.加 试12.(本题满分50分)如图,在△ABC 中,DE ∥BC ,△ADE 的内切圆与DE 切于点M ,△ABC 的BC 边上的旁切圆切BC 于点N ,点P 是BE 与CD 的交点,求证M 、N 、P 三点共线.13. (本题满分50分)设k ,n 为给定的整数,2n k >≥. 对任意n 元的数集P ,作P 的所有k 元子集的元素和,记这些和组成的集合为Q ,集合Q 中元素个数是Q C . 求Q C 的最大值.14.(本题满分50分)设12222s nn n M =+++ ,12,,,s n n n 是互不相同的正整数,求证:(122222221sn n n +++<+15. (本题满分50分)求满足下列条件的所有正整数x 、y :(1)x 与1y -互素; (2)231x x y -+=.解 答1. 2682. 11(,)(,)36-∞-+∞ 3. 95-4.25. 366. 9327. 18. 38719.因为()44662sin cos sin cos cos sin sin cos sin cos 32sin 22sin 2xx f x x x xxx xx x xx=⋅+⋅+=-=.令sin 2t x =,则[)(]1,00,1t ∈- ,()2322322t f x t t t -==-. 易知函数()232g t t t =-在区间[)1,0-与(]0,1上都是减函数,所以()g t 的值域为11(,][,)22-∞-+∞ ,故()f x 的值域为11(,][,)22-∞-+∞ .10. 设1l 、2l 的倾斜角分别为α、β,由题设知α、()0,βπ∈. 易知直线1l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩, 代入抛物线方程可化得()22sin 2sin cos 10t t ααα+--=.设上述方程的两根为1t 、2t ,则 1221sin t t α-=. 由参数t 的几何意义, 得21sin AP BP α⋅=. 同理21sin CP DP β⋅=.若A 、B 、C 、D 四点共圆,则 AP BP CP DP ⋅=⋅,即 22sin sin αβ=.因为α,()0,βπ∈,所以 sin sin αβ=.又由1l 、2l 不重合,则αβ≠. 所以αβπ+=.反过来,若αβπ+=,则因α、()0,βπ∈,故s i n s i n αβ=,且0α≠,0β≠. 所以2211sin sin αβ=,即AP BP CP DP ⋅=⋅.故A 、B 、C 、D 四点共圆.11. 因为54324321111a a a a a a a a a -++++=-+++,且()()()4323281511a a a a a a a a ++++-++++43232223a a a a =---+()()42432121a a a a a =-++--+()()()222212110a a aa =-+-++> (1a ≠),所以()4323215118a a a a a a a a ++++>++++,即()5415118a a a ->+-.同理可证5415(1)18b b b ->+-. 于是,()55441125(1)11164a b a b a b --⋅>++--.12. 设BE 与MN 交于点'P .因为DE ∥BC ,所以BP BC PE DE=,''BP BNP E EM =.故只需证明BCBNDE EM =,或BN EMBC DE =. 如图, 设1O 、2O 分别为三角形的内切圆与旁切圆的圆心,F 、G 、H 、I 为切点,则()12EM AE DE AD =+-,AH AB BH AB BN =+=+,()12AH AI AB BC AC ==++,()12BN AH AB AC BC AB =-=+-.又因为ADE ∆∽ABC ∆,故可设AB BC AC k ADDEAE===,则1()2AC BC AB BN BC BC+-=()2()2k AE k DE k AD k DEAE DE AD EM DEDE⋅+⋅-⋅=⋅+-==故结论成立.13. Q C 的最大值为kn C .因P 共有kn C 个k 元子集,故显然有kQ n C C ≤.下面指出,对集合2{2, 2, , 2}n P = ,相应的Q C 等于kn C ,即P 的任意两个不同的k 元子集的元素之和不相等. 从而Q C 的最大值为kn C .事实上,若上述的集合P 有两个不同的k 元子集12{2,2,,2}k rrrA = ,12{2,2,,2}k s s s B = ,使得A 与B 的元素之和相等,则1212222222k k r s r r s s M +++=+++= (设). ①因①可视为正整数M 的二进制表示,由于i r 互不相同,i s 互不相同,故由正整数的二进制表示的唯一性,我们由①推出,集合12{,,,}k r r r 必须与12{,,,}k s s s 相同,从而子集A B =,矛盾.这就证明了我们的断言.14. 对s 归纳.(1) 当1s =时,结论显然成立.(2) 假设s k =时结论成立,当1s k =+时,不妨设121k k n n n n +>>>> .由归纳假设可知,122222(1k n n +++<+,则1121222222222(12kk n n n n n +++++<+ .所以只要证明12(12(1n +<+ 此即1>.因为正整数121k k n n n n +>>>> ,所以 122231211222221222.k n n n n n n n ++-≥>++++≥+++ .故==所以1>=,即1s k =+时,命题成立.因此,由数学归纳法可知,命题对所有正整数s 成立.15. 显然 1x =,1y =满足要求. 对于1x >,1y >, 方程可化为()()()2111y y y x x -++=-.显然x y >. 因为(),11x y -=,故x 一定是21y y ++的一个因子. 设21y y kx ++=(k为正整数),从而()11x k y -=-. 由x y >可知2k ≥.消去x ,得()2211y y k y k ++=-+,即()()()221113yy k y k -+-=-+-.由此推得 ()13y k --.若3k >,则13y k -≤-,即2k y ≥+,从而()()2221121k y k y y k k -+=++<+-+,故必有10y -=,矛盾.所以 3k ≤,从而2k =,3. 验证知7y =,19x =. 综上,()(),1,1x y =,()19,7.。
全国高中数学联赛全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容, 但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当 增加一些竞赛教学大纲的内容。
全卷包括 4 道大题,其中一道平面几何题 .一 试一、填空(每小题 7 分,共 56 分)1. 若函数 f x x x 2 且 f( n ) x f f f f x ,则 f 99 1 .1 n2. 已知直线 L : x y9 0 和圆M : 2 x 2 2 y 2 8x 8y 1 0 ,点 A 在直线 L 上, B ,C 为 圆 M 上 两 点 , 在 ABC 中 , BAC 45 , AB 过 圆 心 M , 则 点 A 横 坐 标 范 围为 .y≥ 0. 在坐标平面上有两个区域 M 和 N , M 为 y ≤ x , N 是随 t 变化的区域,它由3y≤ 2 x不等式 t ≤ x ≤ t 1 所确定, t 的取值范围是 0 ≤ t ≤ 1 ,则 M 和 N 的公共面积是函数f t .4. 使不等式 1 1 1 a 2007 1 对一切正整数 n 都成立的最小正整数n 1 n 2 2n 1 3a 的值为 .2 25. 椭圆 x y 1 a b 0 上任意两点 P ,Q ,若 OP OQ ,则乘积 OP OQ 的最a 2 b2小值为 .6. 若方程 lg kx 2lg x 1 仅有一个实根,那么 k 的取值范围是 .第一行是前 则最后一行的 数是 (可以用指数表示) 8. 某车站每天 8∶00 ~ 9∶00 , 9∶00 ~ 10∶00 都恰有一辆客车到站,但到站的时刻是随 机的,且两者到站的时间是相互独立的,其规律为 到站时刻 8∶10 8∶30 8∶50 9∶10 9∶30 9∶50 概率 1 1 1 6 2 3 一旅客 8∶20 到车站,则它候车时间的数学期望为 (精确到分). 二、解答题 1. ( 14 分)设直线 l : y kx m (其中 k , m 为整数)与椭圆 x 2 y 2 16 1交于不同两 x 2 y 2 12 点 A , B ,与双曲线 1 交于不同两点 C , D ,问是否存在直线 l ,使得向量 4 12AC BD 0 ,若存在,指出这样的直线有多少条?若不存在,请说明理由. 162.( 15 分)已知 p ,q q 0 是实数,方程 x2 px q 0 有两个实根,,数列 an 满足 a1 p , a2 p 2 q , an pan 1 qan 2 n 3,4 ,(Ⅰ )求数列a n的通项公式(用,表示);(Ⅱ )若 p 1 , q 1 ,求 a n的前 n 项和.43.( 15 分)求函数y x 27 13 x x 的最大和最小值.加试一、填空(共 4 小题,每小题50 分,共 200 分)9.如图, M , N 分别为锐角三角形 ABC (AB )的外接圆中点.过点 C 作 PC ∥ MN 交圆于 P 点, I 为ABC 的内心,连接PI⑴求证: MP MT NP NT ;⑵在弧 AB (不含点 C )上任取一点Q ( Q ≠ A ,T , B ),记上弧BC 、AC 的并延长交圆于 T .AQC ,△QCB 的内心分别为 I1, I 2,P CN MI BAT Q1610.求证不等式:nk ln n ≤1,n1 ,2,⋯12k 1 k 1 211.设 k , l 是给定的两个正整数.证明:有无穷多个正整数m≥ k ,使得 C k m与 l 互素.16\-16。
2009年全国高中数学联赛一试 试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦ ,则()()991f = . 【答案】 110【解析】 ()()()1f x f x =, ()()()2f x f f x =⎡⎤⎣⎦……()()99f x =.故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知()f t S =阴影部分面积 AOB OCD BEF S S S ∆∆∆=-- ()22111122t t =--- 212t t =-++4. 使不等式1111200712213a n n n +++<-+++ 对一切正整数n 都成立的最小正整数a的值为 . 【答案】2009 【解析】 设()1111221f n n n n =++++++ .显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 . 【答案】 22222a b a b +【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得221111a b OP OQ+=+.于是当OP OQ =OP OQ 达到最小值22222a b a b +.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩ 当且仅当 0kx > ① 10x +> ② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根.又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示) 【答案】981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两一旅客820∶到车站,则它候车时间的数学期望为 (精确到分).【答案】 27 【解析】 旅候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D,问是否存在直线l ,使得向量0AC BD += ,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① (4)分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得 2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-= ,, (Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n = ,,,整理得()112n n n n a a a a βαβ----=-令1n n n b a a β+=-,则()112n n b b n α+== ,,.所以{}n b 是公比为α的等比数列. 数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=. 所以21n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n = ,,.所以11n n n a a βα++=+()12n = ,,. ①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n = ,,变为11n n n a a αα++=+()12n = ,,.整理得,111n n n n a a αα++-=,()12n = ,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分 ②当240p q ∆=->时,αβ≠,11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n = ,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n = ,,. 所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--. 于是数列{}n a 的通项公式为11n n n a βαβα++-=-. (10)分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-. (15)分 方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β.①当0αβ=≠时,通项()()1212n n a A A n n α=+= ,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分②当αβ≠时,通项()1212n n n a A A n αβ=+= ,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分(Ⅱ)同方法一.3. (本小题满分15分)求函数y 【解析】 函数的定义域为[]013,.因为y=当0x =时等号成立.故y 的最小值为.……………………………………………5分又由柯西不等式得22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为1.…………………………………………………………………………………15分。
2009年全国高中数学联赛受中国数学会委托,2009年全国高中数学联赛由黑龙江省数学会承办。
中国数学会普及工作委员会和黑龙江数学会负责命题工作。
2009年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括8填空题和3道大题,满分100分。
答卷时间为80分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括4道大题,其中一道平面几何题,试卷满分200分。
答卷时问为150分钟。
一 试一、填空(每小题7分,共56分)1.若函数且,则 .()f x ()()()n n f x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦ ()()991f =2.已知直线和圆,点在直线上,,:90L x y +-=22:228810M x y x y +---=A L B 为圆上两点,在中,,过圆心,则点横坐标范围C M ABC ∆45BAC ∠=︒AB M A 为 .3.在坐标平面上有两个区域和,为,是随变化的区域,它由M N M 02y y x y x ⎧⎪⎨⎪-⎩≥≤≤N t 不等式所确定,的取值范围是,则和的公共面积是函数1t x t +≤≤t 01t ≤≤M N ()f t = .4.使不等式对一切正整数都成立的最小正整数1111200712213a n n n +++<-+++ n 的值为 .a 5.椭圆上任意两点,,若,则乘积的最22221x y a b+=()0a b >>P Q OP OQ ⊥OP OQ ⋅小值为 .6.若方程仅有一个实根,那么的取值范围是 .()lg 2lg 1kx x =+k 7.一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前个正整数按从小到大排成的行,则最后一行的100数是 (可以用指数表示)8.某车站每天,都恰有一辆客车到站,但到站的时刻是随800~900∶∶900~1000∶∶机的,且两者到站的时间是相互独立的,其规律为到站时刻810∶910∶830∶930∶850∶950∶概率161213一旅客到车站,则它候车时间的数学期望为 (精确到分).820∶二、解答题1.(14分)设直线(其中,为整数)与椭圆交于不同两点:l y kx m =+k m 2211612x y +=,,与双曲线交于不同两点,,问是否存在直线,使得向量A B 221412x y -=C D l ,若存在,指出这样的直线有多少条?若不存在,请说明理由.0AC BD +=2.(15分)已知,是实数,方程有两个实根,,数列p ()0q q ≠20x px q -+=αβ满足,,{}n a 1a p =22a p q =-()1234n n n a pa qa n --=-= ,,(Ⅰ)求数列的通项公式(用,表示);{}n a αβ(Ⅱ)若,,求的前项和. 1p =14q ={}n a n 3.(15分)求函数的最大和最小值.y =++加试一、填空(共4小题,每小题50分,共200分)9.如图,,分别为锐角三角形()的外接圆上弧、的M N ABC ∆A B ∠<∠Γ BC AC 中点.过点作交圆于点,为的内心,连接并延长交圆于.C PC MN ∥ΓP I ABC ∆PI ΓT ⑴求证:;MP MT NP NT ⋅=⋅⑵在弧(不含点)上任取一点(,,),记,的内 AB C Q Q A ≠T B AQC ∆QCB △心分别为,,1I 2IB求证:,,,四点共圆.Q 1I 2I T 10.求证不等式:,,2,…2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤1n =11.设,是给定的两个正整数.证明:有无穷多个正整数,使得与互素.k l m k ≥C km l12.在非负数构成的数表39⨯ 111213141516171819212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭中每行的数互不相同,前6列中每列的三数之和为1,,,,,1728390x x x ===27x 37x 18x ,,均大于.如果的前三列构成的数表38x 19x 29x P 111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质:对于数表中的任意一列(,2,…,9)均存在某个()O P 123k k k x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭1k =使得{}123i ∈,,⑶.求证:{}123min ik i i i i x u x x x =≤,,(ⅰ)最小值,,2,3一定自数表的不同列.{}123min i i i i u x x x =,,1i =S (ⅱ)存在数表中唯一的一列,,2,3使得数表P ***123k k k x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭*1k ≠33⨯***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质.()O\。
2009年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准,填空题只设7分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中至少4分为一个档次,不要增加其他中间档次. 一、填空(共8小题,每小题7分,共56分)1. 若函数()f x ()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = . 【答案】 110【解析】 ()()()1f x f x ==, ()()()2f x f f x ==⎡⎤⎣⎦……()()99f x =故()()991110f =.2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】 []36, 【解析】 设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 解得36a ≤≤.3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .【答案】 212t t -++【解析】 由题意知 ()f t S =阴影部分面积A OB OCD BS S S ∆∆∆=-- ()22111122t t =---212t t =-++4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .【答案】 2009【解析】 设()1111221f n n n n =++++++.显然()f n 单调递减,则由()f n 的最大值()1120073f a <-,可得2009a =.5. 椭圆22221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .【答案】 22222a ba b+【解析】 设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有 222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得22221111a b OP OQ+=+.于是当OP OQ ==OP OQ 达到最小值22222a b a b+.6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 【答案】 0k <或4k = 【解析】 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩当且仅当0kx > ① 10x +>② ()2210x k x +-+=③对③由求根公式得1x,2122x k ⎡=-⎣ ④2400k k k ∆=-⇒≥≤或4k ≥.(ⅰ)当0k <时,由③得 12122010x x k x x +=-<⎧⎨=>⎩ 所以1x ,2x 同为负根. 又由④知121010x x +>⎧⎨+<⎩所以原方程有一个解1x .(ⅱ)当4k =时,原方程有一个解112kx =-=. (ⅲ)当4k >时,由③得12122010x x k x x +=->⎧⎨=>⎩所以1x ,2x 同为正根,且12x x ≠,不合题意,舍去. 综上可得0k <或4k =为所求.7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)【答案】 981012⨯ 【解析】 易知:(ⅰ)该数表共有100行;(ⅱ)每一行构成一个等差数列,且公差依次为11d =,22d =,232d =,…,98992d =(ⅲ)100a 为所求.设第()2n n ≥行的第一个数为n a ,则 ()22111222n n n n n n a a a a -----=++=+3222222n n n a ---⎡⎤=++⎣⎦24223222222n n n n a ----⎡⎤=++⨯+⎣⎦323232n n a --=+⨯……()121212n n a n --=+-⨯ ()212n n -=+故981001012a =⨯.8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站一旅客820∶到车站,则它候车时间的数学期望为 (精确到分)【答案】 27 【解析】 旅客候车的分布列为候车时间的数学期望为1111110305070902723361218⨯+⨯+⨯+⨯+⨯=二、解答题1. (本小题满分14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由. 【解析】 由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k xkmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k +=-+()()()222184344480km k m ∆=-+-> ① ………………………………………………4分由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k xkmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k+=- ()()()2222243120km k m ∆=-+-+> ② ………………………………………………8分因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=.由1234x x x x +=+得2282343km kmk k -=+-. 所以20km =或2241343k k -=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k .因k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.………14分2. (本小题15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.【解析】 方法一:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以()1212n n n n n a px qx a a αβαβ------=+-,()345n =,,,整理得()112n n n n a a a a βαβ----=- 令1n n n b a a β+=-,则()112n n b b n α+==,,.所以{}n b 是公比为α的等比数列.数列{}n b 的首项为:()()222121b a a p q p ββαβαββαβα=-=--=+--+=.所以211n n n b ααα-+=⋅=,即11n n n a a βα++-=()12n =,,.所以11n n n a a βα++=+()12n =,,.①当240p q ∆=-=时,0αβ=≠,12a p ααα==+=,11n n n a a βα++=+()12n =,,变为11n n n a a αα++=+()12n =,,.整理得,111n nn na a αα++-=,()12n =,,.所以,数列n n a α⎧⎫⎨⎬⎩⎭成公差为1的等差数列,其首项为122a ααα==.所以()2111nna n n α=+-=+.于是数列{}n a 的通项公式为()1n n a n α=+;……………………………………………………………………………5分②当240p q ∆=->时,αβ≠, 11n n n a a βα++=+1n n a βαβαβα+-=+-11n n n a βαβααβαβα++=+---()12n =,,.整理得211n n n n a a ααββαβα+++⎛⎫+=+ ⎪--⎝⎭,()12n =,,.所以,数列1n n a αβα+⎧⎫+⎨⎬-⎩⎭成公比为β的等比数列,其首项为2221a ααβαββαβαβα+=++=---.所以121n n n a αβββαβα+-+=--.于是数列{}n a 的通项公式为11n n n a βαβα++-=-.………………………………………………10分(Ⅱ)若1p =,14q =,则240p q ∆=-=,此时12αβ==.由第(Ⅰ)步的结果得,数列{}n a 的通项公式为()11122nn n n a n +⎛⎫=+= ⎪⎝⎭,所以,{}n a 的前n 项和为231234122222n n n n n s -+=+++++234112341222222n n n n s n ++=+++++以上两式相减,整理得1133222n n n s ++=-所以332n n n s +=-.……………………………………………………………………………15分方法二:(Ⅰ)由韦达定理知0q αβ⋅=≠,又p αβ+=,所以1a αβ=+,222a αβαβ=++.特征方程20p q λλ-+=的两个根为α,β. ①当0αβ=≠时,通项()()1212n n a A A n n α=+=,,由12a α=,223a α=得()()122212223A A A A αααα+=⎧⎪⎨+=⎪⎩ 解得121A A ==.故 ()1n n a n α=+.……………………………………………………5分 ②当αβ≠时,通项()1212n n n a A A n αβ=+=,,.由1a αβ=+,222a αβαβ=++得12222212A A A A αβαβαβαβαβ+=+⎧⎪⎨+=++⎪⎩ 解得1A αβα-=-,2A ββα=-.故1111n n n n n a αββαβαβαβα++++--=+=---.…………………………………………………………10分 (Ⅱ)同方法一.3. (本小题满分15分)求函数y=【解析】函数的定义域为[]013,.因为y=当0x =时等号成立.故y的最小值为.……………………………………………5分 又由柯西不等式得 22y =()()()11122731312123x x x ⎛⎫+++++-= ⎪⎝⎭≤所以11y ≤. ………………………………………………………………………………10分 由柯西不等式等号成立的条件,得()491327x x x =-=+,解得9x =.故当9x =时等号成立.因此y 的最大值为11.…………………………………………………………………………………15分2009年全国高中数学联合竞赛加试试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次. 一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T . ⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.【解析】 ⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆,故PCMN 是等腰梯形.因此NP MC =,PM NC =.ABCMNPTI连AM ,CI ,则AM 与CI 交于I ,因为MIC MAC ACI MCB BCI MCI ∠=∠+∠=∠+∠=∠,所以MC MI =.同理NC NI =.于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高). 又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式1sin 2PMT S PM MT PMT =⋅∠△1s i n 2PNT S PN NT PNT ==⋅∠△1s i n 2P N N T P MT =⋅∠ 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠,B所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故 12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽.故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆. 10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 【解析】 证明:首先证明一个不等式: ⑴ln(1)1x x x x<+<+,0x >. 事实上,令()ln(1)h x x x =-+,()ln(1)1xg x x x=+-+. 则对0x >,1()101h x x '=->+,2211()01(1)(1)x g x x x x '=-=>+++. 于是()(0)0h x h >=,()(0)0g x g >=.在⑴中取1x n=得⑵111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 令21ln 1nn k k x n k ==-+∑,则112x =,121ln 111n n n x x n n -⎛⎫-=-+ ⎪+-⎝⎭ 211n n n<-+210(1)n n=-<+因此1112n n x x x -<<<=.又因为111ln (ln ln(1))(ln(1)ln(2))(ln 2ln1)ln1ln 1n k n n n n n k -=⎛⎫=--+---++-+=+ ⎪⎝⎭∑.从而12111ln 11nn n k k k x k k -==⎛⎫=-+ ⎪+⎝⎭∑∑12211ln 111n k k n k k n -=⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭∑12111n k kk k -=⎛⎫>- ⎪+⎝⎭∑1211(1)n k k k -==-+∑111(1)n k k k -=-+∑≥111n=-+>-.11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素.【解析】 证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由 1!C ()kkmi k m k i ==-+∏1[((!)]k i i t l k =≡+∏ 1ki i =≡∏()1!m o d k p α+≡.及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:C k m p Œ.若!p k Œ,则由1!C ()kkmi k m k i ==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()!m o dk p ≡. 即p 不整除上式,故C k m p Œ.若|!p k ,设1α≥使|!p k α,但1!p k α+Œ.12|(!)p k α+.故由 11!C ()k kmi k m k i -==-+∏21[((!)]ki i t l k =≡+∏ 1ki i =≡∏()1!mod k p α+≡及|!p k α,且1!p k α+Œ,知|!C k m p k α且1!C k m p k α+Œ.从而C k m p Œ.12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫ ⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭ 仍然具有性质()O .【解析】 (ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾.(ⅱ)由抽届原理知{}1112min x x ,,{}2122min x x ,,{}3132min x x , 中至少有两个值取在同一列.不妨设 {}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.111213212223313233x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭记{}129M =,,,,令集合 {}{}12|min 13ik i i I k M x x x i =∈>=,,,.显然{}111332|k k I k M x x x x =∈>>,且1,23I ∉.因为18x ,38111x x >≥,32x ,所以8I ∈. 故I ∅≠.于是存在*k I ∈使得{}*22max |k k x x k I =∈.显然,*1k ≠,2,3. 下面证明33⨯数表 ***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明 {}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O .下证唯一性.设有k M ∈使得数表 111212122231323k k k x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定 {}111121311m i n u x x x x ==,, ⑷{}221222322min u x x x x ==,,{}331323333m i n u x x xx ==,,3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则 {}11112111m i n ku x x x x ==,,, ⑸{}22122222min k u x x x x ==,,, {}3313233m i n k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.。
2009年全国高中数学联赛一 试一、填空(每小题7分,共56分)1. 若函数()f x =且()()()n nf x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()()991f = .2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪⎨⎪-⎩≥≤≤,N 是随t 变化的区域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .4. 使不等式1111200712213a n n n +++<-+++对一切正整数n 都成立的最小正整数a 的值为 .5. 椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为 .6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 .7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 二、解答题1. (14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y-=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.2. (15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a pq =-,()1234n n n a pa qa n --=-=,,(Ⅰ)求数列{}n a 的通项公式(用α,β表示);(Ⅱ)若1p =,14q =,求{}n a 的前n 项和.3. (15分)求函数y 的最大和最小值.加试一、填空(共4小题,每小题50分,共200分)9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记A Q C ∆,QCB △的内心分别为1I ,2I ,B求证:Q ,1I ,2I ,T 四点共圆.10. 求证不等式:2111ln 12n k k n k =⎛⎫-<- ⎪+⎝⎭∑≤,1n =,2,… 11. 设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素. 12. 在非负数构成的39⨯数表111213141516171212223242526272829313233343536373839x x x x x x x x x P x x x x x x x x x x x x x x x x x x⎛⎫ ⎪= ⎪ ⎪⎝⎭ 中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使得⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列.(ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O .\。
全国高中数学联赛江苏赛区2009年初赛试题答案班级__________ 姓名__________一、填空题(每小题7分,共70分)1.已知sin cos 1αβ=,则cos()αβ+=________ 解:因为|sin |1α≤,|cos |1β≤,而sin cos 1αβ=;所以sin 1α=,cos 1β=或sin 1α=-,cos 1β=-; 所以22k παπ=+,2l βπ=或者22k παπ=-,2l βππ=+()k l Z ∈、;所以2()2k l παβπ+=++()k l Z ∈、;故cos()0αβ+=.2.已知等差数列{}n a 的前11项的和为55,去掉一项k a 后,余下10项的算术平均值为4;若15a =,则k =________解:设公差为d ,则得:15551111105511022d d d =-⨯+⨯⨯⇒=⇒=;因此,554101552(1)11k a k k =-⨯==-+-⇒=.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e =________解:由2222(2)2210b c a a c ac e e e =⨯⇒-=⇒+-=⇒. 4.已知13119133x x x-+=--,则实数x =________ 解:原方程即为:2133433033313(31)xx x x x x=⇒-⨯+=⇒=--或31x =(舍去); 所以实数1x =.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD ;R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为________BCDAPQ R M NR Q PADCB解法一:A B 、到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高;故其比值等于这两个三棱锥的体积比.111111122323318APQR APQD APCD ABCD ABCD V V V V V ==⨯=⨯⨯=;而1214(1)3339BPQ BCD BDQ CPQ BCD BCD S S S S S S =--=--⨯=;414492918RBPQ RBCD ABCD ABCD V V V V ==⨯=;所以A B 、到平面PQR 的距离的比是1:4. 解法二:可以求出平面PQR 与AB 的交点来求此比值:在平面BCD 内,延长PQ BD 、交于点M ,则M 为平面PQR 与棱BD 的交点. 由Menelaus 定理知:1BM DQ CP MD QC PB ⋅⋅=,而12DQ QC =,12CP PB =,故4BMMD=. 在平面ABD 内,作射线MR 交AB 于点N ,则N 为平面PQR 与AB 的交点. 由Menelaus 定理知:1BM DR AN MD RA NB ⋅⋅==1,而4BM MD =,1DR RA =,故14AN NB =. 所以A B 、到平面PQR 的距离的比是1:4.6.设3()log f x x =()0f x ≥的x 的取值范围是________ 解:定义域(0, 4];在定义域内()f x 单调增,且(3)0f =;故()0f x ≥的x 的取值范围为:[3, 4].7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为30003cm 的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm ;若不 计净水器中的存水,则净水水箱中最少可以存水________3cm . 解:设净水器的长、高分别为x ,y cm ,则300xy =;30(20)(60)30(12006020)V x y x y xy =++=+++30(1200300)≥+30(15001200)=+81000=所以去掉净水器体积,至少可以存水78000cm 3.B8.设点O 是ABC ∆的外心,AB =13,AC =12,则BC AO ⋅=________解:设||||||AO BO CO R ===;则()BC AO BO OC AO BO AO OC AO ⋅=+⋅=⋅+⋅ OB OA OC OA =⋅-⋅22cos 2cos 2R C R B =-222(2sin 2sin )R B C =-2211(2sin )(2sin )22R B R C =- 22125(1213)22=-=-. 9.设数列{}n a 满足:1122n n n a a a ++=-(1, 2, 3, )n =,2009a =2009项的和为________解:若10n a +≠,则122n n a a +=-,所以20082a =20072a ==20062a =,2005a一般的,若n a ≠0,1,2,则122n n a a +=-;(这里由已知条件,不可能取到0、1、2的)所以11121n n n a a a +-+-=-,2122n n a a -+=-,31n n a a -+=,从而4n n a a -=;所以200912342009200520062007200820051502()502()2008k k a a a a a a a a a a a ==++++=++++=∑ 10.设a 是整数,01b ≤<,若22()a b a b =+,则b =________ 解:若a 为负整数,则20a >,而2()0b a b +<,此不可能,故0a ≥.于是22()2(1)010, 1, 2a b a b a a a =+<+⇒≤<=; 当0a =时,0b =;当1a =时,22210b b b +-=⇒ 当2a =时,22201b b b +-=⇒.说明:本题也可以这样说:求实数x ,使[]22{}x x x =⋅.EBCD A二、解答题(本大题共4小题,每小题20分,共80分)11.在直角坐标系xOy 中,直线240x y -+=与椭圆22194x y +=交于A B 、两点,F 是椭圆的左焦点,求以O F A B 、、、为顶点的四边形的面积.解:取方程组:22493624x y x y ⎧+=⎨=-⎩,代入消去x 得:22564280y y -+=;解此方程得:2y =,1425y =, 即得:(0, 2)B ,7214(, )2525A -;又左焦点1(F ;连OA 把四边形AFO B 分成两个三角形;得:17211412(7222522525S =⨯⨯+=+.(本题有好几个方法,有兴趣者自己想一想)12.如图,设D 、E 是ABC ∆的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12,求BC . 解:由AD AC ACD AC AB=⇒∆∽ABC ∆ABC ACD BCE ⇒∠=∠=∠; 所以12CE BE ==,16AE AB BE =-=;所以22222214161211cos 22141616AC AE CE A AC AE +-+-===⋅⨯⨯;所以222222112cos 1428214287916BC AC AB AC AB A =+-⋅=+-⨯⨯⨯=⨯; 所以21BC =.13, x y 成立,求k 的取值范围. 法一:显然0k >;于是平方可得:2222(2)(21)(1)0k x y k x k y ≤+⇒---≥对0x y >、恒成立;令0t =>,则可得:222()(21)2(1)0f t k t t k =--+-≥对一切0t >恒成立; 当2210k -≤时,不等式不能恒成立,所以必有:2210k ->;此时当2121t k =-时,()f t 取得最小值4222222221223(23)121212121k k k k k k k k k ---+-==----;当2210k ->且2230k -≥,即k 当且仅当223k =即40x y =>时等号成立;所以k 的取值范围是 )+∞.法二:由Cauchy 不等式:21(1)(2)2x y ≤++;即≤x y 、成立;当k <14x =,1y =32=;而32k =,两者矛盾,即不等式不能恒成立.而当k ≥x y 、所以不等式恒成立时,k 的取值范围是 )+∞. 14.(1)写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;(2)是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.解:对于任意*n N ∈,20, 1(mod 4)n ≡;设a b 、是两个不同的自然数;①若0(mod 4)a ≡或0(mod 4)b ≡,或2(mod 4)a b ≡≡;则均有0(mod 4)ab ≡,此时,102(mod 4)ab +≡,所以10ab +不是完全平方数; ②若1(mod 4)a b ≡≡或3(mod 4)a b ≡≡,则1(mod 4)ab ≡,此时103(mod 4)ab +≡, 所以10ab +不是完全平方数;于是,10ab +是完全平方数的必要不充分条件是:a ≡/(mod 4)b 且a 与b 均不能被4整除. (1)由上可知,满足要求的三个自然数是可以存在的;例如取2a =,3b =,13c =,则223104⨯+=,2213106⨯+=,2313107⨯+=,即2,3,13是满足题意的一组自然数. (2)由上证可知不存在满足要求的四个不同自然数;这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是 完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加 10后不是完全平方数;得证.。