山西省怀仁县2016_2017学年高二数学下学期第二次月考试题理实验班
- 格式:doc
- 大小:689.50 KB
- 文档页数:7
阳高一中2016—2017学年第二学期月考考试高二年级数学试卷(理)(时间:120分 满分:150分)一、选择题:(本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.下面是关于复数i z 2321+-=的四个命题,其中真命题为() A. z 的虚部为i 23B. z 为纯虚数C. 2||=zD.z z =2 2.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( ) A.假设至少有一个钝角 B .假设至少有两个钝角C .假设没有一个钝角D .假设没有一个钝角或至少有两个钝角 3.曲线34y x x =-在点(-1,-3)处的切线方程是 ( ) A . 74y x =+ B. 72y x =+C. 4y x =-D. 2y x =-4.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A .36个B .24个C .18个D .6个5.函数()f x =5123223+--x x x 在[0,3]上的最大值和最小值分别是( ) A.5,15- B.5, C. ,15- D.5,16-6.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为()A .0B .1C .2D .37.古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是( ) A.289 B. 1225 C. 1024 D.13788.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如右图所示,则该函数的图象是( )9.dx x ⎰=2123a ,函数()a x e x f x -+=32的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若函数3()f x ax x =+在定义域上恰有三个单调区间,则的取值范围是( ) A .)0,(-∞B .),0(+∞C .]0,(-∞ D .),0[+∞ 11.6883+被49除所得的余数是( )A .0B .14C .14-D .3512.()f x 是定义在上的偶函数,当0x <时/()()0f x x f x +⋅<,且(4)0f -=则不等式()0xf x >的解集为( )A.),4()0,4(+∞⋃-B.)4,0()0,4(⋃-C.),4()4,(+∞⋃--∞D.)4,0()4,(⋃--∞二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13、两台独立在两地工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,则恰有一台雷达发现飞行目标的概率为________.14、如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.15、某地区气象台统计,该地区下雨的概率是415,有三级以上风的概率为215,既有三级以上风又下雨的概率为110,则该地区在有三级以上风的条件下下雨的概率为.16、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件; ⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法? (1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端; (3)男女相间;(4)甲、乙、丙三人从左到右顺序保持一定.18.(12分)已知7722107)21(x a x a x a a x ++++=- , 求(1)各项二项式系数和的值;(2)6420a a a a +++。
2016-2017学年山西省朔州市怀仁八中实验班高二(下)第二次月考数学试卷(理科)一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)的展开式中x6y2项的系数是()A.56B.﹣56C.28D.﹣282.(5分)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为()A.0.85B.0.819 2C.0.8D.0.753.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种4.(5分)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.﹣56B.﹣35C.35D.565.(5分)有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是()A.16B.24C.32D.486.(5分)已知随机变量X的取值为0,1,2,若P(X=0)=,EX=1,则DX=()A.B.C.D.7.(5分)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.368.(5分)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的取值为()A.1或﹣3B.﹣1或3C.1D.﹣39.(5分)设随机变量X服从,则P(X=3)的值是()A.B.C.D.10.(5分)八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有()A.770种B.1260种C.4620种D.2940种11.(5分)甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.B.C.D.12.(5分)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.(5分)(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为.14.(5分)我校在上次摸考中约有1000人参加考试,数学考试的成绩ξ~N(90,a2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生约有人.15.(5分)马老师从课本上抄录一个随机变量ξ的概率分布律如下表:请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=.16.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.三、解答题(共70分):解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(+)n的展开式中,只有第六项的二项式系数最大.(Ⅰ)求该展开式中所有有理项的项数;(Ⅱ)求该展开式中系数最大的项.18.(12分)已知一个袋内有4只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?19.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.20.(12分)“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为,,;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.21.(12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分布列与期望Eξ.22.(12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;参考数据:K2=.2016-2017学年山西省朔州市怀仁八中实验班高二(下)第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)的展开式中x6y2项的系数是()A.56B.﹣56C.28D.﹣28【解答】解:由题意,,故选:A.2.(5分)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为()A.0.85B.0.819 2C.0.8D.0.75【解答】解:∵该射击运动员射击4次恰好击中3次的概率为•0.83•0.2=,该射击运动员射击4次恰好击中4次的概率为•0.84=,∴该射击运动员射击4次至少击中3次的概率为+==0.8192,故选:B.3.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种【解答】解:根据题意,分析可得,4个人中有2个人分在同一个组,在4个人中任取2人,作为一个整体,有C42=6种情况,将这个整体与其他3人进行全排列,对应3个活动小组,有A33=6种情况,则共有6×6=36种不同的报名方法,故选:C.4.(5分)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.﹣56B.﹣35C.35D.56【解答】解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴n=8,展开式的通项公式为T r+1==•(﹣1)r•x8﹣2r,令8﹣2r=2,则r=3,∴展开式中含x2项的系数是﹣=﹣56.故选:A.5.(5分)有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是()A.16B.24C.32D.48【解答】解:根据题意,若恰好3次就结束测试,则前2次测试中测出1件次品,第3次测出第2件次品,第3次测试的是次品,而共有2件次品,则有C21=2种情况,前2次测试,即一次正品、1次次品,有C81×A22=16种情况,则恰好3次就结束测试共有2×16=32种情况,故选:C.6.(5分)已知随机变量X的取值为0,1,2,若P(X=0)=,EX=1,则DX=()A.B.C.D.【解答】解:设P(X=1)=p,P(X=2)=q,因为E(X)=0×①又p+q=,②由①②得,p=,q=,∴D(X)=,故选:A.7.(5分)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.36【解答】解:先涂前三个圆,再涂后三个圆.因为每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,分两类,第一类,前三个圆用3种颜色,后三个圆也用3种颜色,若涂前三个圆用3种颜色,有A33=6种方法;则涂后三个圆也用3种颜色,有C21C21=4种方法,此时,故不同的涂法有6×4=24种.第二类,前三个圆用2种颜色,后三个圆也用2种颜色,若涂前三个圆用2种颜色,则涂后三个圆也用2种颜色,共有C31C21=6种方法.综上可得,所有的涂法共有24+6=30 种.故选:C.8.(5分)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的取值为()A.1或﹣3B.﹣1或3C.1D.﹣3【解答】解:在(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9中,令x=﹣2可得a0﹣a1+a2﹣a3+…+a8﹣a9=m9,即[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=m9,令x=0,可得a0+a2+…+a8+a1+a3+…+a9=(2+m)9,∵(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,∴(a0+a2+…+a8+a1+a3+…+a9)[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=39,∴(2+m)9•m9=(2m+m2)9=39,可得2m+m2=3,解得m=1,或m=﹣3故选:A.9.(5分)设随机变量X服从,则P(X=3)的值是()A.B.C.D.【解答】解:∵随机变量X服从,∴P(X=3)===故选:B.10.(5分)八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有()A.770种B.1260种C.4620种D.2940种【解答】解:第一步分步:由题意把8人分为以下三组(1,3,4),(2,2,4),(2,3,3),分组的种数为C81C73++=280+210+280=770种,第二步,分配,每一种分法都有A33=6种,根据分步计数原理,共有770×6=4620种,故选:C.11.(5分)甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.B.C.D.【解答】解:依题意知,ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有,,,故.故选:B.12.(5分)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选:C.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.(5分)(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为209.【解答】解:(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为++…+=4+10+20+35+56+84=209,故答案为:209.14.(5分)我校在上次摸考中约有1000人参加考试,数学考试的成绩ξ~N(90,a2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生约有200人.【解答】解:∵成绩ξ~N(90,a2),∴其正态曲线关于直线x=90对称,又∵成绩在70分到110分之间的人数约为总人数的,由对称性知:成绩在110分以上的人数约为总人数的(1﹣)=,∴此次数学考试成绩不低于110分的学生约有:.故答案为:200.15.(5分)马老师从课本上抄录一个随机变量ξ的概率分布律如下表:请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=2.【解答】解:设P(ξ=1)=P(ξ=3)=a,P(ξ=2)=b,则2a+b=1,Eξ=a+2b+3a=2(2a+b)=2,故答案为2.16.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.三、解答题(共70分):解答应写出文字说明、证明过程或演算步骤.17.(10分)已知(+)n的展开式中,只有第六项的二项式系数最大.(Ⅰ)求该展开式中所有有理项的项数;(Ⅱ)求该展开式中系数最大的项.【解答】解:(Ⅰ)由题意可知,解得n=10,∴,(0≤r≤10,且r∈N),要求该展开式中的有理项,只需令,∴r=0,2,4,6,8,10,∴有理项的项数为6项;(Ⅱ)设第T r+1项的系数最大,则,即,解不等式可得,∵r∈N,∴r=7,∴展开式中的系数最大的项为18.(12分)已知一个袋内有4只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?【解答】解::(1)将取出4个球分成三类情况:①取4个红球,没有白球,C44种;②取3个红球1个白球,C43C61种;③取2个红球2个白球,C42C62种,∴C44+C43C61+C42C62=115种,(2)设x个红球y个白球,,或或.∴符合题意的取法种数有C42C63+C43C62+C44C61=186种(3)总分为8分,则抽取的个数为红球3个,白球2个,将抽出的球排成一排,仅有两个红球相邻,第一步先取球,共有C43C62=60种,第二步,再排,先选2个红球捆绑在一起,再和另外一个红球排列,把2个白球插入,共有A32A22A32=72,其中3个红球排在一起的有A33A22=12根据分步计数原理可得,60×(72﹣12)=3600种.19.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.【解答】解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,EX=0×+1×+2×=.20.(12分)“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为,,;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.【解答】解(1)依题意知ξ的可能取值为20,0,﹣10,ξ的分布列为E(ξ)=20×+0×+(﹣10)×=10.(2)设η表示把100万投资“低碳型“经济项目的收益,则η的分布列为E(η)=30a﹣20b=50a﹣20,依题意得50a﹣20≥10,∴≤a≤1,∴a的取值范围是[,1]21.(12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分布列与期望E ξ.【解答】解:令A k ,B k ,∁k 分别表示甲、乙、丙在第k 局中获胜.(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比 赛还未停止的概率为.(Ⅱ)ξ的所有可能值为2,3,4,5,6,且,..,,故有分布列从而(局).22.(12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;参考数据:K2=.【解答】解:(Ⅰ)2×2列联表…(2分)<6.635…(4分)所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.…(5分)(Ⅱ)ξ所有可能取值有0,1,2,3,…(6分),,,,…(10分)所以ξ的分布列是所以ξ的期望值是.…(12分)。
2016-2017学年山西省朔州市怀仁一中高二(下)第二次月考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.给出下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中正确的是()A.①②B.②③C.①③D.①②③2.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.53.已知f(x)=2x3﹣6x2+m(m为常数)在上有最大值3,那么此函数在上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对4.已知曲线y=lnx的切线过原点,则此切线的斜率为()A.e B.﹣e C.D.﹣5.某产品在某零售摊位上的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x16171819y50344131由上表,可得回归直线方程中的=﹣4,据此模型预计零售价定为15元时,每天的销售量为()A.48个B.49个C.50个D.51个6.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%7.已知a>0,函数y=x3﹣ax在区间C.hslx3y3h,π)D.(,π)12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线,则过点P(2,4)的切线方程为.14.在平面直角坐标系xOy中,若曲线y=lnx在x=e(e为自然对数的底数)处的切线与直线ax﹣y+3=0垂直,则实数a的值为.15.观察下列不等式:①<1;②;③;…则第5个不等式为.16.若函数f(x)=x3﹣12x在(k﹣1,k+1)上不是单调函数,则实数k的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.18.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到如下的统计结果.表1:男生上网时间与频数分布表:上网时间(分钟)hslx3y3h30,40)hslx3y3h40,50)hslx3y3h50,60)hslx3y3h60,70)人数525302515表2:女生上网时间与频数分布表:上网时间(分钟)hslx3y3h30,40)hslx3y3h40,50)hslx3y3h50,60)hslx3y3h60,70)人数1020402010完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?19.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f'(x)的图象如图所示,且经过点(1,0),(2,0).(1)求x0的值以及f(x)的解析式;(2)若方程f(x)﹣m=0恰有2个根,求m的值.20.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a;(Ⅱ)求f(x)的极值.21.某公司为确定下一年度投入某种产品的宣传费,需要了解年宣传费x (单位:千元)对年销量y (单位:)和利润z (单位:千元)的影响,对近8年的宣传费x i (i=1,2,…,8)和年销售量y i 数据进行了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣) 46.6563 6.8 289.8 1.6 1469 108.8表中w i =, =w i(1)根据散点图判断,哪一个更适合作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y ﹣x ,根据(2)的结果回答下列问题;①当年宣传费x=90时,年销售量及年利润的预报值是多少? ②当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=, =﹣.22.已知函数f (x )=x 2+ax +b ,g (x )=e x (cx +d )若曲线y=f (x )和曲线y=g (x )都过点P (0,2),且在点P 处有相同的切线y=4x +2. (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥﹣2时,f (x )≤kg (x ),求k 的取值范围.2016-2017学年山西省朔州市怀仁一中高二(下)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.给出下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型拟合效果越好.其中正确的是()A.①②B.②③C.①③D.①②③【考点】BK:线性回归方程.【分析】可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.【解答】解:①一般不能用残差图判断模型的拟合效果,故①不正确;②相关指数R2可以刻画回归模型的拟合效果,R2越接近于1,说明模型的拟合效果越好,正确;③可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故③正确故选:B.2.函数f(x)=x3+ax2+3x﹣9已知f(x)在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.5【考点】6D:利用导数研究函数的极值.【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值∴f′(﹣3)=0⇒a=5,验证知,符合题意故选:D.3.已知f(x)=2x3﹣6x2+m(m为常数)在上有最大值3,那么此函数在上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对【考点】6E:利用导数求闭区间上函数的最值.【分析】先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.【解答】解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A4.已知曲线y=lnx的切线过原点,则此切线的斜率为()A.e B.﹣e C.D.﹣【考点】6H:利用导数研究曲线上某点切线方程.【分析】设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.【解答】解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=;故选:C.5.某产品在某零售摊位上的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x16171819y50344131由上表,可得回归直线方程中的=﹣4,据此模型预计零售价定为15元时,每天的销售量为()A.48个B.49个C.50个D.51个【考点】BK:线性回归方程.【分析】计算平均数,利用b=﹣4,可求a的值,即可求得回归直线方程,从而可预报单价为15元时的销量;【解答】解:=17.5,=39∵b=﹣4,=bx+a∴a=39+4×17.5=109∴回归直线方程为=﹣4x+109∴x=15时,=﹣4×15+109=49件;故选B.6.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%【考点】B8:频率分布直方图.【分析】本题为对等高条形图,题目较简单,注意阴影部分位于上半部分即可.【解答】解:由图可知,女生喜欢理科的占20%,男生喜欢理科的占60%,显然性别与喜欢理科有关,故选为C.7.已知a>0,函数y=x3﹣ax在区间1,+∞)是所求区间的子集可得结论.法二:由题意a>0,函数f(x)=x3﹣ax,首先求出函数的导数,然后根据导数与函数单调性的关系进行判断.【解答】解:法一∵f(x)=x3﹣ax,∴f′(x)=3x2﹣a=3(x﹣)(x+)∴f(x)=x3﹣ax在(﹣∞,﹣),(,+∞)上单调递增,∵函数f(x)=x3﹣ax在1,+∞)上是单调函数,根据二次函数的性质,显然是递增函数,∴在1,+∞)上恒成立,∴a≤3,故选:D.8.在函数y=x3﹣8x的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是()A.3 B.2 C.1 D.0【考点】I3:直线的斜率;63:导数的运算.【分析】根据倾斜角求出斜率的范围,设出切点坐标,利用导数的函数值就是该点的斜率,求出切点横坐标的范围,即可推出坐标为整数的点的个数.【解答】解:∵切线倾斜角小于,∴斜率0≤k<1.设切点为(x0,x03﹣8x0),则k=y′|x=x0=3x02﹣8,∴0≤3x20﹣8<1,≤x02<3.又∵x0∈Z,∴x0不存在.故选D9.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)【考点】6A:函数的单调性与导数的关系.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是()A.①②B.③④C.①③D.①④【考点】6A:函数的单调性与导数的关系.【分析】利用导数与函数之间的关系,函数的递增区间即导函数为正的区间,函数的递减区间即导函数为负的区间,确定出正确答案.【解答】解:根据f′(x)>0时,f(x)递增;f′(x)<0时,f(x)递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选:B.11.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,,π)D.(,π)【考点】6D:利用导数研究函数的极值.【分析】先求导f′(x)=x2+2bx+(a2+c2﹣ac),从而化函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点为x2+2bx+(a2+c2﹣ac)=0有两个不同的根,从而再利用余弦定理求解.【解答】解:∵f(x)=x3+bx2+(a2+c2﹣ac)x+1,∴f′(x)=x2+2bx+(a2+c2﹣ac),又∵函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,∴x2+2bx+(a2+c2﹣ac)=0有两个不同的根,∴△=(2b)2﹣4(a2+c2﹣ac)>0,即ac>a2+c2﹣b2,即ac>2accosB;即cosB<;故∠B的范围是(,π);故选:D.12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.【考点】63:导数的运算.【分析】先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.【解答】解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线,则过点P(2,4)的切线方程为x﹣y+2=0,或4x﹣y ﹣4=0.【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可.【解答】解:设曲线y=x3+与过点P(2,4)的切线相切于点A(x0,x03+),则切线的斜率k=y′|x=x0=x02,∴切线方程为y﹣(x03+)=x02(x﹣x0),即y=x•x﹣x+∵点P(2,4)在切线上,∴4=2x02﹣x03+,即x03﹣3x02+4=0,∴x03+x02﹣4x02+4=0,∴(x0+1)(x0﹣2)2=0解得x0=﹣1或x0=2故所求的切线方程为4x﹣y﹣4=0或x﹣y+2=0.故答案为:x﹣y+2=0,或4x﹣y﹣4=0.14.在平面直角坐标系xOy中,若曲线y=lnx在x=e(e为自然对数的底数)处的切线与直线ax﹣y+3=0垂直,则实数a的值为﹣e.【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,可得a的方程,即可解得a.【解答】解:y=lnx的导数为y′=,即有曲线y=lnx在x=e处的切线斜率为k=,由于切线与直线ax﹣y+3=0垂直,则a•=﹣1,解得a=﹣e,故答案为:﹣e.15.观察下列不等式:①<1;②;③;…则第5个不等式为.【考点】F1:归纳推理;F4:进行简单的合情推理.【分析】前3个不等式有这样的特点,第一个不等式含1项,第二个不等式含2项,第三个不等式含3项,且每一项的分子都是1,分母都含有根式,根号内数字的规律是2;2,6;2,12;由此可知,第n个不等式左边应含有n项,每一项分子都是1,分母中根号内的数的差构成等差数列,不等式的右边应是根号内的序号数.【解答】解:由①<1;②+;③;归纳可知第四个不等式应为;第五个不等式应为.故答案为.16.若函数f(x)=x3﹣12x在(k﹣1,k+1)上不是单调函数,则实数k的取值范围为(﹣3,﹣1)∪(1,3).【考点】6B:利用导数研究函数的单调性.【分析】由题意得,区间(k﹣1,k+1)内必须含有导函数的零点2或﹣2,即k ﹣1<2<k+1或k﹣1<﹣2<k+1,解之即可求出实数k的取值范围.【解答】解:由题意可得f′(x)=3x2﹣12 在区间(k﹣1,k+1)上至少有一个零点,而f′(x)=3x2﹣12的零点为±2,区间(k﹣1,k+1)的长度为2,故区间(k﹣1,k+1)内必须含有2或﹣2.∴k﹣1<2<k+1或k﹣1<﹣2<k+1,∴1<k<3 或﹣3<k<﹣1,故答案为:(﹣3,﹣1)∪(1,3).三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)根据曲线方程求出导函数,因为已知直线4x﹣y﹣1=0的斜率为4,根据切线与已知直线平行得到斜率相等都为4,所以令导函数等于4得到关于x 的方程,求出方程的解,即为切点P0的横坐标,代入曲线方程即可求出切点的纵坐标,又因为切点在第3象限,进而写出满足题意的切点的坐标;(2)由直线l1的斜率为4,根据两直线垂直时斜率的乘积为﹣1,得到直线l的斜率为﹣,又根据(1)中求得的切点坐标,写出直线l的方程即可.【解答】解:(1)由y=x3+x﹣2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=﹣1时,y=﹣4.又∵点P0在第三象限,∴切点P0的坐标为(﹣1,﹣4);(2)∵直线l⊥l1,l1的斜率为4,∴直线l 的斜率为﹣,∵l过切点P0,点P0的坐标为(﹣1,﹣4)∴直线l的方程为y+4=﹣(x+1)即x+4y+17=0.18.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到如下的统计结果.表1:男生上网时间与频数分布表:上网时间(分钟)hslx3y3h30,40)hslx3y3h40,50)hslx3y3h50,60)hslx3y3h60,70)人数525302515表2:女生上网时间与频数分布表:上网时间(分hslx3y3h30,40)hslx3y3h40,50)hslx3y3h50,60)hslx3y3h60,70)钟)人数1020402010完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?【考点】BL:独立性检验.【分析】(1)根据所给数据完成表1、2的2×2列联表;(2)利用公式求出K2,与临界值比较,可得结论.【解答】解:上网时间少于60分钟上网时间不少于60分钟合计男生6040100女生7030100合计13070200K2=≈2.20,∵K2≈2.20<2.706.∴没有90%的把握认为“大学生上网时间与性别有关”.19.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f'(x)的图象如图所示,且经过点(1,0),(2,0).(1)求x0的值以及f(x)的解析式;(2)若方程f(x)﹣m=0恰有2个根,求m的值.【考点】6D:利用导数研究函数的极值;63:导数的运算.【分析】(1)结合图象求出函数的单调区间,从而求出x0的值以及f(x)的解析式;(2)结合(1)求出函数的极大值和极小值,求出m的值即可.【解答】解:(1)由题意得,在(﹣∞,1)上,f′(x)>0,f(x)递增,在(1,2)上,f′(x)<0,f(x)递减,在(2,+∞)上,f′(x)>0,f(x)递增,故f(x)极大值=f(1)=af(x0)=5,故x0=1,f′(x)=3ax2+2bx+c,由f′(1)=0,f′(2)=0,f(1)=5,得,解得:a=2,b=﹣9,c=12,故f(x)=2x3﹣9x2+12x;(2)若方程f(x)﹣m=0恰有2个根,即m=f(x)有2个交点,由(1)得:f(x)=2x3﹣9x2+12x,f(x)极大值=f(1)=5,f(x)极小值=f(2)=4,故m=5或m=4.20.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a;(Ⅱ)求f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,由两直线平行的条件得,f′(1)=0,即可求出a;(2)求出导数,对a讨论,分a≤0,a>0,求出单调区间,即可得到函数的极值.【解答】解:(1)函数f(x)=x﹣1+的导数f′(x)=1﹣,∵曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,∴a=e;(2)导数f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)是R上的增函数,无极值;②当a >0时,e x >a 时即x >lna ,f′(x )>0; e x <a ,即x <lna ,f′(x )<0,故x=lna 为f (x )的极小值点,且极小值为lna ﹣1+1=lna ,无极大值. 综上,a ≤0时,f (x )无极值;a >0时,f (x )有极小值lna ,无极大值.21.某公司为确定下一年度投入某种产品的宣传费,需要了解年宣传费x (单位:千元)对年销量y (单位:)和利润z (单位:千元)的影响,对近8年的宣传费x i (i=1,2,…,8)和年销售量y i 数据进行了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i﹣)(y i﹣) 46.6563 6.8 289.8 1.6 1469 108.8表中w i =, =w i(1)根据散点图判断,哪一个更适合作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y ﹣x ,根据(2)的结果回答下列问题;①当年宣传费x=90时,年销售量及年利润的预报值是多少? ②当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【分析】(1)由散点图成线性分布,即可得出判断;(2)先建立y关于w的线性回归方程,再求y关于x的回归方程;(3)①由(2)计算x=49时年销售量y的预报值和年利润z的预报值,②根据(2)的结果,利用二次函数的图象与性质即可得出x为何值时z取得最大值.【解答】解:(1)根据散点图即可得出判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(2)令w=,先建立y关于w的线性回归方程,由于===68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68;(3)①由(2)知,当x=49时,年销售量y的预报值为=100.6+68=576.6,年利润z的预报值为=576.6×0.2﹣49=66.32;②根据(2)的结果可知,年利润z的预报值=0.2﹣x=﹣x+13.6+20.12,当==6.8,即x=46.24时z取得最大值,故宣传费为46.24千元时,年利润的预报值最大.22.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;3R:函数恒成立问题.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在1,e2hslx3y3h.2017年6月22日。
山西省怀仁县2016-2017学年高二数学下学期第二次月考试题 理(实验班)一、选择题:(本大题共12个小题,每小题5分,共60分.)1. 8()x 的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-2.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85 B .0.819 2C .0.8D .0.753某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有 A 12种 B 24种 C 36种 D 72种 4在二项式1()nx x-的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是( ).A .-56 B .-35 C .35 D .565. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们 进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次 就结束测试的方法种数是( )A. 48B. 32C. 24D. 166.已知随机变量X 的取值为0,1,2,若1(0)5P X ==,1EX =,则DX =( ) A .25 B .45 C .23 D .437. 用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是( )A 12B 24C 30D 368.若9922109)1(...)1()1()2(+++++++=++x a x a x a a m x ,且9293128203)...()...(=+++-+++a a a a a a 则实数m 的值为( )A. 1或-3B. -1或3C. 1D. -39.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是( )A.316B.516C.716D.5810. 八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有( ) A .770种 B .1260种 C .4620种 D .2940种11.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望()ξE 为( )A .24181 B .26681 C .27481 D .67024312. 体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止。
山西省怀仁县2016—2017学年高二数学下学期期中试题 理(实验班)一、选择题:(本大题共12个小题,每小题5分,共60分.) 1.已知复数z 满足,那么的虚部为( )A .1B . -iC .1-D .i [学+科2.定积分1(2)x x e dx +⎰的值为( )A .B .C .D .3.观察下列各式:222255-=,33331010-=,44441717-=,….若99m mn n -=,则n m -=( )A .43B . 73C .57D .914.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血型的O 型,则父母血型的所有可能情况有( ) A .12种 B .6种C .9种D .10种5.曲线与坐标轴所围成图形面积是( )A .4B .2C .D .36.的展开式中常数项是( )A . 160B .-20C .20D .—1607.用数学归纳法证明“(1)(2)()212(21)()n n n n n n n N *+++=⋅⋅-∈,从 “n k =到1n k =+”时,左边应增添的式子是 ( ) A .21k + B .23k + C. 2(21)k +D .2(23)k +8.设随机变量X 的概率分布列为则(|3|1)P X -==( ) (A )712 (B )512(C )14 (D )169.若2()2(1)f x xf x '=+,则(0)f '等于( ) A .-2 B . 4 C .2 D .-410.用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是( )A .12B .24C .36D .3011. 某人射击一次击中目标的概率为0。
6,经过3次射击,设X 表示击中目标的次数,则(2)P X ≥等于( ) A.81125 B.54125 C.36125 D.2712512。
山西省怀仁县2016-2017学年高二数学下学期第一次月考试题 理 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知命题:0,21x p x ∀≥≥,命题:q 若x y >,则22x y >,则下列命题中为真命题的是A. p q ∧B. p q ∧⌝C. p q ⌝∧⌝D.p q ⌝∧ 2.已知椭圆2215x y m+=的离心率为105,则m 的值为 A. 3 B. 5153或15 C. 5 D.253或3 3.曲线sin x y x e =+在点()0,1处的切线方程为A. 330x y -+=B. 220x y -+=C. 210x y -+=D. 310x y -+=4.已知双曲线()221mx y m R -=∈与椭圆2215y x +=有相同的焦点,则该双曲线的渐近线方程为 A. 3y x =± B. 33y x =± C. 13y x =± D. 3y x =± 5.已知抛物线()220x py p =>的准线与椭圆22164x y +=相切,则p 的值为 A. 4 B. 3 C. 2 D. 16.直线1:10l ax y +-=与()2:3210l x a y +++=平行,则a 的值为A. 1B. 3-C. 0或12-或-3 7.已知抛物线2:8C y x =-的焦点为F,准线l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则FQ =A. 72B. 3C. 52D.2 8.设,a b 是两条不同的直线,,αβ为两个不重合的平面,下列命题中的真命题的是A. 若,a b 与α所成的角相等,则//a bB. 若//,//,//a b αβαβ,则//a bC. 若,,a b αβαβ⊂⊂⊥,则 a b ⊥D. 若,,a b αβαβ⊥⊥⊥,则//a b9.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-距离的最小值是 A. 1 B. 2 C.22D.3 10.已知()()3261f x x ax a x =++++有极大值和极小值,则a 的取值范围是A. 12a -<<B. 36a -<<C. 1a <-或2a >D. 3a <-或6a >11.已知抛物线()211:02C y x p p =>的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限内一点M ,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =A. 3B. 3C. 23D. 43 12.已知函数()()22,0ln 1,0x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x ax ≥恒成立,则a 的取值范围是A. (],0-∞B. (],1-∞C. []2,1-D.[]2,0-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.设函数()f x 的导函数为()f x ',且()sin cos 2f x f x x π⎛⎫'=+⎪⎝⎭,则4f π⎛⎫'= ⎪⎝⎭ . 14.已知函数()x f x e ax =-在(),0-∞上是减函数,则实数a 的取值范围是 .15.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F,C 与过原点的直线相交于A,B 两点,连接AF,BF ,若310,6,cos 5AB AF FAB ==∠=,则C 的离心率为 .16.若函数()f x 在区间A 上,对,,a b c A ∀∈,()()(),,f a f b f c 为一个三角形的三边长,则称函数()f x 为“三角形函数”.已知函数()ln f x x x m =+在区间21,e e ⎡⎤⎢⎥⎣⎦上是“三角形函数”,则实数m 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分) 已知椭圆()2222:10x y C a b a b+=>>的焦距为422,过点()2,1P -斜率为1的直线l 与椭圆C 交于,A B 点.(1)求椭圆C 的标准方程;(2)求弦AB 的长.18.(本题满分12分)若函数()34f x ax bx =-+,当2x =时,函数有极值4.3- (1)求函数的解析式;(2)若方程()f x k =有3个不同的实根,求实数k 的取值范围.19.(本题满分12分)四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)求证://PB 平面AEC ;(2)设二面角D AE C --的大小为60,1,3AP AD ==E ACD -的体积.20.(本题满分12分)设函数()()330.f x x ax b a =-+≠(1)若曲线()y f x =在点()()2,2f 处与直线8y =相切,求,a b 的值;(2)求函数()f x 的单调区间与极值点.21.(本题满分12分) 在直角坐标xoy 中,曲线2:4x C y =与直线():0l y kx a a =+>交于,M N 两点. (1)当0k =时,分别求C 在点M 和N 处的切线方程;(2)在y 轴上是否存在点P ,使得当k 变化时,总有OPM OPN ∠=∠?并且说明理由.22.(本题满分12分)已知函数()()22,,.xf x e ax x R a R =--∈∈ (1) 当1a =时,求曲线()y f x =在1x =处的切线方程;(2)当0x ≥时,若不等式()0f x ≥恒成立,求实数a 的取值范围.。
2016-2017学年山西省朔州市怀仁八中普通班高二(下)第二次月考数学试卷(理科)一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)的展开式中x6y2项的系数是()A.56B.﹣56C.28D.﹣282.(5分)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为()A.0.85B.0.819 2C.0.8D.0.753.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种4.(5分)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.﹣56B.﹣35C.35D.565.(5分)有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是()A.16B.24C.32D.486.(5分)已知随机变量X的取值为0,1,2,若P(X=0)=,EX=1,则DX=()A.B.C.D.7.(5分)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.368.(5分)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的取值为()A.1或﹣3B.﹣1或3C.1D.﹣39.(5分)设随机变量X服从,则P(X=3)的值是()A.B.C.D.10.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.411.(5分)有一对夫妻有两个孩子,已知其中一个是男孩,则另一个是女孩的概率是()A.B.C.D.12.(5分)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)二、填空题:本大题共4小题,每小题5分,共25分.请将答案填写在答题卷中的横线上. 13.(5分)(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为.14.(5分)我校在上次摸考中约有1000人参加考试,数学考试的成绩ξ~N(90,a2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生约有人.15.(5分)马老师从课本上抄录一个随机变量ξ的概率分布律如下表:请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=.16.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为.三、解答题:本大题6个小题,共75分,各题解答必须答在答题卡上,必须写出必要的文字说明、演算步骤或推理过程.17.(10分)已知(+)n的展开式中,只有第六项的二项式系数最大.(Ⅰ)求该展开式中所有有理项的项数;(Ⅱ)求该展开式中系数最大的项.18.(12分)已知一个袋内有4只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?19.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.20.(12分)“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为,,;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.21.(12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分布列与期望Eξ.22.(12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;参考数据:K2=.2016-2017学年山西省朔州市怀仁八中普通班高二(下)第二次月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12个小题,每小题5分,共60分.)1.(5分)的展开式中x6y2项的系数是()A.56B.﹣56C.28D.﹣28【解答】解:由题意,,故选:A.2.(5分)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为()A.0.85B.0.819 2C.0.8D.0.75【解答】解:∵该射击运动员射击4次恰好击中3次的概率为•0.83•0.2=,该射击运动员射击4次恰好击中4次的概率为•0.84=,∴该射击运动员射击4次至少击中3次的概率为+==0.8192,故选:B.3.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种【解答】解:根据题意,分析可得,4个人中有2个人分在同一个组,在4个人中任取2人,作为一个整体,有C42=6种情况,将这个整体与其他3人进行全排列,对应3个活动小组,有A33=6种情况,则共有6×6=36种不同的报名方法,故选:C.4.(5分)在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是()A.﹣56B.﹣35C.35D.56【解答】解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴n=8,展开式的通项公式为T r+1==•(﹣1)r•x8﹣2r,令8﹣2r=2,则r=3,∴展开式中含x2项的系数是﹣=﹣56.故选:A.5.(5分)有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是()A.16B.24C.32D.48【解答】解:根据题意,若恰好3次就结束测试,则前2次测试中测出1件次品,第3次测出第2件次品,第3次测试的是次品,而共有2件次品,则有C21=2种情况,前2次测试,即一次正品、1次次品,有C81×A22=16种情况,则恰好3次就结束测试共有2×16=32种情况,故选:C.6.(5分)已知随机变量X的取值为0,1,2,若P(X=0)=,EX=1,则DX=()A.B.C.D.【解答】解:设P(X=1)=p,P(X=2)=q,因为E(X)=0×①又p+q=,②由①②得,p=,q=,∴D(X)=,故选:A.7.(5分)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.36【解答】解:先涂前三个圆,再涂后三个圆.因为每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,分两类,第一类,前三个圆用3种颜色,后三个圆也用3种颜色,若涂前三个圆用3种颜色,有A33=6种方法;则涂后三个圆也用3种颜色,有C21C21=4种方法,此时,故不同的涂法有6×4=24种.第二类,前三个圆用2种颜色,后三个圆也用2种颜色,若涂前三个圆用2种颜色,则涂后三个圆也用2种颜色,共有C31C21=6种方法.综上可得,所有的涂法共有24+6=30 种.故选:C.8.(5分)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的取值为()A.1或﹣3B.﹣1或3C.1D.﹣3【解答】解:在(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9中,令x=﹣2可得a0﹣a1+a2﹣a3+…+a8﹣a9=m9,即[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=m9,令x=0,可得a0+a2+…+a8+a1+a3+…+a9=(2+m)9,∵(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,∴(a0+a2+…+a8+a1+a3+…+a9)[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=39,∴(2+m)9•m9=(2m+m2)9=39,可得2m+m2=3,解得m=1,或m=﹣3故选:A.9.(5分)设随机变量X服从,则P(X=3)的值是()A.B.C.D.【解答】解:∵随机变量X服从,∴P(X=3)===故选:B.10.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.11.(5分)有一对夫妻有两个孩子,已知其中一个是男孩,则另一个是女孩的概率是()A.B.C.D.【解答】解:设事件A为:有一个是男孩,事件B为:有一个是女孩,则P(AB)=××2=,P(A)=+=,∴P(B|A)==.故选:B.12.(5分)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选:C.二、填空题:本大题共4小题,每小题5分,共25分.请将答案填写在答题卷中的横线上. 13.(5分)(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为209.【解答】解:(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为++…+=4+10+20+35+56+84=209,故答案为:209.14.(5分)我校在上次摸考中约有1000人参加考试,数学考试的成绩ξ~N(90,a2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的,则此次数学考试成绩不低于110分的学生约有200人.【解答】解:∵成绩ξ~N(90,a2),∴其正态曲线关于直线x=90对称,又∵成绩在70分到110分之间的人数约为总人数的,由对称性知:成绩在110分以上的人数约为总人数的(1﹣)=,∴此次数学考试成绩不低于110分的学生约有:.故答案为:200.15.(5分)马老师从课本上抄录一个随机变量ξ的概率分布律如下表:请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案Eξ=2.【解答】解:设P(ξ=1)=P(ξ=3)=a,P(ξ=2)=b,则2a+b=1,Eξ=a+2b+3a=2(2a+b)=2,故答案为2.16.(5分)在以O为极点的极坐标系中,圆ρ=4sinθ和直线ρsinθ=a相交于A、B两点,若△AOB是等边三角形,则a的值为3.【解答】解:直线ρsinθ=a即y=a,(a>0),曲线ρ=4sinθ,即ρ2=4ρsinθ,即x2+(y﹣2)2=4,表示以C(0,2)为圆心,以2为半径的圆,∵△AOB是等边三角形,∴B(a,a),代入x2+(y﹣2)2=4,可得(a)2+(a﹣2)2=4,∵a>0,∴a=3.故答案为:3.三、解答题:本大题6个小题,共75分,各题解答必须答在答题卡上,必须写出必要的文字说明、演算步骤或推理过程.17.(10分)已知(+)n的展开式中,只有第六项的二项式系数最大.(Ⅰ)求该展开式中所有有理项的项数;(Ⅱ)求该展开式中系数最大的项.【解答】解:(Ⅰ)由题意可知,解得n=10,∴,(0≤r≤10,且r∈N),要求该展开式中的有理项,只需令,∴r=0,2,4,6,8,10,∴有理项的项数为6项;(Ⅱ)设第T r+1项的系数最大,则,即,解不等式可得,∵r∈N,∴r=7,∴展开式中的系数最大的项为18.(12分)已知一个袋内有4只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?【解答】解::(1)将取出4个球分成三类情况:①取4个红球,没有白球,C44种;②取3个红球1个白球,C43C61种;③取2个红球2个白球,C42C62种,∴C44+C43C61+C42C62=115种,(2)设x个红球y个白球,,或或.∴符合题意的取法种数有C42C63+C43C62+C44C61=186种(3)总分为8分,则抽取的个数为红球3个,白球2个,将抽出的球排成一排,仅有两个红球相邻,第一步先取球,共有C43C62=60种,第二步,再排,先选2个红球捆绑在一起,再和另外一个红球排列,把2个白球插入,共有A32A22A32=72,其中3个红球排在一起的有A33A22=12根据分步计数原理可得,60×(72﹣12)=3600种.19.(12分)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.【解答】解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,EX=0×+1×+2×=.20.(12分)“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为,,;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a和b(其中a+b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金﹣投资资金),求ξ的概率分布及均值(数学期望)E(ξ);(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a的取值范围.【解答】解(1)依题意知ξ的可能取值为20,0,﹣10,ξ的分布列为E(ξ)=20×+0×+(﹣10)×=10.(2)设η表示把100万投资“低碳型“经济项目的收益,则η的分布列为E(η)=30a﹣20b=50a﹣20,依题意得50a﹣20≥10,∴≤a≤1,∴a的取值范围是[,1]21.(12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分布列与期望Eξ.【解答】解:令A k,B k,∁k分别表示甲、乙、丙在第k局中获胜.(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为.(Ⅱ)ξ的所有可能值为2,3,4,5,6,且,..,,故有分布列从而(局).22.(12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄的频数分布及支持“生育二胎”人数如表:(1)由以上统计数据填下面2乘2列联表,并问是否有的99%把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4人不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望;参考数据:K 2=.【解答】解:(Ⅰ)2×2列联表…(2分)<6.635…(4分)所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.…(5分)(Ⅱ)ξ所有可能取值有0,1,2,3,…(6分),,,,…(10分)所以ξ的分布列是所以ξ的期望值是.…(12分)。
2016-2017学年山西省朔州市怀仁一中高二(下)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.用反证法证明命题:“已知a、b∈N*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除2.已知曲线y=lnx的切线过原点,则此切线的斜率为()A.e B.﹣e C.D.﹣3.如图,在矩形OABC内:记抛物线y=x2+1与直线y=x+1围成的区域为M(图中阴影部分).随机往矩形OABC内投一点P,则点P落在区域M内的概率是()A.B.C.D.4.若函数f(x)=x3﹣3bx+3b在(0,1)内有极小值,则()A.0<b<1 B.b<1 C.b>0 D.b<5.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对6.如图所示,由函数f(x)=sinx与函数g(x)=cosx在区间[0,]上的图象所围成的封闭图形的面积为()A.3﹣1 B.4﹣2 C.D.27.甲、乙两人从同一起点出发按同一方向行走,已知甲、乙行走的速度与行走的v乙=t2(如图),当甲乙行走的速度相同(不为零)时刻()时间分别为v甲=,A.甲乙两人再次相遇B.甲乙两人加速度相同C.甲在乙前方D.乙在甲前方8.函数y=xsinx+cosx在下面哪个区间内是增函数()A.(,)B.(π,2π)C.(,)D.(2π,3π)9.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是()A.①②B.③④C.①③D.①④10.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,]C.[,π)D.(,π)11.设f(x),g(x)是定义域为R的恒大于零的可导函数,且f′(x)g(x)﹣f (x)g′(x)<0,则当a<x<b时,下列结论中正确的是()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x) D.f(x)g(x)>f(a)g(a)12.若关于x的不等式x2+ax﹣c<0的解集为{x|﹣2<x<1},且函数在区间上不是单调函数,则实数m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线,则过点P(2,4)的切线方程为.14.直线y=a与函数f(x)=x3﹣3x的图象有三个互不相同的公共点,求a的取值范围.15.在△ABC中,a,b,c分别是角A,B,C的对边,则a=bcosC+ccosB,类比到空间图形:在三棱锥P﹣ABC中,三个侧面PAB,PBC,PAC与底面ABC所成的二面角分别为α,β,γ,相应的结论是.16.设二次函数f(x)=ax2+bx+c(a≠0)的导数为f'(x),f'(0)>0,若∀x∈R,恒有f(x)≥0,则的最小值是.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.18.阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③令α+β=A,α﹣β=B有代入③得.(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若△ABC的三个内角A,B,C满足cos2A﹣cos2B=2sin2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)19.请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示).试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?20.已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.21.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.22.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.2016-2017学年山西省朔州市怀仁一中高二(下)第二次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.用反证法证明命题:“已知a、b∈N*,如果ab可被5整除,那么a、b 中至少有一个能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b都不能被5整除C.a、b不都能被5整除D.a不能被5整除【考点】FC:反证法.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.2.已知曲线y=lnx的切线过原点,则此切线的斜率为()A.e B.﹣e C.D.﹣【考点】6H:利用导数研究曲线上某点切线方程.【分析】设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.【解答】解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=;故选:C.3.如图,在矩形OABC内:记抛物线y=x2+1与直线y=x+1围成的区域为M(图中阴影部分).随机往矩形OABC内投一点P,则点P落在区域M内的概率是()A.B.C.D.【考点】CF:几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要找出阴影部分的面积,及矩形的面积,再将它们代入几何概型计算公式计算出概率.=()=,【解答】解:阴影部分面积S阴影=矩形部分面积S矩形=2,∴所投的点落在阴影部分的概率P==,故选:B.4.若函数f(x)=x3﹣3bx+3b在(0,1)内有极小值,则()A.0<b<1 B.b<1 C.b>0 D.b<【考点】6D:利用导数研究函数的极值.【分析】先对函数f(x)进行求导,然后令导函数等于0,由题意知在(0,1)内必有根,从而得到b的范围.【解答】解:因为函数在(0,1)内有极小值,所以极值点在(0,1)上.令f'(x)=3x2﹣3b=0,得x2=b,显然b>0,∴x=±.又∵x∈(0,1),∴0<<1.∴0<b<1.故选A.5.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对【考点】6E:利用导数求闭区间上函数的最值.【分析】先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.【解答】解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A6.如图所示,由函数f(x)=sinx与函数g(x)=cosx在区间[0,]上的图象所围成的封闭图形的面积为()A.3﹣1 B.4﹣2 C.D.2【考点】6G:定积分在求面积中的应用;H2:正弦函数的图象;H7:余弦函数的图象.【分析】求出图象的交点坐标,根据定积分的几何意义,所求面积为S=(cosx ﹣sinx)dx+(sinx﹣cosx)dx+(cosx﹣sinx)dx,再用定积分计算公式加以运算即可得到本题答案.【解答】解:由y=sinx(x∈[0,])和y=cosx(x∈[0,]),可得交点坐标为(,),(,),∴由两曲线y=sinx(x∈[0,])和y=cosx(x∈[0,])所围成的封闭图形的面积为S=(cosx﹣sinx)dx+(sinx﹣cosx)dx+(cosx﹣sinx)dx=(sinx+cosx)﹣(sinx+cosx)+(sinx+cosx)=4﹣2.故选:B.7.甲、乙两人从同一起点出发按同一方向行走,已知甲、乙行走的速度与行走的v乙=t2(如图),当甲乙行走的速度相同(不为零)时刻()时间分别为v甲=,A.甲乙两人再次相遇B.甲乙两人加速度相同C.甲在乙前方D.乙在甲前方【考点】68:微积分基本定理.【分析】速度时间图象中的面积表示位移,也就是对速度时间函数求积分得到位置时间关系.t=0(舍),或t=1.【解答】解:由V甲=V乙,得,解得由=.=.所以当甲乙行走的速度相同(不为零)时刻甲在乙前方.故选C.8.函数y=xsinx+cosx在下面哪个区间内是增函数()A.(,)B.(π,2π)C.(,)D.(2π,3π)【考点】6B:利用导数研究函数的单调性.【分析】对给定函数求导后,把选项依次代入,看哪个y′恒大于0,就是哪个选项.【解答】解:y′=(xsinx+cosx)′=sinx+xcosx﹣sinx=xcosx,当x∈(,)时,恒有xcosx>0.故选C.9.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是()A.①②B.③④C.①③D.①④【考点】6A:函数的单调性与导数的关系.【分析】利用导数与函数之间的关系,函数的递增区间即导函数为正的区间,函数的递减区间即导函数为负的区间,确定出正确答案.【解答】解:根据f′(x)>0时,f(x)递增;f′(x)<0时,f(x)递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选:B.10.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,则∠B的范围是()A.(0,)B.(0,]C.[,π)D.(,π)【考点】6D:利用导数研究函数的极值.【分析】先求导f′(x)=x2+2bx+(a2+c2﹣ac),从而化函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点为x2+2bx+(a2+c2﹣ac)=0有两个不同的根,从而再利用余弦定理求解.【解答】解:∵f(x)=x3+bx2+(a2+c2﹣ac)x+1,∴f′(x)=x2+2bx+(a2+c2﹣ac),又∵函数f(x)=x3+bx2+(a2+c2﹣ac)x+1有极值点,∴x2+2bx+(a2+c2﹣ac)=0有两个不同的根,∴△=(2b)2﹣4(a2+c2﹣ac)>0,即ac>a2+c2﹣b2,即ac>2accosB;即cosB<;故∠B的范围是(,π);故选:D.11.设f(x),g(x)是定义域为R的恒大于零的可导函数,且f′(x)g(x)﹣f (x)g′(x)<0,则当a<x<b时,下列结论中正确的是()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x) D.f(x)g(x)>f(a)g(a)【考点】6A:函数的单调性与导数的关系.【分析】构造函数F(x)=,求导可判函数F(x)为R上单调递减的函数,结合a<x<b可得,由题意结合选项分析,可得答案.【解答】解:由题意构造函数F(x)=则其导函数F′(x)=<0,故函数F(x)为R上单调递减的函数,∵a<x<b,∴F(a)>F(x)>F(b),即,又f(x),g(x)是定义域为R的恒大于零的可导函数,对式子的后半部分两边同乘以g(b)g(x)可得f(x)g(b)>f(b)g(x).故选C12.若关于x的不等式x2+ax﹣c<0的解集为{x|﹣2<x<1},且函数在区间上不是单调函数,则实数m的取值范围是()A.B.C.D.【考点】74:一元二次不等式的解法.【分析】根据关于x的不等式x2+ax﹣c<0的解集求出a,c的值,求出函数y的解析式,根据区间(,1)上不是单调函数,可得y′=3x2+2mx+m=0在区间(,1)上有解,且不是重解;构造函数,求导函数,确定函数的值域,即可求出实数m 的取值范围.【解答】解:关于x的不等式x2+ax﹣c<0的解集为{x|﹣2<x<1},∴对应方程x2+ax﹣c=0的实数根为﹣2和1,由根与系数的关系知a=﹣(﹣2+1)=1,c=﹣(﹣2)×1=2;∴函数=x3+mx2+x+1,∴y′=3x2+2mx+1;又函数y=x3+mx2+x+1在区间(,1)上不是单调函数,∴y′=3x2+2mx+1在区间(,1)上有正有负,可以转化为3x2+2mx+1=0(*)在区间(,1)上有解,且不是重解∴由3x2+2mx+1=0,可得2m=﹣3x﹣;令f(x)=﹣3x﹣,其中<x<1,且f'(x)=﹣3+,令f'(x)=0,得x=,∴x∈(,)时,f'(x)>0,f(x)递增,x∈(,1)时,f'(x)<0,f(x)递减,∴f(x)max=f()=﹣2;∵f(1)=﹣4,f()=﹣,∴f(x)的值域为(﹣4,﹣2],∴2m∈(﹣4,﹣2],∴m∈(﹣2,﹣];又当m=﹣时,(*)中△=0,有2个相等的根,不合题意,∴m的范围是(﹣2,﹣).故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线,则过点P(2,4)的切线方程为x﹣y+2=0,或4x﹣y ﹣4=0.【考点】6H:利用导数研究曲线上某点切线方程.【分析】设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可.【解答】解:设曲线y=x3+与过点P(2,4)的切线相切于点A(x0,x03+),则切线的斜率k=y′|x=x0=x02,∴切线方程为y﹣(x03+)=x02(x﹣x0),即y=x•x﹣x+∵点P(2,4)在切线上,∴4=2x02﹣x03+,即x03﹣3x02+4=0,∴x03+x02﹣4x02+4=0,∴(x0+1)(x0﹣2)2=0解得x0=﹣1或x0=2故所求的切线方程为4x﹣y﹣4=0或x﹣y+2=0.故答案为:x﹣y+2=0,或4x﹣y﹣4=0.14.直线y=a与函数f(x)=x3﹣3x的图象有三个互不相同的公共点,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】首先根据函数的导数求出函数的单调区间,然后画出函数的图象,从而根据图象判断函数与直线的公共点的情况.【解答】解:先求函数f(x)的单调区间,由f′(x)=3x2﹣3=0,解得x=±1,当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,∴在(﹣∞,﹣1)和(1,+∞)上,f(x)=x3﹣3x是增函数,在(﹣1,1)上,f(x)=x3﹣3x是减函数,由此可以作出f(x)=x3﹣3x的草图(如图).由图可知,当且仅当﹣2<a<2时,直线y=a与函数f(x)=x3﹣3x的图象有三个互不相同的公共点.15.在△ABC中,a,b,c分别是角A,B,C的对边,则a=bcosC+ccosB,类比到空间图形:在三棱锥P﹣ABC中,三个侧面PAB,PBC,PAC与底面ABC所成的二=S△PAB cosα+S△PBC cosβ+S△PAC cosγ.面角分别为α,β,γ,相应的结论是S△ABC【考点】F3:类比推理.【分析】本题是在结构形式上的类比.平面三角形获得的是线段之间的关系,类比到空间获得的则是面积之间的关系.【解答】解:在△ABC中,a,b,c分别是角A,B,C的对边,则a=bcosC+ccosB,利用面积射影法,类比到空间图形:在三棱锥P﹣ABC中,三个侧面PAB,PBC,PAC与底面ABC所成的二面角分别为α,β,γ,相应的结论是S△ABC=S△PAB cosα+S△cosβ+S△PAC cosγ.PBC=S△PAB cosα+S△PBC cosβ+S△PAC cosγ.故答案为:S△ABC16.设二次函数f(x)=ax2+bx+c(a≠0)的导数为f'(x),f'(0)>0,若∀x∈R,恒有f(x)≥0,则的最小值是2.【考点】6K:导数在最大值、最小值问题中的应用.【分析】先根据题目的条件建立关于a、b、c的关系式,再结合基本不等式求出最小即可,注意等号成立的条件.【解答】解:∵f(x)=ax2+bx+c∴f′(x)=2ax+b,f′(0)=b>0∵对任意实数x都有f(x)≥0∴a>0,c>0,b2﹣4ac≤0即≥1则==1+,而()2=≥≥1,∴==1+≥2,故答案为:2.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知曲线y=x3+x﹣2在点P0处的切线l1平行直线4x﹣y﹣1=0,且点P0在第三象限,(1)求P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)根据曲线方程求出导函数,因为已知直线4x﹣y﹣1=0的斜率为4,根据切线与已知直线平行得到斜率相等都为4,所以令导函数等于4得到关于x的方程,求出方程的解,即为切点P0的横坐标,代入曲线方程即可求出切点的纵坐标,又因为切点在第3象限,进而写出满足题意的切点的坐标;(2)由直线l1的斜率为4,根据两直线垂直时斜率的乘积为﹣1,得到直线l的斜率为﹣,又根据(1)中求得的切点坐标,写出直线l的方程即可.【解答】解:(1)由y=x3+x﹣2,得y′=3x2+1,由已知得3x2+1=4,解之得x=±1.当x=1时,y=0;当x=﹣1时,y=﹣4.又∵点P0在第三象限,∴切点P0的坐标为(﹣1,﹣4);(2)∵直线l⊥l1,l1的斜率为4,∴直线l的斜率为﹣,∵l过切点P0,点P0的坐标为(﹣1,﹣4)∴直线l的方程为y+4=﹣(x+1)即x+4y+17=0.18.阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③令α+β=A,α﹣β=B有代入③得.(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若△ABC的三个内角A,B,C满足cos2A﹣cos2B=2sin2C,试判断△ABC的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)【考点】F3:类比推理;GL:三角函数中的恒等变换应用.【分析】(Ⅰ)通过两角和与差的余弦公式,令α+β=A,α﹣β=B有,即可证明结果.(Ⅱ)解法一:利用二倍角公式以及正弦定理,即可判断三角形的形状.解法二:利用(Ⅰ)中的结论和二倍角公式,cos2A﹣cos2B=2sin2C,以及A+B+C=π,推出2sinAcosB=0..得到△ABC为直角三角形【解答】满分.解法一:(Ⅰ)因为cos(α+β)=cosαcosβ﹣sinαsinβ,①cos(α﹣β)=cosαcosβ+sinαsinβ,②…①﹣②得cos(α+β)﹣cos(α﹣β)=﹣2sinαsinβ.③…令α+β=A,α﹣β=B有,代入③得.…(Ⅱ)由二倍角公式,cos2A﹣cos2B=2sin2C可化为1﹣2sin2A﹣1+2sin2B=2sin2C,…即sin2A+sin2C=sin2B.…设△ABC的三个内角A,B,C所对的边分别为a,b,c,由正弦定理可得a2+c2=b2.…根据勾股定理的逆定理知△ABC为直角三角形.…解法二:(Ⅰ)同解法一.(Ⅱ)利用(Ⅰ)中的结论和二倍角公式,cos2A﹣cos2B=2sin2C可化为﹣2sin(A+B)sin(A﹣B)=2sin2C,…因为A,B,C为△ABC的内角,所以A+B+C=π,所以﹣sin(A+B)sin(A﹣B)=sin2(A+B).又因为0<A+B<π,所以sin(A+B)≠0,所以sin(A+B)+sin(A﹣B)=0.从而2sinAcosB=0.…又因为sinA≠0,所以cosB=0,即.所以△ABC为直角三角形.…19.请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示).试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?【考点】L@:组合几何体的面积、体积问题;6E:利用导数求闭区间上函数的最值.【分析】设出顶点O到底面中心o1的距离,再求底面边长和底面面积,求出体积表达式,利用导数求出高为何时体积取得最大值.【解答】解:设OO1为xm,(1<x<4).则由题设可得正六棱锥底面边长为:(m).(求解过程为:)于是底面正六边形的面积为(单位:m2)帐篷的体积为(单位:m3).可得:求导数,得令V'(x)=0解得x=﹣2(不合题意,舍去),x=2.当1<x<2时,V'(x)>0,V(x)为增函数;当2<x<4时,V'(x)<0,V(x)为减函数.所以当x=2时,V(x)最大.答当OO1为2m时,帐篷的体积最大.20.已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.【考点】KH:直线与圆锥曲线的综合问题.【分析】依题设可知抛物线与x轴的交点的横坐标分别为x1=0,,所以=.由直线x+y=4与抛物线y=ax2+bx相切,知ax2+(b+1)x﹣4=0中△=(b+1)2+16a=0,由此能求出S达到最大值的a,b值及S的最大值.【解答】解:依题设可知抛物线与x轴的交点的横坐标分别为x1=0,,所以=()=+=(1)…又直线x+y=4与抛物线y=ax2+bx相切,即它们有唯一的公共点由方程组,得ax2+(b+1)x﹣4=0,其判别式△必须为0,即△=(b+1)2+16a=0,于是,…代入(1)式得:,.令S′(b)=0,在b>0时,得b=3;当0<b<3时,S′(b)>0;当b>3时,S′(b)<0.故在b=3时,S(b)取得极大值,也是最大值,即a=﹣1,b=3时,S取得最大值,且.…21.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)依题意,f′(1)=0,从而可求得a的值;(Ⅱ)f′(x)=1﹣,分①a≤0时②a>0讨论,可知f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(Ⅲ)令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f (x)没有公共点⇔方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.【解答】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.22.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】6H:利用导数研究曲线上某点切线方程;3R:函数恒成立问题.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].2017年6月5日。
山西省怀仁县2016-2017学年高二数学下学期期末考试试题 理(普通班)一、选择题:(本大题共12个小题,每小题5分,共60分.)1.将点的极坐标(π,-2π)化为直角坐标为( )A .(π,0)B .(π,2π)C .(-π,0)D .(-2π,0)2.设P =Q =R =,,P Q R 的大小顺序是( ) A P Q R >> B P R Q >> C Q P R >> D Q R P >>3. 在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是( )A .⎪⎩⎪⎨⎧==//213y y x x B.⎪⎩⎪⎨⎧=y x //⎩⎨⎧==//23y y x x D .⎩⎨⎧==y y x x 23// 4.若直线的参数方程为12x t=+⎧ ( ).32D .32-271x y++的最小值是( ).6 D .7 θ=r 与圆⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ(φ为参数)的位置关系是A .相交B .相切C .相离D .视r 的大小而定7.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t y =5-32tB .⎩⎪⎨⎪⎧ x =1-12t y =5+32tC.⎩⎪⎨⎪⎧x =1-12t y =5-32tD .⎩⎪⎨⎪⎧x =1+12t y =5+32t8.圆ρ=5cos θ-53sin θ的圆心是( )A.⎝ ⎛⎭⎪⎫-5,-4π3B.⎝ ⎛⎭⎪⎫-5,π3C.⎝ ⎛⎭⎪⎫5,π3D.⎝⎛⎭⎪⎫-5,5π3 9.在极坐标系中,曲线ρ=4sin ⎝⎛⎭⎪⎫θ-π4(ρ∈R )关于( )A .直线θ=π3成轴对称B .直线θ=3π4成轴对称⎛⎪⎫,π( )sin θ=2 ρ=4sin ⎝ ⎛⎭⎪⎫θ-π3)(4,7]C .(2,1][4,7)--D .(2,1][4,7)-12.设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x (θ为参数,0≤θ<2π)上任意一点,则yx的取值范围是( )A .[-3,3]B .(-∞,3)∪[3,+∞]C .[-33,33]D .(-∞,33)∪[33,+∞]二、填空题:(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上) 13. 直线3()14x att y t=+⎧⎨=-+⎩为参数过定点 。
投稿兼职请联系:2355394692 2016—2017学年第二学期高二年级期中考试数学试题(实)(时长120分钟,满分150)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的)1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.若复数(1+b i)(2+i)是纯虚数(i 是虚数单位),b 是实数,则b 等于( ) A .2 B.12 C .-12D .-23.分析人的身高与体重的关系,可以用( ) A .残差分析 B .回归分析 C .等高条形图D .独立性检验4.分类变量X 和Y 的列联表如下:A . ad -bc 越小,说明X 与Y 关系越弱B .ad -bc 越大,说明X 与Y 关系越强 C .(ad -bc )2越大,说明X 与Y 关系越强 D .(ad -bc )2越接近于0,说明X 与Y 关系越强5.已知x 与y 之间的一组数据:则y 与x 的线性回归方程y ∧=b x +a 必过点是( ) A .(2,2) B .(1.5,0) C .(1,2)D .(1.5,4)6.参数方程⎩⎪⎨⎪⎧x =t -1y =t +2(t 为参数)的曲线与坐标轴的交点坐标为( )A .(1,0),(0,-2)B .(0,1),(-1,0)投稿兼职请联系:2355394692 2C .(0,-1),(1,0)D .(0,3),(-3,0)7.设有一个回归直线方程y ∧=2-1.5x ,则变量x 每增加1个单位时( )A .y 平均增加1.5个单位B .y 平均增加2个单位C .y 平均减少1.5个单位D .y 平均减少2个单位8.将曲线C按伸缩变换公式⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,变换得曲线方程为x ′2+y ′2=1,则曲线C 的方程为( )A .x 24+y 29=1B .x 29+y 24=1C .4x 2+9y 2=36D .4x 2+9y 2=19.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)10.已知点M 的极坐标为⎝ ⎛⎭⎪⎫6,11π6,则点M 关于y 轴对称的点的直角坐标为( )A .(-33,-3)B .(33,-3)C .(-33,3)D .(33,3)11.圆心在(1,0)且过极点的圆的极坐标方程为( ) A .ρ=1 B .ρ=cos θ C .ρ=2cos θ D .ρ=2sin θ12.直线33x -y =0的极坐标方程(限定ρ≥0)是( ) A .θ=π6B .θ=76πC .θ=π6和θ=76πD .θ=56π二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.根据如图所示的等高条形图回答,吸烟与患肺病________关系.(“有”或“没有”)314.在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=12y 作用下,点P (1,-2)变换为P ′的坐标为________.15.已知点M 的坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为________.16.已知F 是曲线⎩⎨⎧x =22cos θy =1+cos 2θ(θ∈R )的焦点,A (1,0),则|AF |的值等于________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.18.(本小题满分12分)求过(-2,3)点且斜率为2的直线的极坐标方程. 19.(本小题满分12分)将曲线ρ2(1+sin 2θ)=2化为直角坐标方程 20.(本小题满分12分)在极坐标系中,P 是曲线ρ=12sin θ上的一动点,Q 是曲线ρ=12cos θ-π6上的动点,试求|PQ |的最大值.21.(本小题满分12分)已知曲线C 1的方程为x 2+y 2-8x -10y +16=0.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).22.(本小题满分12分) 把参数方程⎩⎪⎨⎪⎧x =4k 1-k 2,y =4k21-k2(k 为参数)化为普通方程,并说明它表示什么曲线.投稿兼职请联系:2355394692 4实班1-6 DABCDD 7-12 CDDACC 13 有14解析: 根据平面直角坐标系中的伸缩变换公式,∵x =1,y =-2,∴x ′=2x =2,y ′=2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(1y =-1,所以P ′(2,-1).15解析: ∵tan θ=-3\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(4,2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π<θ<π,∴cos θ=-5\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(3,sinθ=5\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(4,∴x =5cos θ=-3,y =5sin θ=4,∴点M 的直角坐标为(-3,4). 16解析: 曲线的参数方程y =1+cos 2θ\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(2cos θ,即y =2cos2 θ\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(2cos θ,曲线的普通方程为x 2=4y . 焦点F (0,1),由于A (1,0),则|AF |=. 17解:将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x , 即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1,即有32+42 \* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(|3×1+4×0+a|=1,解得a =-8或a =2.故a 的值为-8或2.18解:由题意知,直线的直角坐标方程为y -3=2(x +2), 即2x -y +7=0.设M (ρ,θ)为直线上任意一点,将x =ρcos θ,y =ρsin θ代入直角坐标方程2x -y +7=0, 得2ρcos θ-ρsin θ+7=0,这就是所求的极坐标方程. 19解析: ∵ρ2(1+sin 2θ)=2, ∴ρ2(cos 2θ+2sin 2θ)=2,∴ρ2cos 2θ+2ρ2sin 2θ=2,即x 2+2y 2=2,5∴2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(x2+y 2=1. 20解:∵ρ=12sin θ,∴ρ2=12ρsin θ, ∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos 6\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π, ∴ρ2=12ρ6\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π,∴x 2+y 2-6x -6y =0, ∴(x -3)2+(y -3)2=36. ∴|PQ |max =6+6+=18.21解:(1)将y =ρsin θ\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(x =ρcos θ, 代入x 2+y 2-8x -10y +16=0 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0. 由x2+y2-2y =0,\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(x2+y2-8x -10y +16=0,解得y =1\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(x =1,或y =2.\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(x =0,所以C 1与C 2交点的极坐标分别为4\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π,2\* jc0 \* "Font:宋体" \* hps21 \o(\s\up 9(π.。
山西省怀仁县2016-2017学年高二数学下学期第二次月考试题 理(实验班)一、选择题:(本大题共12个小题,每小题5分,共60分.) 1. 8(2)x y -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-2.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85 B .0.819 2C .0.8D .0.753某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有 A 12种 B 24种 C 36种 D 72种 4在二项式1()nxx的展开式中恰好第5项的二项式系数最大,则展开式中含2x 项的系数是( ).A .-56 B .-35 C .35 D .565. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们 进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次 就结束测试的方法种数是( )A. 48B. 32C. 24D. 166.已知随机变量X 的取值为0,1,2,若1(0)5P X ==,1EX =,则DX =( ) A .25 B .45 C .23 D .437. 用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则 A 12 B 24 C 30 D 368.若9922109)1(...)1()1()2(+++++++=++x a x a x a a m x 9293128203)...()...(=+++-+++a a a a a a 则实数m 的值为( )A. 1或-3B. -1或3C. 1D. -39.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是( )A.316B.516C.716D.5810. 八人分乘三辆小车,每辆小车至少载1人最多载4人,不同坐法共有( ) A .770种 B .1260种 C .4620种 D .2940种11.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望()ξE 为( )A .24181 B .26681 C .27481 D .67024312. 体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止。
设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望EX >1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712 B.⎝⎛⎭⎪⎫712,1C.⎝ ⎛⎭⎪⎫0,12D.⎝ ⎛⎭⎪⎫12,1 二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上. 3.459(1)(1)(1)x x x ++++⋯++展开式中,3x 项的系数为 。
14.某校在模块考试中约有1000人参加考试,其数学考试成绩2~(90,)N a ξ,(0a >,试卷满分150分),统计结果显示数学考试成绩在70分到110分这间的人数约为总人数的35,则此次数学考试成绩不低于110分的学生人数约为 。
15.马老师从课本上抄录一个随机变量X 的概率分布列如下表:x 1 2 3 P (X =x )?!?请小牛同学计算X 断定这两个“?”处的数值相同。
据此,小牛给出了正确答案EX =________。
16.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点,若△AOB 是等边三角形,则a 的值为________。
三、解答题(共70分):解答应写出文字说明、证明过程或演算步骤. 17.已知nxx )2(2的展开式中,只有第六项的二项式系数最大. (Ⅰ)求该展开式中所有有理项的项数; (Ⅱ)求该展开式中系数最大的项.18.已知一个袋内有4只不同的红球,6只不同的白球.(1)从中任取4只球,红球的只数不比白球少的取法有多少种?(2)若取一只红球记2分,取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?19.(12分) 端午节吃粽子是我国的传统习俗。
设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同。
从中任意选取3个。
(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望。
20.“低碳经济”是促进社会可持续发展的推进器,某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为35,15,15;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a 和b (其中a +b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金-投资资金),求ξ的概率分布及均值(数学期望)E (ξ);(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a 的取值范围.21甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而因轮空,以后每一局的获胜者与轮空者进行比赛,而前一局的失败者轮空,比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止,设在每局中参赛者胜负的概率均为1,2且各局胜负相互独立,求:(1)打满3局比赛还未停止的概率;(2)比赛停止时已打局数ξ的分布列与期望()Eξ.22.(本小题满分12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:(1)由以上统计数据填下面22⨯列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;(2)若对年龄在[)[)45,35,15,5的被调查人中各随机选取两人进行调查,记选中的4人中不支持“生育二胎”人数为ξ,求随机变量ξ的分布列及数学期望.参考数据:2016-2017学年高二下学期第二次月考数学答案(实理)一、选择题(5×12=60分) 题号 123456789101112答案A B C A B A C A B C B C二、填空题(5×4=20分) 13.20914. 17(1)6;(2)22522577108153602--==x x C T . 试题分析:(1)先由只有第六项的二项式系数最大求出10=n ,再利用通项进行求解;(2)设第1+r T 项的系数最大,利用⎪⎩⎪⎨⎧≥≥++--1110101110102222r r r r r r r r C C C C 进行求解. 试题解析:(Ⅰ)由题意可知:162n+=,10=∴n . 251010221010122r rr rr r rr xC xxC T ---+==∴,),100(N r r ∈≤≤且要求该展开式中的有理项,只需令Z r ∈-2510, ∴10,8,6,4,2,0=r ,所有有理项的项数为6项.(Ⅱ)设第1+r T 项的系数最大, 则⎪⎩⎪⎨⎧≥≥++--1110101110102222r r r r r r rrC C C C ,即⎪⎪⎩⎪⎪⎨⎧+≥--≥121011112r r r r , 解得:322319≤≤r ,N r ∈ ,得7=r . ∴展开式中的系数最大的项为22522577108153602--==xx C T .18(1)115;(2)186;(3)4320.,19.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14。
(2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115。
综上知,X 的分布列为X 0 1 2 P715715115故EX =0×715+1×715+2×115=35(个)。
20解 (1)依题意知ξ的可能取值为20,0,-10,ξ的分布列为η20 0-10P351515E (ξ)=20×35+0×15+(-10)×15=10.22、解析:本题12分) 解:(Ⅰ)2乘2列联表年龄不低于45岁的人数年龄低于45岁的人数合计 支持 3a = 29c = 32 不支持 7b =11d =18 合 计104050………………………………………………2分()()()()2250(311729) 6.27372911329711K ⨯⨯-⨯=≈++++<6.635…………………4分所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.………………………………………………5分 (Ⅱ)ξ所有可能取值有0, 1,2,3, ………………………6分22842251062884(0),1045225C C P C C ζ==⋅=⨯=()211128824422225105104286161041,10451045225C C C C C P C C C C ζ==⨯+⨯=⨯+⨯=()1112282442222251051041661352,10451045225C C C C C P C C C C ζ==⨯+⨯=⨯+⨯=124222510412(3),1045225C C P C C ζ==⋅=⨯=……………………10分所以ξ的分布列是ξ0 1 2 3P84225 104225 35225 2225所以ξ的期望值是0.2252252255E ζ=+++=………………………12分。