三甘醇脱水
- 格式:ppt
- 大小:5.28 MB
- 文档页数:109
三甘醇脱水汽提气的原理嘿,朋友们!今天咱来唠唠三甘醇脱水汽提气的原理。
你说这三甘醇脱水汽提气啊,就像是一场奇妙的魔术表演!想象一下,三甘醇就像是一个神奇的魔法师,它能把那些混杂在天然气里的水分给揪出来。
咱先说说这个脱水的过程吧。
天然气呼呼地跑过来,里面带着好多小水珠呢。
这时候三甘醇就上场啦,它呀,就像个超级吸水手,一把就把那些水分给抓住了,让天然气变得干干爽爽的。
这多厉害呀!那汽提气又是咋回事呢?这就好比给三甘醇这个魔法师加了一把助力。
汽提气就像一阵风,呼呼地吹过去,把三甘醇抓住的水分更彻底地给吹走啦,让三甘醇能更好地继续工作。
你看,这是不是很有意思?就像我们生活中,有时候需要一些助力来让事情变得更完美。
三甘醇脱水汽提气的原理虽然听起来有点复杂,但其实仔细想想,不就是这么回事嘛!这整个过程,就像是一个精巧的机器在运作。
每个部分都有它的作用,缺了谁都不行呢!三甘醇努力地吸着水,汽提气在旁边帮忙,它们一起合作,让天然气变得纯净又好用。
而且啊,这个原理在很多地方都大有用处呢!没有它,那些天然气可就没办法好好地为我们服务啦。
它就像是一个默默工作的小英雄,虽然我们平时可能不太注意到它,但它却一直在为我们的生活贡献着力量。
咱再想想,如果没有三甘醇脱水汽提气,那会怎么样呢?天然气里全是水,那可怎么用啊,管道会不会被弄坏呀?哎呀,真是不敢想!所以说呀,这个原理可太重要啦!总之呢,三甘醇脱水汽提气的原理虽然不是我们日常生活中能直接看到的,但它却在背后起着至关重要的作用。
它让我们能用上干净的天然气,让我们的生活更加便利。
我们可真得好好感谢这个神奇的原理和那些为此努力工作的人们啊!原创不易,请尊重原创,谢谢!。
天然气三甘醇脱水一体化集成装置工艺运行参数优化前言三甘醇溶剂吸收法进行天然气脱水,是天然气工业中应用较为广泛的脱水方法。
通过对脱水工艺流程各参数优化,制定定量和变量进行分析、模拟,在满足外输天然气气质要求的前提下,优选出最佳运行参数,达到降本增效、绿色运行的目的。
1、三甘醇脱水系统工艺流程在天然气进入三甘醇脱水装置脱水前,游离水经前端分离器分离,基本完成分离,三甘醇脱水的主要目的是将天然气中的饱和水脱除,使得天然气达到外输水露点要求。
1.1三甘醇脱水流程含饱和水的湿天然气从三甘醇吸收塔下部进入,与从塔顶下来的三甘醇贫液逆流接触,以脱除天然气中的饱和水,脱水后的净化气经塔顶丝网除雾除去大于5μm的三甘醇液滴后由塔顶部出塔。
干天然气出塔后,经过套管式气液换热器与进塔前的热贫甘醇换热,降低贫三甘醇进塔温度。
1.2三甘醇再生部分贫三甘醇由塔上部进入吸收塔,由上而下与由下而上的湿天然气充分接触,吸收天然气饱和水,形成三甘醇富液。
三甘醇富液从吸收塔下部流出,经三甘醇循环泵进入精馏柱换热盘管,加热至35~60℃后进入闪蒸罐,闪蒸分离出溶解在富液中的烃气体。
三甘醇从闪蒸罐下部流出,依次进入滤布过滤器和活性炭过滤器。
通过滤布过滤器除去富甘醇中5μm以上的固体杂质;通过活性炭过滤器吸附掉富液中的部分重烃及三甘醇再生时的降解物质。
经过滤后的三甘醇富液进入贫富液换热器,与三甘醇贫液换热升温至130℃~160℃后进入精馏柱。
在精馏柱中,通过精馏段、塔顶回流及塔底重沸的综合作用,使三甘醇富液中的水份及很小部分烃类分离出塔。
塔底重沸温度为190℃~204℃,三甘醇重量百分比浓度可达98.5%~99.0%。
重沸器中的三甘醇贫液经贫液汽提柱,溢流至重沸器下部三甘醇缓冲罐,在贫液汽提柱中可由引入汽提柱下部的热干气对贫液进行汽提,经过汽提后的贫甘醇重量百分比浓度可达99.8%。
三甘醇贫液经过缓冲罐外壁的冷却,温度降至170℃左右出缓冲罐,进入贫富液换热器,与三甘醇富液换热,温度降至55~65℃左右进三甘醇循环泵,由三甘醇循环泵增压后进套管换热器与外输气换热至25~45℃进入吸收塔循环利用。
三甘醇脱水流程及设备原理三甘醇脱水是指将三甘醇中的水分脱除,使其达到一定的干燥程度的过程。
三甘醇是一种重要的有机化工原料,广泛应用于化妆品、食品添加剂、医药、合成树脂等领域。
在许多应用中,要求三甘醇的含水量低于0.5%,因此进行脱水是必要的。
1.预处理:将原始的三甘醇经过过滤、脱色等预处理步骤,去除其中的杂质和颜色。
2.加热:将经过预处理的三甘醇加热至一定温度。
加热过程中,会将水分蒸发出来,使其与三甘醇分离。
3.蒸汽分离:将蒸发出的水分与部分三甘醇一起通过蒸汽分离器分离。
蒸汽分离器通常采用板式或塔式结构,水分和三甘醇在其中进行传质与相互分离。
4.冷却:将分离得到的三甘醇冷却至室温,使其凝结并收集。
加热器通常采用蒸汽加热的方式,通过蒸汽的热量将三甘醇加热至一定温度。
加热器内部通常采用管束或板式结构,使蒸汽与三甘醇充分接触,提高加热效果。
蒸汽分离器是三甘醇脱水过程中的关键设备。
其主要原理是利用蒸馏的原理,通过蒸汽的传质作用将水分从三甘醇中分离出来。
蒸汽分离器的结构通常是多级塔板或塔壁,其中包括上下塔头、塔板或塔壁间隔、塔板孔板等部件。
蒸汽分离器内部的结构设计和操作条件,如塔板孔板的孔径和排列方式、蒸汽和三甘醇的进出口位置等,对分离效果有重要影响。
冷却器用于将分离得到的三甘醇冷却至室温,并使其凝结为液体。
冷却器通常采用换热设备,如管壳式换热器或冷却塔,通过将三甘醇与冷却介质进行热量交换,使其温度降低。
此外,三甘醇脱水流程中还需要配套的控制系统,对加热温度、蒸汽流量、冷却介质温度等进行监测和调节,以保证脱水过程的稳定性和效果。
总之,三甘醇的脱水过程主要包括预处理、加热、蒸汽分离和冷却。
脱水设备主要包括加热器、蒸汽分离器和冷却器等。
脱水过程的效果和设备的设计与操作条件密切相关,需要经过一定的试验和优化,以实现高效的脱水效果。
天然气三甘醇脱水工艺摘要:天然气必须经过脱水处理,达到GB17820—2018《天然气》规定的管输天然气指标后,方可进行管输。
常用的天然气脱水工艺主要有三种:溶剂吸收法脱水、吸附法脱水和低温法脱水。
海洋平台多采用甘醇吸收法脱水和低温法脱水来控制海底管道中天然气的水露点。
其中,三甘醇吸收脱水因具有能耗小、操作费用低、占地面积小等优点,在海上平台应用比较广泛。
三甘醇脱水工艺作为一种成熟且常用的天然气处理工艺,其流程及设备基本已经固化。
对目前渤海油田某海上平台所使用的三甘醇脱水装置进行分析后,发现三甘醇脱水装置仍有进一步优化的可行性。
通过优化工艺流程和设计参数,替代高投资的板壳式换热器,可实现降本增效。
关键词:天然气;三甘醇;脱水系统;工艺;技术引言我国是能源消费大国,能源消费较低,石油和天然气严重依赖于外部,现有能源结构面临着巨大的环境压力,迫切需要能源转换和能源优化,未来30年,天然气和非再生能源的状况将大幅改善,中国的能源消费正在发生质的变化,因为天然气是丰富、清洁、高效、可获得、可接受的良好能源,支持天然气开发和天然气改革是推动我国生产和燃料消费革命的关键步骤。
1三甘醇脱水系统工艺技术的主要内容目前,最常用的方法仍是溶剂吸收法脱水,其吸收原理是采用一种亲水的溶剂与天然气充分接触,使水传递到溶剂中从而达到脱水的目的。
利用甘醇进行吸收脱水,投资少,压降小,可连续操作,且补充甘醇容易,再生脱水需要的热量少,脱水效果好.迄今为止,在天然气脱水工业中已经有四种甘醇被成功应用,分别是乙二醇(EG)、二甘醇(DEG)、三甘醇(TEG)和四甘醇(TREG)。
其中三甘醇脱水具有再生容易,贫液质量分数高(可达98%-99%),露点降大,运行成本低等特点,因此得到了广泛应用。
2存在问题三甘醇富液在流出吸收塔时,需经过调节阀降压,使三甘醇富液压力控制在400kPa左右。
虽然操作压力很低,但为了保证设备及管道的安全性,仍然将吸收塔三甘醇富液出口至闪蒸罐间设备的设计压力与吸收塔的设计压力保持一致,设计压力为8100kPa。
高含硫天然气集气站三甘醇脱水工艺对比高含硫天然气是指硫化氢(H2S)含量高于0.1%(体积分数)的天然气。
由于硫化氢是一种有毒气体,并且会对环境和设备造成严重的腐蚀,因此需要对高含硫天然气进行处理。
脱硫是最常见的处理方法之一,可以通过各种不同的工艺来实现。
本文将对高含硫天然气集气站中三甘醇脱硫工艺进行对比。
三甘醇脱硫工艺是目前广泛应用于高含硫天然气处理的一种方法。
它的工作原理是利用三甘醇与硫化氢的化学反应。
三甘醇可以与硫化氢反应生成硫化物盐,并且是一个可逆反应。
在反应过程中,一部分硫化氢被吸收并转化为硫化物盐,从而降低了天然气中的硫化氢含量。
与其他脱硫工艺相比,三甘醇脱硫工艺具有以下优点:2. 适用性广:三甘醇脱硫工艺适用于各种高含硫天然气,无论是在含硫气体的浓度还是其它组分方面都有着很强的适应性。
3. 设备简单:相比其他脱硫工艺,三甘醇脱硫工艺的设备相对简单,操作容易,运行成本较低。
与三甘醇脱硫工艺相对应的也存在一些不足之处:1. 三甘醇的选择性较低:三甘醇在与硫化氢反应的过程中,也会与一些其他成分发生反应,例如二甲基二硫醚等。
这些反应不仅会减少三甘醇的利用效率,还会增加后续处理的难度。
2. 硫化物盐处理问题:三甘醇脱硫工艺生成的硫化物盐需要进行处理,以防止硫化物盐的堆积和堵塞设备。
三甘醇脱硫工艺在高含硫天然气处理中应用广泛,具有高效、适用性广等优点。
也需要注意其选择性较低和硫化物盐的处理问题。
综合考虑经济性、环保性和实施难度等因素,选择合适的脱硫工艺对于高含硫天然气集气站的正常运行至关重要。
三甘醇脱水计算1、设计基础资料及数据进站压力:7.0 MPa.g进站温度:40 ℃处理规模:400×104 m3/d干气外输压力:大于6.0 MPa.g原料气组成见表1。
表1 原料气组成(干基)2、设备选型及工艺计算脱水单元中,主要的设备有原料气进料分离器、吸收塔、三级过滤器、贫富液换热器、再生塔、甘醇循环泵。
(1)分离器1)进料分离器进料分离器从天然气中脱除游离态液体的分离器。
因来气中含水很少,采用过滤式分离器,过滤式分离器分成两部分,上游部分装设过滤管,下游装捕雾器。
含微量和固体杂质的气体由外向内通过过滤管时,分出杂质并使雾状油滴聚结成较大油滴,和入口分离室的液体汇合流入集液罐内,气体则通过捕雾器后流出分离器。
这种分离器能脱除100%粒径大于2μm的油滴和99%粒径大于0.5μm的油滴。
其具体选型应咨询厂家。
2)甘醇闪蒸分离器由规范知,甘醇闪蒸分离器的作用是脱除富甘醇富液中夹带的天然气及凝液,以减少结焦和气泡。
分离器还可捕集甘醇中闪蒸出的天然气和甘醇-天然气驱动泵排放的废气。
当处理的气体量相比液体量很少时,应按液体的停留时间来确定甘醇闪蒸分离器的尺寸;当气体量很大时,可以按气液分离器来计算甘醇闪蒸分离器的尺寸。
表2 甘醇闪蒸分离器基础数据由表2可以看出,气体处理量相比液体处理量来说很小,所以在计算甘醇闪蒸分离器时应按液体的停留时间来确定。
三甘醇闪蒸分离器优先选用卧式两相分离器。
甘醇闪蒸分离器根据液体停留时间确定尺寸大小,公式如下:r 02e 4t Q mL D =π式中 D —闪蒸分离直径,m 。
t r —停留时间,min ,此处取10 min 。
m —液体流通面积与分离器横截面积之比,无因次。
此处取m=0.5,即液位控制在0.5D 处。
L e —重力沉降区的有效长度,一般取分离器圆筒部分的0.75倍。
Q 0—液体处理量,m 3/h 。
由HYSYS 模拟得基础数据(表2)得:m 0.795603.143104.468838Q 33r 0=⨯⨯⨯⨯==πt D因闪蒸罐压力为0.55MPa ,为低压,所以此处选长径比为3。