2.4 粒子数守恒
- 格式:ppt
- 大小:192.50 KB
- 文档页数:11
量子力学中要用到的数学知识大汇总第一章矩阵1.1矩阵的由来、定义和运算方法1.矩阵的由来2.矩阵的定义3.矩阵的相等4.矩阵的加减法5.矩阵和数的乘法6.矩阵和矩阵的乘法7.转置矩阵8.零矩阵9.矩阵的分块1.2行矩阵和列矩阵1.行矩阵和列矩阵2.行矢和列矢3.Dirac符号4.矢量的标积和矢量的正交5.矢量的长度或模6.右矢与左矢的乘积1.3方阵1.方阵和对角阵2.三对角阵3.单位矩阵和纯量矩阵4.Hermite矩阵5.方阵的行列式,奇异和非奇异方阵6.方阵的迹7.方阵之逆8.酉阵和正交阵9.酉阵的性质10.准对角方阵11.下三角阵和上三角阵12.对称方阵的平方根13.正定方阵14.Jordan块和Jordan标准型1.4行列式求值和矩阵求逆1.行列式的展开/doc/4b14802796.html,place展开定理3.三角阵的行列式4.行列式的初等变换及其性质5.利用三角化求行列式的值6.对称正定方阵的平方根7.平方根法求对称正定方阵的行列之值8.平方根法求方阵之逆9.解方程组法求方阵之逆10.伴随矩阵11.伴随矩阵法求方阵之逆1.5线性代数方程组求解1.线性代数方程组的矩阵表示2.用Cramer法则求解线性代数方程组3.Gauss消元法解线性代数方程组4.平方根法解线性代数方程组1.6本征值和本征矢量的计算1.主阵的本征方程、本征值和本征矢量2.GayleyHamilton定理及其应用3.本征矢量的主定理4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换1.线性变换的矩阵表示2.矢量的酉变换3.相似变换4.等价矩阵5.二次型6.标准型7.方阵的对角化参考文献习题第二章量子力学基础2.1波动和微粒的矛盾统一1.从经典力学到量子力学2.光的波粒二象性3.驻波的波动方程4.电子和其它实物的波动性——de Broglie关系式5.de Broglie波的实验根据6.de Broglie波的统计意义7.态叠加原理8.动量的几率——以动量为自变量的波函数2.2量子力学基本方程——Schrdinger方程1.Schrdinger方程第一式2.Schrdinger方程第一式的算符表示3.Schrdinger方程第二式4.波函数的物理意义5.力学量的平均值(由坐标波函数计算)6.力学量的平均值(由动量波函数计算)2.3算符1.算符的加法和乘法2.算符的对易3.算符的平方4.线性算符5.本征函数、本征值和本征方程6.Hermite算符7.Hermite算符本征函数的正交性——非简并态8.简并本征函数的正交化9.Hermite算符本征函数的完全性10.波函数展开为本征函数的叠加11.连续谱的本征函数12.Dirac δ函数13.动量的本征函数的归一化14.Heaviside阶梯函数和δ函数2.4量子力学的基本假设1.公理方法2.基本概念3.假设Ⅰ——状态函数和几率4.假设Ⅱ——力学量与线性Hermite算符5.假设Ⅲ——力学量的本征状态和本征值6.假设Ⅳ——态随时间变化的Schrdinger方程7.假设Ⅴ——Pauli互不相容原理2.5关于定态的一些重要推论1.定态的Schrdinger方程2.力学量具有确定值的条件3.不同力学量同时具有确定值的条件4.动量和坐标算符的对易规律5.Hesienberg测不准关系式2.6运动方程1.Heisenberg运动方程——力学量随时间的变化2.量子Poisson括号3.力学量守恒的条件4.几率流密度和粒子数守恒定律5.质量和电荷守恒定律6.Ehrenfest定理2.7维里定理和HellmannFeynman定理1.超维里定理2.维里定理3.Euler齐次函数定理4.维里定理的某些简化形式5.HellmannFeynman定理2.8表示论1.态的表示2.算符的表示3.另一套量子力学的基本假设参考文献习题第三章简单体系的精确解3.1自由粒子1.一维自由粒子2.三维自由粒子3.2势阱中的粒子1.一维无限深的势阱2.多烯烃的自由电子模型3.三维长方势阱4.圆柱体自由电子模型3.3隧道效应——方形势垒1.隧道效应2.Schrdinger方程3.波函数中系数的确定(E>V0)4.贯穿系数与反射系数(E>V0)5.能量小于势垒的粒子(E<V0)3.4二阶线性常微分方程的级数解法1.二阶线性常微分方程2.级数解法3.正则奇点邻域的级数解法4.若干二阶线性微分方程3.5线性谐振子和Hermite多项式1.线性谐振子2.幂级数法解U方程3.谐振子能量的量子化4.Hermite微分方程与Hermite多项式5.Hermite多项式的递推公式6.Hermite多项式的微分式定义——Rodrigues公式7.Hermite多项式的母函数展开式定义8.谐振子的波函数——Hermite正交函数9.矩阵元的计算参考文献习题第四章氢原子和类氢离子4.1Schrdinger方程1.氢原子质心的平移运动2.氢原子中电子对核的相对运动3.氢原子作为两个质点的体系4.坐标的变换5.变量分离6.球坐标系7.球坐标系中的变量分离8.Φ方程之解9.θ方程之解10.R方程之解11.能级4.2Legendre多项式1.微分式定义2.幂级数定义3.母函数展开式定义和递推公式4.母函数的展开5.正交性6.归一化4.3连带Legendre函数1.微分式定义2.递推公式3.正交性4.归一化4.4laguerre多项式和连带Laguerre函数1.母函数展开式定义2.微分式定义3.级数定义4.积分性质5.连带Laguerre多项式和连带Laguerre函数6.连带Laguerre多项式的母函数展开式定义7.连带Laguerre多项式的级数定义8.连带Laguerre函数的积分性质4.5类氢原子的波函数1.类氢原子的波函数2.氢原子的基态3.径向分布4.角度分布5.电子云的空间分布6.波函数的等值线图和立体表示图参考文献习题第五章角动量和自旋5.1角动量算符1.经典力学中的角动量2.角动量算符3.对易规则4.Hamilton算符与角动量算符的对易规则5.三??算符具有相同本征函数的条件6.角动量的本征函数5.2阶梯算符法求角动量的本征值1.角动量算符的对易规则2.阶梯算符的性质3.阶梯算符的作用4.角动量的本征值5.3多质点体系的角动量算符1.经典力学中多质点体系的角动量2.总角动量算符及其对易规则3.多电子原子的Hamilton算符的对易规则5.4电子自旋1.电子自旋2.假设Ⅰ——自旋角动量算符的对易规则3.假设Ⅱ——单电子自旋算符的本征态和本征值4.电子自旋的阶梯算符5.自旋算符的矩阵表示6.假设Ⅲ——自由电子的g因子参考文献习题第六章变分法和微扰理论6.1多电子体系的Schrdinger方程1.原子单位2.多电子分子的Schrdinger方程3.BornOppenheimer原理4.多电子体系的Schrdinger方程举例5.多电子体系的Schrdinger方程的近似解法6.2变分法1.最低能量原理2.变分法3.氦原子和类氦离子的变分处理(一)4.氦原子和类氦离子的变分处理(二)5.激发态的变分原理6.线性变分法7.变分法的推广6.3定态微扰理论1.非简并能级的一级微扰理论2.基态氦原子或类氦离子3.简并能级的一级微扰理论4.微扰法在氢原子中的应用5.二级微扰理论6.4含时微扰理论与量子跃迁1.含时微扰理论2.光的吸收与发射3.激发态的平均寿命4.光谱选律5.偶极强度与吸收系数的关系参考文献习题第七章群论基础知识7.1群的定义和实例1.群的定义2.群的几个例子3.乘法表和重排定理4.同构和同态7.2子群、生成元和直积1.子群2.生成元3.直积7.3陪集、共轭元素和类1.陪集/doc/4b14802796.html,grange定理3.共轭元素和类4.置换群的类7.4共轭子群、正规子群和商群1.共轭子群2.正规子群(自轭子群)3.商群和同态定理7.5对称操作群1.对称操作2.操作的乘积3.对称操作群4.共轭对称元素系,同轭对称操作类和两个操作可对易的条件5.生成元、子群和直积7.6分子所属对称群的确定1.单轴群2.双面群3.立方体群4.分子对称群的生成元和生成关系5.晶体学点群6.分子所属对称群的确定参考文献习题第八章群表示理论8.1对称操作的矩阵表示1.基矢变换和坐标变换2.物体绕任意轴的旋转,Euler角3.对称操作的矩阵表示4.函数的变换8.2群的表示1.群表示的定义2.等价表示和特征标3.可约表示和不可约表示,不变子空间4.Schur引理5.正交关系6.正交关系示例7.投影算符和表示空间的约化8.直积群的表示9.实表示和复表示8.3表示的直积及其分解1.表示的直积2.对称积和反对称积3.直积表示的分解4.ClebschGordan系数8.4某些群的不可约表示1.循环群2.互换群3.点群4.回转群5.旋转群6.双值表示8.5群论在量子化学中的应用1.态的分类和谱项2.能级的分裂3.时间反演对称性和Kramers简并4.零矩阵元的鉴别和光谱选律5.矩阵元的计算,不可约张量方法6.久期行列式的劈因子7.不可约表示基的构成8.杂化轨道的构成9.轨道对称性守恒原理这些可是爱考的专业课老师(如果俺考研成功她可就是俺滴学姐啦)珍藏不外漏的当年的笔记啊。
粒子流密度和粒子数守恒定律粒子流密度和粒子数守恒定律,这听起来可能有点复杂,但其实就像你在家里做饭一样,得把材料掌握好,才能做出美味的菜。
想象一下,厨房里有各种食材,米饭、菜、肉,都要在锅里好好地翻炒。
你要把每一种食材的数量搞清楚,才能做出色香味俱全的佳肴。
粒子流密度就像这些食材,粒子数则是你要放进去的份量。
想要掌控这两者的关系,就得了解它们是怎么在空间里分布的,简直就是科学的美味大餐!咱们首先得聊聊“粒子流密度”这个概念。
就像你在公园里散步,遇到的人越多,感觉就越热闹。
相反,如果人少,那就显得冷清得很。
粒子流密度就是描述单位面积上有多少粒子,就像说在某个地方有多少小朋友在玩耍一样。
粒子越多,流动就越活跃,整个环境也就显得生机勃勃,反之亦然。
想象一下,如果在一个超市里,顾客排队像长龙一样,那肯定得等得心烦意乱,呼叫小天使来给你送饮料了。
粒子流密度也是这个道理,太密集了会导致拥挤,太稀疏了又会让人觉得冷清。
咱们再说说“粒子数守恒定律”。
哎,听到这个,可能大家会想,啥叫守恒啊?这就像你家里的零食,不管你吃多少,只要没去买,剩下的就是守恒的数量。
粒子数守恒定律告诉我们,无论粒子怎么流动,它们的总数量是不会变的。
你可以想象成一个永不消失的魔术。
无论在什么情况下,这些小家伙总是默默守护着自己的数量,不会无缘无故消失。
就像在派对上,虽然人来人往,但总有那么几个人坚守在舞池,保持着热闹的氛围。
这两个概念联系起来,便构成了一个美妙的科学现象。
试想一下,咱们在河边钓鱼,水面上漂浮着的那一抹光线,正是因为水流中有着无数的小粒子在起舞。
你放下钓线,越是有鱼上钩,水中粒子的流动就越活跃。
每当你收线的时候,不仅能感受到鱼的挣扎,实际上你也是在体验粒子流动的过程。
虽然在你的鱼竿上似乎只有一条鱼,但水中的粒子数量依然是保持不变的,这种平衡感就像生活中的点滴快乐,令人陶醉。
这个守恒定律不仅仅局限于鱼塘。
无论是在星空下,还是在我们身边的空气中,粒子的流动都在悄然发生。
§2.1 波函数的统计解释一.波动-粒子二重性矛盾的分析物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误?实物粒子波长很短,一般宏观条件下,波动性不会表现出来。
到了原子世界(原子大小约1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。
传统对波粒二象性的理解:(1)物质波包会扩散,电子衍射,波包说夸大了波动性一面。
(2)大量电子分布于空间形成的疏密波。
电子双缝衍射表明,单个粒子也有波动性。
疏密波说夸大了粒子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。
在经典概念下,粒子和波很难统一到一个客体上。
二.波函数的统计解释1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。
波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。
几率波的概念将微观粒子的波动性和粒子性统一起来。
微观客体的粒子性反映微观客体具有质量,电荷等属性。
而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。
描述经典粒子:坐标、动量,其他力学量随之确定;描述微观粒子:波函数,各力学的可能值以一定几率出现。
设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x到x+dx、y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体积和强度归一化条件:在整个空间找到粒子的几率为1。
归一化常数可由归一化条件确定重新定义波函数,叫归一化的波函数。
在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几率称为几率密度,用表示,则归一化的波函数还有一不确定的相因子;只有有限时才能归一化为1。
经典波和微观粒子几率波的区别:(1)经典波描述某物理量在空间分布的周期变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来四倍,就变成另一状态了;而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,将几率波的波幅增大一倍并不影响粒子在空间各点出现的几率,即将波函数乘上一个常数,所描述的粒子的状态并不改变;(3)对经典波,加一相因子,状态会改变,而对几率波,加一相因子不会引起状态改变。
量子力学中的宇称守恒定律1.引言1.1 概述量子力学是描述微观世界的理论框架,它在物理学领域发挥着重要的作用。
宇称守恒是其中一个重要的概念,它在量子力学的研究中扮演着关键角色。
宇称守恒定律是指在物理系统中,宇称变换下的对称性是保持不变的。
简单来说,宇称指的是对于空间的左右镜像对称性,通过镜子观察物体,其反射出的像与实物相似。
量子力学中的宇称守恒定律探讨了系统在宇称变换下的性质是否保持不变。
量子力学基础知识是理解宇称守恒定律的前提。
我们需要了解量子力学中的波函数、哈密顿量、态矢量等概念。
通过对这些概念的理解,我们可以更好地探索宇称守恒定律在物理系统中的应用。
本文将介绍宇称操作符在量子力学中的重要性。
宇称操作符是指对量子态进行宇称变换的操作符,它可以描述系统在宇称变换下的变化规律。
我们将探讨宇称操作符的定义、性质以及在量子力学中的应用。
通过深入研究量子力学中的宇称守恒定律,我们可以更好地理解物理系统在宇称变换下的行为。
宇称守恒定律为我们研究物质的性质和相互作用提供了重要的理论依据。
进一步研究宇称守恒定律对于推动量子力学的发展具有重要的意义。
在接下来的文章中,我们将详细介绍量子力学的基础知识以及宇称操作符的相关内容。
通过分析现有的实验证据和理论推导,我们将探讨量子力学中宇称守恒定律的具体应用和意义。
最后,我们将总结宇称守恒定律在量子力学中的重要性,并展望未来在这一领域的研究方向。
希望通过本文的撰写,读者们能够对量子力学中的宇称守恒定律有更深入的理解,并进一步探索这一领域的前沿问题。
文章结构部分应该包括作者对整篇文章的大体安排和组织的描述。
下面是文章1.2文章结构部分的一个可能的内容:1.2 文章结构本文总共分为三个主要部分:引言、正文和结论。
每个部分都有具体的目的和内容,旨在全面介绍量子力学中的宇称守恒定律。
在引言部分,我们将提供对宇称守恒定律的概述,介绍宇称操作符的基本概念,并阐明本文的目的。
我们将解释为什么宇称守恒定律是量子力学中一个重要的问题,并简要概括本文的主要内容。