中职高中一年级数学期中测试题(卷)
- 格式:doc
- 大小:155.50 KB
- 文档页数:6
中专一年级下学期期中数学测试题一.选择题.(''40104=⨯)1.集合{}1|-≤x x 的区间表示为( )A ),1(+∞-B ),1[+∞-C )1,(--∞D ]1,(--∞2.将164=x化成对数式可表示为( )A x =4log 16B 16log 4=xC 4log 16=xD x =16log 4 3.不等式3|12|≥-x 的解集为( )A ]2,1[-B )2,1(-C ),2()1,(+∞--∞D ),2[]1,(+∞--∞ 4.已知函数)(x f 在R 上是减函数,则( )A )5()4(f f <B )2()2(f f <-C )1()2(f f >-D )5()2(->-f f 5.函数12+=x y 的图像是( ).A 直线B 抛物线C 线段D 射线 6.在函数32-=x y 图像上的点是( )A (1,1)B (1,-3)C (0,3) D(2,1) 7. 3232∙=( )A 36B 72C 108D 3248.已知nm⎪⎭⎫⎝⎛>⎪⎭⎫⎝⎛2121,则下列正确的是( ) A n m < B n m > C n m = D n m ≥ 9.计算=31log3( )A -2B -1C 1D 2 10.下列函数属于对数函数的是( )A x y -=2B x y )2(log -= C x y 2log= D x y 1log =二.填空题.(''2054=⨯)1.设b a <,则2+a 2+b ,a 2- b 2-。
2.已知12)(2+=x x f ,则=-)2(f _______。
3.点(-2,4)关于x 轴的对称点的坐标为 ,关于y 轴的对称点的坐标为 。
4. 计算:(1) =8log 2 ,(2) =2ln e 。
5.若1222->m m 成立,则m 的取值范围是 。
三.解答题(40分) 1.解不等式0822≤-+x x2. 求下列函数的定义域:(1)11)(-=x x f ,(2)82)(-=x x f3.讨论函数1)(2-=x x f 的奇偶性。
高一年级《数学》试卷一、单项选择题。
(本大题共12小题,每小题4分,共48分)1、设}3|{≤=x x M ,22=a ,则 ( ) A .M a ⊂ B .M a ∉ C .M a ∈}{ D .M a ⊂}{2、已知集合{|04,},{|(2)(4)0}A x x x N B x x x =≤≤∈=--=,则A B = ( ) A 、{2}B 、{4}C 、{2,4}D 、{0,4}3、已知A={x ∣x >3},B={}72<<x x ,则A ∩B 是 ( ) A .{}73<<x x B .{}32<<x x C .{x ∣x >2} D .{x ∣x >3}4、x-2=0是(x-2)(x+3)=0的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不是充分条件,也不是必要条件5、已知集合A={}12≥-x x ,B={}2>x x ,则=B A ( ) A .{}32≤<x x B. {}21<≤x x C. {}2>x x D.{}3≥x x 6、已知R c b a ∈,,,那么 ( ) A .22bc ac b a >⇒> B .b a cbc a >⇒> C .b a ab b a 110,33<⇒>> D .ba ab b a 110,22<⇒>> 7、不等式的(x-2)(2x-3)<0解集是 ( ) (A )),2()23,(+∞-∞ (B )R (C )(23,2) (D ) φ 8、3212-+=x x y 的最小值是 ( )A .-3B .213- C .3 D .2139、在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系,如果购买2000吨,每吨价格为300元,如果购买3000吨,每吨价格200元,一客户购买400吨,单价应是 ( ) A .460元 B .480元 C .560元 D .580元10、不等式0412≤++bx x 的解集为空集,则 ( )A .1<bB .1->b 或1<bC .11<<-bD .1>b 或1-<b11、若0<k ,0<b ,则直线b kx y +=不通过 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12、下面函数中与函数x y =是同一函数是 ( ) A . 2x y = B .33x y = C .()2x y =D .xx y 2= 二、填空题。
《中职高一数学期中考试》试题★注意事项:1、本试题分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题),满分150分,考试时间90分钟;2、请将第Ⅰ卷(选择题)得答案填写到第3页答题卡上。
第Ⅰ卷(选择题,共60分)一、选择题(本大题共15题,每题4分,共60分)1、60-︒角得终边在 ()、A 、第一象限B 、第二象限C 、第三象限D 、第四象限2.与角30︒终边相同得角就是 ( )、A 、60-︒B 、390︒C 、-300︒D 、390-︒ 3、已知A (-1,3),AB (6,-2),则点B 得坐标为( )A 、(5,1)B 、(-5,-1)C 、(-7,5)D 、(7,-5) 4、角α得终边经过点P (4,-3),则tan α得值为( )A 43-B 34-C 34D 43 5、cos(﹣60°)=( )A B ﹣ C D ﹣6、如果α就是锐角,那么2α就是( )。
A 、第一象限角 B 、第二象限角 C 、小于180°得正角 D 、不大于直角得正角7、已知函数y= -5+4cosX ,则函数得最大值就是( )。
A 、 1 B 、 -1 C 、-5 D 、-98、下列说法正确得有( )个。
①零向量长度为0,方向不确定;②单位向量就是长度为1得向量;③相等向量就是长度相等得向量;④平行向量就是共线向量,方向相同或相反; ○5相反向量得模相等。
A 、 1 B 、2 C 、3 D 、49、已知向量)3,2(-与)1,1(-,则-2得坐标为( ) A 、)5,3(- B 、)7,5(- C 、)7,3(- D 、)5,5(-得分 阅卷10、已知点A (-1,8),B (2,4),则ABu u u r= ( )。
A 、 5B 、 25C 、 13D 、11、下列说法错误得就是( )A 、零向量与任一向量平行B 、零向量得方向就是任意得C 、单位向量得方向与坐标轴方向相同D 、单位向量具有无数个 12. 求值5cos1803sin902tan06sin 270︒-︒+︒-︒=( ) A -2 B 2 C 3 D -313、如图,设===AB b OB a OA 则,, ( )A .b a +B .b a -C .b a +-D .b a -- 14、设O 为正三角形ABC 得中心,则、、就是( )。
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √9B. √16C. √25D. √22. 若x = -3,则代数式3x + 2的值是()A. -7B. -5C. 7D. 53. 已知函数f(x) = 2x - 1,若f(x) = 3,则x的值为()A. 2B. 1C. 0D. -14. 在直角坐标系中,点P(-2, 3)关于y轴的对称点坐标是()A. (-2, -3)B. (2, 3)C. (2, -3)D. (-2, 3)5. 若a, b是方程x² - 3x + 2 = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 56. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10的值为()A. 19B. 21C. 23D. 257. 在三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 60°C. 45°D. 30°8. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是()A. 24cm³B. 48cm³C. 72cm³D. 96cm³9. 已知函数f(x) = -x² + 4x - 3,则f(2)的值为()A. 1B. 3C. 5D. 710. 在下列各式中,正确的是()A. (a + b)² = a² + 2ab +b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²二、填空题(每题5分,共50分)1. 若a = 2,b = -3,则a² + b² = ________。
中职高一数学期中试题一、选择题(共6小题,每小题5分,共30分)(1)下列各组对象能构成集合的是()A.与π无限接近的数; B. {1,1,2};C. 所有的坏人;D.平方后与自身相等的数。
(2)下列结论:① -12∈R;②√2∈Q;③∣-3∣∈N*;④ 2∈{(-1,2)};⑤{x/x2-9=0}={3,-3};⑥ 0∈φ其中正确的个数为()个。
A.2 B. 3 C. 4 D.5(3)下列说法中,不正确的是()①φ={0};②若A⊆B,B⊆C,则A⊆C;③空集是任何一个集合的真子集;④自然数集合中的元素都是正整数中的元素。
A.①③;B.①④;C.③④;D.①③④(4)下列结论中,正确的是()①若x∈A,则x∈(A ∪B );②{x/x2+1=0}∩A=φ;③若A∩B=φ,则A=φ或B=φA.①②;B.①③;C.②③;D.①②③。
(5)“a<5”的一个必要不充分条件是()A. a<3;B. a<6;C. a=5;D. a>5.(6)下列三个结论中正确结论的序号为()①方程x2+4x+4=0的所有实数根组成的集合用列举法可以表示为{-2,+2};②设全集U=R,集合A={x/2≤x<4}则Сu A={x/x<2或x≥4};③已知集合A与B,则“A⊆B”是“A∩B=A”的充要条件。
A.①②;B. ①③;C. ②③;D.①②③。
二、填空题(共4 小题,每小题6分,共24分)(7)、已知集合A={x/x2-5x+6=0},B={x/mx+6=0}并且B⊆A,则实数m的值为。
(8)、若集合A={x/x2+6x+c=0}={m}则m的值为(9)、若集合A={x/1≤x≤3},B={x/x>2}则A∩B=(10)、已知集合A={(x ,y)/2x+y=3}与集合B={(-1,5),(0,3)},则集合A与B的关系为三、解答题(共3个题,每小题12分,共36分)(11)、已知全集U=R,集合A={x/-3≤x≤1}集合B={x/x≤0或x>3}.求①СU (A⋃B);②(СUA)∩B.(12)、解答下列问题.①已知集合A={(x,y)/4x+y=6},B={(x,y)/3x+2y=7}求A∩B.②已知集合A={x/x是小于13的质数},请用列举法把集合A表示出来。
一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. 3.14B. √2C. 0.1010010001...D. 3/52. 已知函数f(x) = 2x + 1,那么f(-3)的值为()A. -5B. -7C. 5D. 73. 下列各式中,等式正确的是()A. 3x + 2 = 2x + 5B. 2x - 3 = 2(x - 1)C. 3(x + 2) = 3x + 6D. 2(x + 3) = 2x + 6 + 34. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)5. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = 2x + 1C. f(x) = |x|D. f(x) = x^36. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 27. 已知a > b,那么下列不等式中正确的是()A. a + b > b + aB. a - b > b - aC. ab > baD. a/b > b/a8. 下列各式中,是等差数列通项公式的是()A. an = 3n + 2B. an = 2n^2 + 1C. an = 3n + 1D. an = n^2 + 2n9. 下列各式中,是等比数列通项公式的是()A. an = 2^nB. an = 3n - 1C. an = n^2D. an = n + 110. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且f(0) = 1,f(1) = 2,f(2) = 3,那么a的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 若sinα = 1/2,且α在第二象限,则cosα的值为______。
2. 若x^2 - 5x + 6 = 0,则x的值为______。
中等职业学校高一下数学期中综合小测试一、单项选择题1.过原点且与圆(x-3)2+y2=16相切的动圆圆心轨迹是()A.双曲线B.椭圆C.双曲线的一支D.抛物线2.已知A(4,7),B(-1,2),则直线AB与两坐标轴围成的三角形面积为()A.3B.9C.32D.923.双曲线x2-y2=-4的顶点坐标是()A.(0,±1)B.(0,±2)C.(±1,0)D.(±2,0)4.若方程(2m2+m -3)x +(m2-m )y -4m +1=0表示直线,则( )A.m ≠0B.m ≠32C.m ≠1D.m ≠1且m ≠-325.经过点P (2,-1)的抛物线的标准方程是()A.y2=12x 或y2=4xB.x2=-4yC.y2=12x 或x2=-4yD.y2=-4x6.直线y =x +b 与曲线x有且只有一个交点,则b 的取值范围是( )A.{b |-1<b ≤1}B.{b |-1<b ≤1或bC.{b |-1≤b <1}D.{b |-1≤b <1或b7.双曲线2212516x y -=的焦点坐标是( )A.0)B.0) C.)或(-0)D.(0,08.0),a =5,b =2的双曲线方程是( ) A.221254y x -= B.221254x y -= C.221299y x -= D.221299x y -= 9.以直线y=±x 为渐近线,一个焦点为F (0,2)的双曲线的标准方程为( )A.x22-y22=1B.y22-x22=1C.x24-y24=1D.y24-x24=110.已知圆x2+y2=2和圆x2+y2-2x -1=0,则这两圆的位置关系是( )A.相交B.外切C.内切D.相离11.由直线y =x +1上的一点向圆(x -3)2+y2=1引切线,则切线长的最小值为( )A.1B.2 2C.7D.312.抛物线y =x2上的点到直线2x -y =4的距离最短的点的坐标是( ) A.1124⎛⎫ ⎪⎝⎭, B.(1,1) C.3922⎛⎫ ⎪⎝⎭, D.(2,4)13.直线y =x +m 与双曲线29x -24y =1只有一个交点,则m 的值为( )A.5B.±514.若点A (a ,2),B (6,b )关于点M (4,-1)对称,则a +b 等于( )A.-2B.2C.-4D.615.已知椭圆的短轴长为2,中心与抛物线y2=4x 的顶点重合,椭圆的一个焦点恰好是抛物线的焦点,则椭圆方程为( )A.y22+x2=1B.x22+y2=1C.y24+x2=1D.x24+y2=116.以点(-2,4)为圆心的圆,若有一条直径的两端分别在两坐标轴上,则该圆的方程是( )A.(x +2)2+(y -4)2=10B.(x +2)2+(y -4)2=20C.(x -2)2+(y +4)2=10D.(x -2)2+(y +4)2=2017.有一抛物线型拱桥,当水面离拱顶2米时,水面宽4米,则水面下降1米后,水面宽度为多少米( )C.4.5D.918.椭圆x220 +y2m =1(0<m<20)的两个焦点分别为F1,F2,直线l 过F2且与椭圆交于M ,N 两点,则△F1MN 的周长为( )A.20B.4 5C.8 5D.与m 的值有关19.若A·B>0,则直线Ax +By +C =0的倾斜角的取值范围是( )A.[0,π)B.022πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭,, C.2ππ⎡⎫⎪⎢⎣⎭, D.2ππ⎛⎫ ⎪⎝⎭, 20.经过圆x2+y2=9内的点M (1,2)的最短弦所在的直线方程是( )A.2x -y +4=0B.x +2y -5=0C.x +2y -3=0D.2x -y =0二、填空题 21.已知抛物线y2=4x 与椭圆有公共的焦点F2,求m= .22.直线y=x+b 交抛物线y=12x2于A,B 两点,O 为抛物线的顶点,OA ⊥OB,则实数b 的值为 .23.以椭圆x225+y29=1的右顶点为焦点的抛物线的标准方程为 . 2219x y m +=24.已知等轴双曲线过点(4,3),则其标准方程为 .25.圆x2+y2+6xcos α-6ysin α=0的半径是 .26.+y-2022=0的倾斜角的弧度数为 .27.若点P (a,3)到直线4x-3y +1=0的距离为4,则a= .三、解答题28.求以两条直线l1:3x+2y+1=0,l2:5x-3y-11=0的交点为圆心,且与直线3x+4y-20=0的相切的圆的方程29.已知抛物线的顶点是椭圆x216+y212=1的中心,且与椭圆共焦点,求抛物线的标准方程.30.经过点(0,3),且与双曲线x26-y23=1只有一个公共点的直线有条.31.求抛物线y=-2x2上的点到直线4x -3y +4=0的最小距离.32.已知双曲线的渐近线的方程为y,且和椭圆225x +223y =1共焦点,求双曲线的方程及离心率.33.已知双曲线与椭圆225x +29y =1有公共焦点1F 、2F 它们的离心率之和为145. (1)求双曲线的标准方程及渐近线方程;(2)设点P是双曲线与椭圆的一个交点,求cos∠F1PF2的值.34.设直线2x+3y-8=0与x+y-2=0交于点M.(1)求以点M为圆心,3为半径的圆的方程;(2)动点P在圆M上,O为坐标原点,求|PO|的最大值.35.过点(-1,3)的直线l与圆O:x2+y2-4x-2y-20=0相交于A,B两点,且A,B两点的距离为8.(1)求圆的圆心和半径;(2)求直线l的方程.答案一、单项选择题1.B2.D3.B4.C5.C【提示】设抛物线方程为y2=2px或x2=2py,将点P(2,-1)代入方程中,得p=14或p=-2.故抛物线方程为y2=12x或x2=-4y.6.B【分析】由x=3得x2+y2=1(x≥0),所以,这个曲线是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限,如图,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,-1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得b =.y =x +b 经过点(0,1)时,b =1.当直线y =x +b 经过点(0,-1)时,b =-1,所以此时-1<b ≤1.综上满足只有一个公共点的实数b 的取值范围是:-1<b ≤1或b =4,故选B.7.C 【提示】因为2212516x y -=中a2=25,b2=16,所以c2=a2+b2=41,410),故选C.8.B 【提示】由题意知方程是221254x y -=,故选B. 9.B 【提示】等轴双曲线c =2,∴2a2=4,∴a2=b2=2,∴方程为y2-x2=2.10.A 【提示】圆x2+y2=2和圆x2+y2-2x -1=0的圆心和半径分别为O1(0,0),O2(1,0),r12r22|O1O2|=1,r2-r1=0<1<22r2+r1,所以两圆相交.11.C 【解析】圆心(3,0)到直线x -y +1=0的距离为d =|3+1|2=22,则最小切线长为l 22d r -=8-1=7.12.B 【解析】设点(x0,x20)到直线2x -y -4=0的距离d213x -+x0=1时,d 最大=355,此时点坐标为(1,1).13.D14.A 【提示】⎩⎪⎨⎪⎧a +62=4,2+b 2=-1,得⎩⎪⎨⎪⎧a =2,b =-4,∴a +b =-2. 15.B 【提示】焦点为(1,0),∴c =1,2b =2,∴b =1,∴a2=b2+c2=1+1=2,∴椭圆方程为x22+y2=1.16.B17.B18.C 【提示】椭圆焦点在x 轴上,a =2 5 .由椭圆定义,|MF1|+|MF2|=2a ,|NF1|+|NF2|=2a.C △F1MN =|MF1|+|MN|+|NF1|=|MF1|+|MF2|+|NF2|+|NF1|=4a =8 5 .19.D 【提示】由A·B>0,可知直线斜率k<0.故选D.20.B 【提示】∵过圆内一点的最短弦与该点及圆心的连线垂直,圆心O(0,0),kOM =2,∴所求直线方程为y -2=-12 (x -1),即x +2y -5=0.故选B.二、填空题21.822.223.y2=20x24.=1【解析】设x2-y2=λ,点(4,3)代入得λ=7,∴双曲线的标准方程为=1. 25.3【提示】圆的标准方程为(x +3cos α)2+(y -3sin α)2=9,故圆的半径为3. 26.23π 27.-3或7三、解答题28.(x-1)2+(y+2)2=2529.解:焦点坐标为(±2,0).①当焦点坐标为(2,0)时,p 2=2⇒p =4,∴抛物线的标准方程为y2=8x.②当焦点坐标为(-2,0)时,p 2=2⇒p =4,2277x y -2277x y -∴抛物线的标准方程为y2=-8x.30.431.解:设抛物线上点为(x0,-2x20),则它到直线4x -3y +4=0的距离d =|4x0+6x20+4|5=65(x0+13)2+23,∴当x0=-13时,dmin =23. 32.24x -212y =1,e =233.解:(1)椭圆的焦点(±4,0),则双曲线的焦点也是(±4,0),e 椭圆=45,e 双曲线=145-45=2,∴c =4,4a=2,得a =2,则b24x -212y =1,渐近线方程为y(2)由椭圆、双曲线定义可得1212104PF PF PF PF ⎧+=⎪⎨-=⎪⎩,得1237PF PF ⎧=⎪⎨=⎪⎩或1273PF PF ⎧=⎪⎨=⎪⎩,又∵12F F =2c =8,∴cos ∠F1PF2=222378273+-⨯⨯=-17. 34.解:(1)由题意,联立方程组7解得8即M (-2,4).又∵半径r =3,∴所求圆的方程为(x +2)2+(y -4)2=9.(2)如图所示,|OM|=(0+2)2+(0-4)2=20=2 5.设射线OM 的延长线与⊙M 交于点P*,则|OP|≤|OM|+|MP|=|OP*|=3+25,∴当动点P 与P*重合时,|OP|最大,此时|OP|最大=3+2 5.35.解:(1)由题意得圆的标准方程为(x -2)2+(y -1)2=25,∴圆心坐标(2,1),半径r =5.(2)直线的斜率存在时,设直线l 的方程:y -3=k (x +1),即kx -y +3+k =0.圆心到直线l 的距离d =|2k -1+3+k|k2+1=|3k +2|k2+1, 又∵A ,B 的距离为8,∴8=225-d2,解得d =3,∴|3k+2|k2+1=3,解得k=512.直线的方程为5x-12y+41=0,直线的斜率不存在时,x=-1也满足.综上,所求直线l的方程为5x-12y+41=0或x+1=0.。
高一职高期中考试数学试题高一职高期中考试数学试题本次考试共分为选择题和解答题两部分,共计150分。
考试时间为120分钟。
选择题部分(共90分,每小题2分)1. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像经过点(1,2)和(-1,4),则a,b,c的值依次是()。
A. 3,-3,0B. -3,-7,0C. -3,3,3D. -3,1,02. 下列关于复数i的描述中,正确的是()。
A. i^2 = 1B. i^2 = -1C. i^2 = 0D. i^2 = i3. 正方体的一个顶点是一个产生点,一个产生点到原点的距离为r,则正方体的体积为()。
A. r^3B. r^2C. r^4D. r^64. 下列不等式中,正确的是()。
A. √6 < √7B. -1/4 < -1/5C. -5 > -6D. √8 > √95. 在平面直角坐标系上,x轴上的两点A和B的坐标分别是(-3, 0)和(0, 2),则以A、B为顶点的正方形的面积为()。
A. 1 B. 2 C. 3 D. 4解答题部分(共60分)1. 解方程:2x^2 - 5x + 2 = 02. 已知二次函数y = ax^2 + bx + c的图像经过点(-1, 2),且在x = 1处取得最大值3,求a,b,c的值。
3. 一枚硬币中正反两面同时出现的概率均为1/2、两面都为正面的概率是1/4,则该枚硬币出现反面的概率是多少?4. 计算:(3√5 + 2√3)^2 + (√7 - √2)^25. 已知直线l过点A(3, -1)和B(1, 2),与直线y = 2x - 1垂直交于点C,求直线l的方程。
参考答案:选择题部分:1. B2. B3. A4. C5. C解答题部分:1. x = 1/2或x = 22. a = 3, b = -5, c = 43. 1/24. 44 + 6√155. y = -1/2x + 5/2。
2016-2017学年 数学 期中测试卷 (三年制中职一年级 第一学期)
(试卷卷面总分100分,考试时间100分钟)
一、 选择题(共10小题,每题3分,共30分) 1. 设{}a M =,则下列写法正确的是( )。
A .M a = B.M a ∈ C. M a ⊆ D.M a ∉ 2. 设全集U ={x|4≤x ≤10,x ∈N },A ={4,6,8,10} 则C u A = ( )。
A . {5} B.{5, 7} C .{5,7,9} D . {7,9 } 3.“a>0且b>0”是“a *b>0”的( )。
A. 充分不必要条件 B.必要不充分条件 C. 充分且必要条件 D.以上答案都不对 4. 如果a>b,c>d, 那么一定有( )。
A. a>b+c-d
B. a>c+d-b
C. a>b-c+d
D. b>a-c+d 5. 已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则 (C u M )∩N =( )。
A .{}4,3,2
B .{}2
C .{}3
D .{}4,3,2,1,0 6、设全集为R ,集合(]5,1-=A ,则 =A C U ( )。
A .(]1,-∞- B.()+∞,5 C.()+∞⋃--∞,5)1,( D. (]()+∞⋃-∞-,51, 7、已知{}2<=x x A ,则下列写法正确的是( )。
A .A ⊆0 B.{}A ∈0 C.A ∈φ D.{}A ⊆0
8、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则A ∪B ( )。
A .{}30<<=x x A B. {}30≤<=x x B C. {}21<<=x x B D. {}30<<=x x B
9、0652=--x x 是6=x 的( )。
A .充要条件 B.充分不必要条件 C .必要不充分条件 D.不充分不必要条件 10、不等式()()031>--x x 的解集是( )。
A.),1(+∞
B.)3,(-∞
C.R
D.),3()1,(+∞⋃-∞
二、填空题(共5小题,每小题2分,共10分)
11、集合{}b a N ,=子集有 个,真子集有 个。
12、元素3-与集合N 之间的关系可以表示为 ;自然数集N 与整数集Z 之间的关系可以表示为 。
13、用描述法表示不等式062<-x 的解集 。
14、用区间表示下列不等式的解集
(1)8362->-x x x ∈ ;(2)012>-x x ∈ 。
15、设a>b,且ab>0,那么a 1
b
1。
三、解答题(共6大题,其中16.17题各8分,18.19题各10分,20.21题各12分,共60分)
16、(8分)比较172+-x x 与152+-x x 的大小。
17、(8分)已知集合A={x ∣06x x 2>--},B={x ∣0<x+a<4},若A ∩B=φ,求实数a 的取值范围。
18、(10分)解下列各不等式(组),并用区间或集合表示解集。
(1)⎩⎨
⎧<->+0
10
4x x (2)0822≥++-x x
19、(10分)当x 为何值时,代数式35-x 的值与代数式 2
7
2-x 的值之差不小于2。
20、(12分)设全集U=R,集合A={x∣x(x-3)>0},B={x∣0
x2≤
-
+},
8
x
6
试求CuA,A∩B, A∪B。
21、(12分)某职业学校计划购买一批电脑,现有甲乙两家销售公司,甲公司的报价是每台5000元,它的优惠条件是购买10台以上,从第11台开始可按报价的70﹪打折;乙公司的报价也是每台5000元,它的优惠条件是无论购买多少台电脑一律按报价的80﹪打折,在电脑的品牌、质量、售后服务条件完全相同前提下,问购买哪家公司的电脑省钱?
参考答案:
一、 选择题
二、填空题
三、解答题
16、①当x >0时,172+-x x <1
52+-x x
②当x <0时,172
+-x x >152
+-x x
③当x=0时,172+-x x =152+-x x
17、 {a ∣1≤a ≤2}
18、 (1){x ∣-4<x <1} (2){x ∣-2≤x ≤4}
19、 4
1
-≤x
20、 (1){x ∣0≤x ≤3} (2) {x ∣3<x ≤4}
(3){x ∣x <0或x ≥2}
21、购买30台的时候,价格一样;
购买30台以上甲公司省钱;
购买30台以下乙公司省钱。