分数除法解决问题(一) 2
- 格式:ppt
- 大小:24.00 KB
- 文档页数:5
人教版六年级数学上册分数乘除法应用题专项练习题一、解题技巧: 一抓, 二找, 三确定, 四对应。
1、抓住关键句——分率句;(含几分之几的句子)2、找准单位“1”的量;(“的” 前 “比” “是” “相当于”后的量) 3确定单位“1”是已知还是未知(已知单位1用乘法,未知单位1用除法或方程) 4、找出相对应的数量与分率,列出算式。
单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 (1)寻找分率对应量例:看了一本书的31。
全书的(31)和( )相对应。
全书的(1-31)和( )相对应。
①育才小学全校共有学生1500人,五年级人数占全校人数的41,六年级人数占全校人数的51,求五、六年级共有学生多少人?②仓库里有若干吨化肥,第一天运出总数的101,第二天运出总数的51,还剩49吨,仓库里原有化肥多少吨?(2)训练写等量关系式:常用的等量关系的标志词有:“是、为、占、相当于、等于、得、比、共 ” ①桃树棵数是梨树的54 ②一班的得分为二班的54③五年级人数占全校人数的41 ④甲相当于乙的52⑤a 的2倍与b 的51的和等于5 ⑥a 的2倍与b 的51的差得5⑦今年比去年增产41⑧美术小组和舞蹈小组共30人 (3)变换单位“1” (先写出数量关系式,再按数量关系式列式计算) ①梨树48棵,桃树的棵树是梨树的56 ,又是苹果树的14,苹果树有几棵?②学校田径队有队员20人,是合唱队人数的56 ,合唱队人数是舞蹈队的43,舞蹈队有多少人?(先写出数量关系式,再按数量关系式列式计算)③食堂有大米53吨,第一天用掉61,是第二天用掉的83,第二天用掉多少吨?三、解决问题(透彻理解分率句的意义,找出相对应的量与率是解答分数应用题的关键) (一)量率对应直接解决问题:1.电视机厂今年生产电视机36000台,相当于去年产量的41,去年生产多少台?2.电视机厂今年生产电视机36000台,比去年少生产41,去年生产多少台?3.电视机厂今年生产电视机36000台,比去年多生产41,去年生产多少台?4.电视机厂今年生产电视机36000台,去年产量是今年的41,去年生产多少台?5电视机厂今年生产电视机36000台,去年产量比今年少41,去年生产多少台?6.电视机厂今年生产电视机36000台,去年产量比今年多41,去年生产多少台 (二)条件转化解决问题1、一辆汽车从甲地开往乙地,已经行了全程的31,离中点还有25千米,甲乙两地相距多少千米?2、一个书架共有三层存书,上层存书数占总数的247,如果从下层拿5本放到上层,这三层存书本数相等。
班级小组姓名成绩(满分120)一、分数除以整数的意义(共4小题,每题3分,共计12分)例1.填一填。
(1)把一筐苹果的85平均分成3份,求每份是这筐苹果的几分之几,就相当于求(58)的(13)是多少。
(2)一个分数的4倍是1,这个分数是(14)。
(3)一张纸的面积是2127dm ,将这张纸平均分成4份,每份是多少平方分米?列式是(7412÷)。
(4)把52千克平均分成3份,求每份是多少,列式是(235÷)。
(5)分数除以整数(0除外),等于分数乘这个整数的(倒数)。
(二)分数除以整数的计算方法例1.变式1.1728728÷⨯=(11501515015÷⨯=(1499459÷⨯=(771716167÷⨯=()例1.变式2.27172⨯()=1515⨯(100.313⨯()=1251512⨯(110.4131813⨯⨯⨯(8)=(2.5)=(例1.变式3.直接写出得数。
54693131÷=91181326÷=63976464÷=7114918÷=82121133÷=111221224÷=二、分数除以整数的计算方法(共4小题,每题3分,共计12分)例2.解方程216=÷x 984=x 717=x 3x =118x =149x =例2.变式1.在○里填上“>”“<”或“=”。
797979⨯>6631111÷<441655÷>55177÷=3994÷<121231313÷<例2.变式2.想一想,列式计算。
(1)一个数的3倍是51,这个数是多少?11÷3515=(2)把258平均分成6份,每份是多少?8462575÷=例2.变式3.一本《童话故事》,小华4天看了这本书的54。
他平均每天看这本书的几分之几?445÷4154⨯=15=答:他平均每天看这本书的15.三、分数除以整数的计算方法(共4小题,每题3分,共计12分)例3.一瓶可乐有53千克,乐乐用了5天喝完,平均每天喝多少千克?合多少克?3313555525÷⨯==(千克)325千克=120克答:平均每天喝325千克,合120克.例3.变式1.王大伯给稻田施肥,8天已经完成稻田的94,平均每天完成稻田的几分之几?还剩几分之几没完成?418918÷=45199-=答:平均每天完成稻田的118,还剩59没完成.例3.变式2.一只花瓶高m 98,是另一只花瓶高度的3倍,另一只花瓶高多少米?991338838÷⨯==(米)答:另一个花瓶高38米.例3.变式3.小明用长m 1312的铁丝围成一个最大的正方体框架。
分数除法应用题大全分数除法是数学中的基础知识之一,它在日常生活中的应用非常广泛。
本文将为大家提供一系列分数除法应用题,旨在帮助读者巩固和运用所学的分数除法知识。
1. 问题描述:班级有60名学生,他们的零食是按每人每天1/4盒。
如果每盒零食共有24个,那么全班同学每天需要多少盒零食?解题步骤:首先计算班级学生总共需要的零食数量,即60人×1/4盒/人/天。
然后将结果除以每盒零食的数量24个。
解答:班级学生每天需要的零食数量为60×1/4=15盒零食。
所以,全班同学每天需要15÷24=5/8盒零食。
2. 问题描述:在一份食谱中,用1/3杯黄油制作一盘饼干。
如果想制作4盘饼干,需要多少杯黄油?解题步骤:首先计算制作一盘饼干所需的黄油数量,即1/3杯/盘。
然后将结果乘以需要制作的盘数4。
解答:制作4盘饼干需要的黄油数量为1/3×4=4/3杯黄油。
3. 问题描述:一辆汽车每小时行驶300公里,需要多长时间才能行驶750公里?解题步骤:首先将行驶的距离750公里除以每小时的速度300公里,得到行驶所需的小时数。
解答:汽车行驶750公里所需的时间为750÷300=2.5小时,即2小时30分钟。
4. 问题描述:小明每天花费1/5的时间做作业,如果他每天有4小时的闲暇时间,那么他每天花多少时间做作业?解题步骤:首先计算小明每天闲暇时间的5分之一,即4小时×1/5。
解答:小明每天花费的时间做作业为4×1/5=4/5小时。
5. 问题描述:一个植物园里有120盆花,其中的2/3盆是玫瑰花。
还剩下多少盆其他种类的花?解题步骤:首先计算玫瑰花的数量,即120×2/3盆。
然后将总盆数减去玫瑰花的数量,得到其他种类花的数量。
解答:其他种类的花数量为120-120×2/3=40盆。
通过以上的分数除法应用题,我们可以看到分数除法在日常生活中的实际运用。
第三章分数除法3.分数除法解决问题【知识梳理】1.“已知一个数的几分之几是多少,求这个数”的问题的解法(1)方程法。
找出单位“1”,设单位“1”的量为x→找出题中的等量关系式→列出方程并解答→检验并写出答数。
(2)算术法。
找出单位“1”→找出已知量和已知量占单位“1”的几分之几→列出除法算式解答问题即“已知量÷已知量占单位“1”的几分之几=单位“1”的量”。
2.“已知一个数的连续几分之几是多少,求这个数”的问题的解法(1)先把这个数看作单位“1”并设为x,再根据“这个数×几分之几×几分之几=已知数”列方程解答。
(2)用算术方法解答。
用已知量连续除以已知量占单位“1”的分率。
3.“已知比一个数多(或少)几分之几的数是多少,求这个数”的问题的解法(1)根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几)=已知量”,设单位“1”的量为x,列方程解答。
(2)先找到题中单位“1”的量,计算出已知量占单位“1”的几分之几,再根据分数除法的意义列除法算式解答。
4.“已知两个数的和(或差)及这两个数的倍数关系,求这两个数。
”的问题的解法(1)设其中一个数为x,根据两个数的倍数关系用含有x的式子表示另一个数。
(2)根据“两个数的和(或差)等于已知量”列方程。
(3)解方程求出x的值,再根据两个数的倍数关系求出另一个数。
5.工程问题的解题方法(1)用分数解决工程问题的解题方法与用整数解决工程问题的解题方法相同,所用数量关系相同,即工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率。
(2)在用分数解决工程问题时,通常没有具体的工作总量,解题时把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一表示工作效率。
【诊断自测】1.填空。
用分数除法解决问题的过程和方法一、工程问题类。
1. 一项工程,甲队单独做需要10天完成,甲队的工作效率是多少?过程:把这项工程的工作量看作单位“1”,根据工作效率 = 工作量÷工作时间,甲队单独做需要10天完成,所以甲队的工作效率为1÷10=(1)/(10)。
解析:在工程问题中,通常将工作量设为单位“1”,工作效率就是单位时间内完成的工作量。
这里用工作量1除以甲队完成工作的时间10天,就得到甲队的工作效率(1)/(10)。
2. 一项工程,甲队单独做12天完成,乙队单独做15天完成。
甲队每天完成这项工程的几分之几?乙队每天完成这项工程的几分之几?过程:甲队:把工程总量看作单位“1”,甲队单独做12天完成,甲队每天完成1÷12 = (1)/(12)。
乙队:同理,乙队单独做15天完成,乙队每天完成1÷15=(1)/(15)。
解析:对于工程问题,用单位“1”除以工作时间就得到工作效率。
这里分别用1除以甲队的工作时间12天和乙队的工作时间15天,得到甲队和乙队每天完成工程的比例(1)/(12)和(1)/(15)。
3. 一项工程,甲队单独做8天完成,乙队单独做10天完成。
甲队的工作效率是乙队工作效率的多少倍?过程:甲队工作效率:1÷8=(1)/(8)乙队工作效率:1÷10=(1)/(10)倍数关系:(1)/(8)÷(1)/(10)=(1)/(8)×10=(5)/(4)解析:先分别求出甲队和乙队的工作效率,然后用甲队的工作效率除以乙队的工作效率,得到倍数关系。
在除法运算中,除以一个分数等于乘以它的倒数,所以(1)/(8)÷(1)/(10)=(1)/(8)×10=(5)/(4)。
二、已知一个数的几分之几是多少,求这个数类。
4. 已知一个数的(2)/(3)是10,求这个数。
过程:设这个数为x,根据题意可得(2)/(3)x = 10,则x=10÷(2)/(3)=10×(3)/(2) = 15。
六年级分数除法解决问题二教学反思一、关于单位“1”的理解。
1. 在分数除法解决问题中,如何帮助学生准确找出单位“1”?- 解析:- 可以通过一些关键词来引导学生,如“是”“占”“比”后面的量通常为单位“1”。
例如“男生人数占全班人数的(3)/(5)”,这里全班人数就是单位“1”。
同时,可以让学生多做一些对比练习,如“甲比乙多(1)/(3)”和“乙比甲少(1)/(3)”,分析这两种表述中单位“1”的不同,加深对单位“1”的理解。
2. 当题目中的单位“1”不明显时,你采用了哪些教学策略?- 解析:- 可以引导学生将题目中的数量关系用线段图表示出来。
例如“修一条路,已经修了全长的(2)/(5),还剩120米,这条路全长多少米?”单位“1”是路的全长,不明显。
通过画线段图,将全长看作单位“1”,平均分成5份,已修的占2份,剩下的占3份是120米,这样就可以直观地找到数量关系。
还可以让学生从问题出发,思考要求的量与已知量之间的关系,从而确定单位“1”。
3. 在教学中,发现学生对单位“1”的判断错误,你认为主要原因是什么?- 解析:- 主要原因一是对表示数量关系的关键词理解不到位,例如把“比”字前后的量弄反。
二是对题目中的情境理解不透彻,不能准确分析出哪个量是作为标准量的单位“1”。
三是缺乏足够的练习,没有形成对单位“1”判断的敏感度。
二、数量关系的分析。
4. 怎样引导学生分析分数除法解决问题中的数量关系?- 首先让学生根据题目中的信息找出单位“1”的量,然后确定已知量和未知量。
例如“一个数的(3)/(4)是12,求这个数”,单位“1”是这个数,已知量是12,它对应的分率是(3)/(4)。
引导学生理解数量关系为:这个数×(3)/(4) = 12,根据除法的意义,这个数 = 12÷(3)/(4)。
可以多采用实例,让学生逐步掌握这种分析方法。
5. 对于较复杂的分数除法问题(如多个数量关系嵌套),如何帮助学生梳理数量关系?- 解析:- 还是从单位“1”入手,先明确每个小的数量关系中的单位“1”。
二、分数除法一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数– 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。