复数和实数域上的多项式
- 格式:ppt
- 大小:451.50 KB
- 文档页数:16
第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h 3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i );13)(,14)(234--=--=x x x g x x x f (ii);23)(,13)(3235+-=-+-=x x x g x x x x f 2.证明:kx f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F 上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++ 5.设F 是一个数域,.F a ∈证明:a x -整除.nn a x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-d x 整除1-nx 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:( i )()();32103,34323234-++=---+=x x x x g x x x x x f (ii) ()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3. 令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F 中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明:(i )h g f ),(是fh 和gh 的最大公因式; (ii )),,,,(),)(,(212121212211g g f g g f f f g f g f = 此处h g f ,,等都是][x F 的多项式。
不可约多项式的判别一个多项式是否可约取决于它的系数所在的域。
下面给出了一些判别不可约多项式的方法。
1. 整数域中的多项式:在整数域中,两个常用的判别方法是Eisenstein 判别法和 Modulus 判别法。
- Eisenstein 判别法:设 P(x) 是一个系数为整数的多项式,且可以表示为 P(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ。
如果存在一个素数 p,满足以下条件:- p 不能整除 aₙ;- p 能整除 a₀, a₁, ..., aₙ₋₁;- p²不能整除 a₀;那么多项式 P(x) 在整数域中是不可约的。
- Modulus 判别法:设 P(x) 是一个系数为整数的多项式,且可以表示为 P(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ。
如果存在一个素数 p,使得 P(x) 在有限域 Zₙ 上可约(即 P(x) 在模 p 的意义下有一个非常数的因子),那么多项式 P(x) 在整数域中是不可约的。
2. 实数域、复数域和有理数域中的多项式:在这些域中,不可约多项式的判别较为简单,只需要使用带余除法进行因子分解判别即可。
带余除法即根据多项式除法的原理,如果存在一个多项式 Q(x)和 R(x),使得 P(x) = Q(x)B(x) + R(x) 并且 R(x) 为零次或者次数小于 B(x) 的多项式。
如果 R(x) 为零次多项式,则 P(x) 是可约的;如果 R(x) 的次数大于等于 1,则 P(x) 是不可约的。
需要注意的是,对于高次多项式,进行带余除法可能会非常复杂,需要借助计算机进行多项式除法运算。
综上所述,对于一个多项式的可约性的判别需要根据具体的域和具体的算法进行分析。
以上只是给出了一些常用的判别方法,实际的判别可能需要更加复杂的计算。
§1-5多项式的因式分解定理多项式44-x 在有理数域、实数域、复数域上的因式分解 ][)2)(2)(2)(2(4][)2)(2)(2(4][)2)(2(4424224x C i x i x x x x x R x x x x x Q x x x +-+-=-++-=-+-=-(不能再分)(不能再分) 在不同的系数域上,具有不同形式的分解式什么叫不能再分平凡因式:零次多项式(不等于零的常数)、多项式自身、前两个的乘积Definition8:(不可约多项式)令][)(x P x f 是的一个次数大于零的多项式,如果][)(x P x f 在中只有平凡因式,就称f(x )为数域P 上(或在P[x]中)的不可约多项式.(p(x)在数域P 上不能表示成两个次数低的多项式的乘积) 若)(x f 除平凡因式外,在P[x]中还有其它因式,f(x )就说是在数域P 上(或在P[x]中)是可约的.如果不是平凡因式)(,)()()(x g x h x g x f =,的次数显然和则)()(x h x g 都小于)(x f 的次数.反之,若)(x f 能写成两个这样多项式的乘积,那么)(x f有非平凡因式;如果P[x]的一个n 次多项式能够分解成P[x]中两个次数都 小于n 的多项式 的乘积和)()(x h x g 即 )()()(x h x g x f 那么)(x f 在P 上可约.由不可约多项式的定义可知:任何一次多项式都是不可约多项式的.不可约多项式的重要性质:一个多项式是否不可约是依赖于系数域;1.如果多项式)(x f 不可约,那么P 中任意不为零的元素c 与)(x f 的乘积c )(x f 都不可约.2.设)(x f 是一个不可约多项式而P(x)是一个任意多项式,那么或者)(x f 与P(x)互素,或者)(x f 整除P(x).3.如果多项式)(x f 与)(x g 的乘积能被不可约多项式P(x)整除,那么至少有一个因式被P(x)整除.Theorem5.如果)(x p 是一个不可约多项式,P(x)整除一些多项式)(,),(),(21x f x f x f s 的乘积,那么)(x p 一定整除这些多项式之中的一个.证明:对被除多项式的个数s 用数学归纳法当s=1时,显然成立;假设s=n-1 时,结论成立;当s=n 时,令)()()()(),()(32211x f x f x f x g x f x g n ==, 如果)(|)(),(|)(11x f x p x g x p 则命题成立,如果1))(),((),(|)(11=/x g x p x g x p 则,从而)(|)(2x g x p ,即)(,),(),()(32x f x f x f x p n 整除 n-1 多项式的乘积,由归纳法假设)(x p 整除其中一个多项式,根据数学归纳法原理,命题得证. 因式分解及唯一性定理:多项式环P[x]的每一个)0(>n n 次多项式)(x f 都可以唯一分解成P[x]的不可约多项式的乘积;)()()()(21x p x p x p x f s =所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==那么,必有s=t ,并且适当地排列因式的顺序后有),2,1()()(s i x cq x p i i ==标准分解式(典型分解式):)()()()(2121x p x p x cp x f s r s r r = 其中c 是f(x)的首项系数,)(),(),(21x p x p x p s 是不同的、首项系数为1的不可约多项式,而s r r r ,,21正整数.例1:在有理数域上分解多项式, 22)(23--+=x x x x f . )2)(1)(1()2)(1(22)(223+-+=-++=--+=x x x x x x x x x x f例2:求 的典型分解式内在][122)(2345x Q x x x x x x f -++--=. 23242345)1()1()12)(1(122)(+-=+--=-++--=x x x x x x x x x x x f 例3.求 的典型内在][6141616102)(2345x R x x x x x x f -+-+-= 分解式. )3()1)(1(2)(22--+=x x x x f例4:分别在有理数域、实数域和复数域上分解多项式 15-x 和16-x 为不可约多项式的乘积.解:)1)(1()1(2345++++-=-x x x x x x Q[x]][)154cos 2)(152cos 2)(1()1)(1()1(222345x R x x x x x x x x x +-+--=++++-=-ππ][)52sin 52cos ()1()1)(1()1(412345x C k i k x x x x x x x x k ππ---=++++-=-=在Q[x]上)1)(1)(1)(1()1)(1()1(22336+-+++-=+-=-x x x x x x x x x ; 在R[x]上)1)(1)(1)(1()1)(1()1(22336+-+++-=+-=-x x x x x x x x x ; 在C[x]上)2321)(2321)(1)(2321)(2321)(1(16i x i x x i x i x x x -++++--+--=-。