高等代数域的例子,复数域的构造
- 格式:pdf
- 大小:111.14 KB
- 文档页数:16
复数域上的因式分解定理高等代数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!复数域上的因式分解定理高等代数引言在高等代数中,复数域上的因式分解定理是一项重要的理论,它为我们理解多项式在复数域上的因式分解提供了基础。
第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
1.1.2 数域的定义定义(数域)设K 是某些复数所组成的集合。
如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有b a K a b K K b ab ∈≠∈/0时,,且当,∈±为一个数域。
,则称K 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {i |∈Q },其中i =b a +b a ,1−。
命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素0≠∈a K a ,且。
于是K aaK a a ∈=∈−=10,。
进而Z ,∈∀m 0>K m ∈+……++=111。
最后,Z ,∈∀n m ,0>K n m ∈,K nmn m ∈−=−0。
这就证明了Q ⊆K 。
证毕。
1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设是集合,与S A B 的公共元素所组成的集合成为与A B 的交集,记作B A ∩;把和B 中的元素合并在一起组成的集合成为与A A B 的并集,记做B A ∪;从集合中去掉属于A B 的那些元素之后剩下的元素组成的集合成为与B 的差集,记做。
A B A \定义(集合的映射) 设、A B 为集合。
如果存在法则,使得中任意元素在法则下对应f A a f B 中唯一确定的元素(记做),则称是到)(a f f A B 的一个映射,记为).(,:a f a B A f a →如果B b a f ∈=)(,则称为在下的像,a 称为在下的原像。
的所有元素在下的像构成的b a f b f A f B 的子集称为A 在下的像,记做,即f )A (f {}A a f A f ∈a =|)()(。
高等代数课本笔记及其例题详解第一章 多项式1.1 数域定义1.1(数域):设P 是由一些复数组成的集合,其中包括0与1. 如果P 中任意两个数(这两个数也可以相同)的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.即:设{}C x x P ∈=,P b a ∈∀,,其中0≠a 且P ∈0,1都有P abab b a b a ∈-+,,,,称P为一个数域. (注:Z 表示全体整数;R 表示全体实数;C 表示全体复数;Q 表示全体有理数;N 表示全体自然数;)例题1. 设(){}Q b a b a Q ∈+=,22证明:()2Q 是一个数域. 证明:1)()22000,2011Q ∈+=+=(其中:Q ∈1,0)2)Q d c b a ∈∀,,,有()()()2222Q d b c a d c b a ∈+++=+++(其中: Q d b c a ∈++,);()()()2222Q d b c a d c b a ∈-+-=+-+(其中:Q d b c a ∈--,); ()()()()()22222Q bc ad bd ac d c b a ∈+++=++(其中:Q bc ad bd ac ∈++,2); 若02≠+b a ,有()22222222222Q b a bcad b a bd ac b a d c ∈--+--=++(其中:Q b a bc ad b a bd ac ∈----22222,22,且0222≠-b a ). 2Q ∴是一个数域.例题2. 证明:()()⎭⎬⎫⎩⎨⎧==∈∈++++++=+m j n i Z b a N n m b b b a a a P j i mm n n ,,0;,,0,,,1010 πππππ是一个数域.证明:1) ()πππππP m n ∈++++++=0010011 , ()πππππP mn∈++++++=0000000 2) 显然该集合的和、差、积封闭;若商不封闭,得()πππππππππP d d d c c c b b b a a a tt ss m m n n ∈++++++≠+++++ 101101010,0,得 ()πππππππππππππππππP a a a b b b d d d c c c b b b a a a d d d c c c n n mm t t s s m n n t t s s ∉++++++⋅++++++=++++++++++++ 1010101010101010,这与该集合的积封闭的结论矛盾,故()πP是一个数域.注:最小的数域为有理数域,任何数域都包含有理数域.1.2 一元多项式定义 1.2.1(一元多项式) 设n 是一非负整数. 形式表达式011a x a x a n n n n +++-- ,其中∈n a a a ,,,10 数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式. (注:i i x a 称为i 次项; i a 称为i 次项的系数. )定义1.2.2 (多项式相等)如果在多项式()x f 与()x g 中,除去系数为零的项外,同次项的系数全相等,那么()x f 与()x g 就称为相等,记为()()x g x f =. 系数全为零的多项式称为零多项式,记为0. (注:若0≠n a ,则n n x a 称为多项式的首项;n a 称为首项系数; n 称为多项式的次数,记为()()x f ∂; 零多项式是唯一不定义次数的多项式. ) 性质1.2.1 ()()()()()()()()x g x f x g x f ∂∂≤±∂,max .性质1.2.2 ()()()()()()()x g x f x g x f ∂+∂=⋅∂(其中()0≠x f 且()0≠x g ). 运算规律:1. 加法交换律:()()()()x f x g x g x f +=+.2. 加法结合律:()()()()()()()()x h x g x f x h x g x f ++=++.3. 乘法交换律:()()()()x f x g x g x f =.4. 乘法结合律:()()()()()()()()x h x g x f x h x g x f =.5. 乘法对加法的分配律:()()()()()()()()x h x f x g x f x h x g x f +=+.6. 乘法消去律:如果()()()()x h x f x g x f =且()0≠x f ,那么()()x h x g =.定义1.2.3 (一元多项式环)所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为[]x P ,P 称为[]x P 的系数域.1.3 整除的概念性质1.3.1 (带余除法)对于[]x P 中任意两个多项式()x f 与()x g ,其中()0≠x g ,一定有[]x P 中的多项式()()x r x q ,存在,使()()()()x r x g x q x f +=成立,其中()()()()x g x r ∂<∂或者()0=x r ,并且这样的()()x r x q ,是唯一决定的. (注:()x q 通常称为()x g 除()x f 的商;()x r 称为()x g 除()x f 的余式)定义1.3.1(整除)数域P 上的多项式()x g 称为整除()x f ,如果有数域P 上的多项式()x h 使等式()()()x h x g x f =成立. 我们用“()()x f x g ”表示()x g 整除()x f ,用“()x g ()x f ”表示()x g 不能整除()x f .(注:当()()x f x g 时,()x g 就称为()x f 的因式;()x f 称为()x g 的倍式.)定理1.3.1 对于数域P 上的任意两个多项式()()x g x f ,,其中()0≠x g ,()()x f x g 的充分必要条件是()x g 除()x f 的余式为零. 整除性的常用的性质:1. 如果()()x g x f ,()()x f x g ,那么()()x cg x f =,其中0≠c .2. 如果()()x g x f ,()()x h x g ,那么()()x h x f (整除的传递性).3. 如果()()x g x f i ,r i ,,2,1 =,那么()()()()()()()x g x u x g x u x g x u x f r r +++ 2211其中()x u i 是数域P 上的任意的多项式.(注:()()()()()()x g x u x g x u x g x u r r +++ 2211称为多项式()()()x g x g x g r ,,,21 的一个组合.) 注:两个多项式之间的整除关系不因为系数域的扩大而改变.1.4 最大公因式定义 1.4.1(最大公因式)设()()x g x f ,是[]x P 中两个多项式. []x P 中多项式()x d 称为()()x g x f ,的一个最大公因式,如果它满足下面两个条件:1)()x d 是()()x g x f ,的公因式;2)()()x g x f ,的公因式全是()x d 的因式.(注:两个零多项式的最大公因式就是0) 引理1.4.1 如果有等式()()()()x r x g x q x f +=成立,那么()()x g x f ,和()()x r x g ,有相同的公因式.定理 1.4.1 对于[]x P 中任意两个多项式()()x g x f ,,在[]x P 中存在一个最大公因式()x d ,且()x d 可以表成()()x g x f ,的一个组合,即有[]x P 中多项式()()x v x u ,使()()()()()x g x v x f x u x d +=.(注:两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的;()()()x g x f ,表示首项系数为1的公因式.) 辗转相除法:例题3. 设()343234---+=x x x x x f ,()3210323-++=x x x x g 求()()()x g x f ,,并求()()x v x u ,使()()()()()()()x g x v x f x u x g x f +=,. 解:即:()()()()()()131092595913112x r x q x g x x x x g x f +=⎪⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛-=310925952---x x即:()()()()()()22793109259595272212x r x q x r x x x x x g +=++⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛+-=. ()()()327981108153109259521 +⎪⎭⎫⎝⎛--=---=x x x x x r()()()3,+=∴x x g x f .将(1)代入(2)式可得:()()35251532+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎭⎫⎝⎛-x x g x x x f x ()()525,1532x x x v x x u +-=-=∴就有()()()()()()()x g x f x g x v x f x u ,=+.定义1.4.2(互素)[]x P 中两个多项式()()x g x f ,称为互素(也称互质)的,如果()()()1,=x g x f .定理 1.4.2 []x P 中两个多项式()()x g x f ,称为互素的充要条件是有[]x P 中的多项式()()x v x u ,使()()()()1=+x g x v x f x u .定理1.4.3 如果()()()1,=x g x f ,且()()()x h x g x f ,那么()()x h x f .推论1.4.3.1 如果()()x g x f 1,()()x g x f 2,且()()()1,21=x f x f ,那么()()()x g x f x f 21.推广:定义1.4.3 ()x d 称为()()()()2,,,21≥s x f x f x f s 的一个最大公因式,如果()x d 具有下面的性质:2) ()()s i x f x d i ,,2,1, =;3) 如果()()s i x f x i ,,2,1, =ϕ,那么()()x d x ϕ.(注:符号()()()()x f x f x f s ,,,21 表示首项系数为1的最大公因式.)性质1.4.1()()()()()()()()()()x f x f x f x f x f x f x f s s s ,,,,,,,21121 =-性质1.4.2 ()()()()()()()()()()x f x f x f x f x u x f x u x f x u s s s ,,,212211 =+++,其中 ()()()[]x P x u x u x u s ∈,,,21 .性质1.4.3 ()()()()()()()[],,,,1,,,2121x P x u x u x u x f x f x f s s ∈∃⇔=()()()()()()1:2211=+++x f x u x f x u x f x u st s s .1.5 因式分解定理定义1.5.1(不可约多项式) 数域P 上次数的多项式()x p 称为域上的不可约多项式,如果它不能表示成数域P 上的两个次数比()x p 的次数低的多项式的乘积(注:一个多项式是否是不可约是依赖于系数域的).性质1.5.1 ()x p 在数域[]x P 是不可约多项式,()[]x P x f ∈∀,()()x p x f 当且仅当()0≠=c x f 或()()x cp x f =.即:对于()[]x P x f ∈∀,有()()x f x p 或者()()()1,=x f x p . 定理1.5.1 如果()x p 是不可约多项式,那么对于任意的两个多项式()()x g x f ,,由()()()x g x f x p 一定推出()()x f x p 或者()()x g x p .定理1.5.2(定理1.5.1的推广) 如果()x p 是不可约多项式,若()()()(),21x f x f x f x p s 则()()()(){}x f x f x f x f s i ,,,21 ∈∃使得()()x f x p i .定理1.5.3(因式分解及唯一性定理)数域P 上每一个次数1≥的多项式()x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式()()()()()()()x q x q x q x p x p x p x f s s 2121==,那么必有t s =,并且适当排列因式的次序后有()()s i x q c x p i i i ,,2,1, ==,其中()s i c i ,,2,1 =是一些非零常数.(注:()()()()x p x p x cp x f s r s r r 2121=的分解称为标准分解式;已知两个多项式()()x g x f ,的标准分解式,那么()x f 与()x g 的最大公因式()x d 就是那些同时在与的标准式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在()x f 与()x g 中所带的方幂中的较小的一个.)1.6 重因式定义1.6.1(k 重因式)不可约多项式()x p 称为多项式()x f 的k 重因式,如果()()x f x p k ,而()x p k 1+ ()x f .(注:0=k 时,()x p 不是()x f 的因式;1=k 时,()x p 是()x f 的单因式;1≥k 时,()x p 是()x f 的重因式.)定义1.6.2(微商)设有多项式()0111a x a x a x a x f n n n n ++++=-- .我们规定它的微商(也称导数)是()()1211'1a x n a nx a x f n n n n ++-+=--- . 性质1.6.1 :1)()()()()()x g x f x g x f '''+=+2)()()()x cf x cf ''=,3)()()()()()()()x g x f x g x f x g x f '''+=,4)()()()()()x f x f m x f m m '1'-=.定义1.6.3(高阶微商)微商()x f '称为()x f 的一阶微商;()x f '的微商()x f ''称为的二阶()x f 微商;等等.()x f 的k 阶微商记为()()x f k .(注:()()n x f =∂ο,则()()c x f n =,()()01=+x f n .)定理1.6.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么它是微商()x f '的1-k 重因式.推论1.6.1.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么()x p 是()()()()x f x f x f k 1''',,,- 的因式,但不是()()x f k 的因式.推论1.6.1.2 不可约多项式()x p 是()x f 的重因式的充分必要条件为()x p 是()x f 与()x f ' 的公因式.推论 1.6.1.3 多项式()x f 没有重因式的充分必要条件是()x f 与()x f '互素.(注:辗转相除法可用于求解重因式;()()()()x f x f x f ',是一个没有重因式的多项式与()x f 有完全相同的不可约因式.)1.7 多项式函数定义1.7.1(多项式函数)设()()10111 a x a x a x a x f n n n n ++++=--是[]x P 中的多项式,α是P 中的数,在()1中用α代x 所得的数0111a a a a n n n n ++++--ααα 称为()x f 当α=x 时的值,记为()αf .这样一来,多项式就定义了一个数域上的函数.定理1.7.1(余数定理)用一次多项式α-x 去除多项式()x f ,所得的余式是一个常数,这个常数等于函数值()αf .(注:其中()0=αf 时,α=x 是()x f 的一个根或者零点.) 推论1.7.1.1 α是()x f 的根的充分必要条件是()()x f x α-.定义1.7.2(重根)α称为()x f 的重根,如果()α-x 是()x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理1.7.2 []x P 中n 次多项式()0≥n 在数域P 中的根不可能多于n 个,重根按重数计算. 定理1.7.3 如果多项式()()x g x f ,的次数都不超过n ,而它们对1+n 个不同的数121,,,+n ααα 有相同的值,即()()1,,2,1,+==n i g f i i αα,那么()()x g x f =.1.8 复系数与实系数多项式的因式分解定理1.8.1(代数基本定理)每个次数1≥的复系数多项式在复数域中有一根(即:复数域上所有次数大于1的多项式全是可约的.).定理1.8.2(复系数多项式的分解定理)每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.(复系数多项式的标准分解式:()()()()s ls lln x x x a x f ααα---= 2121,其中C s ∈≠≠≠ααα 21,+∈Z l l l s ,,,21 )定理1.8.3 如果α是实系数多项式()x f 的复根,那么α的共轭数α也是()x f 的根. 定理1.8.4(实系数多项式因式分解定理)每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积(即是说:实数域上只含有一次不可约多项式和含二次共轭复根不可约多项式).1.9 有理系数多项式定理 1.9.1 每个次数1≥的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积.定义1.9.1(本原多项式)如果一个非零的整系数多项式()011b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于的公因子,也就是说,它们是互素的,它就称为一个本原多项式.(任意一个非零的有理系数多项式()x f 都可以表示成一个有理数r 与一个本原多项式()x g 的乘积:()()x rg x f =)定理1.9.2(高斯(Gauss )引理)两个本原多项式的乘积还是本原多项式.定理1.9.3 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.推论1.9.3.1 设()()x g x f ,是整系数多项式,且()x g 是本原的. 如果()()()x h x g x f =,其中()x h 是有理系数多项式,那么()x h 一定是整系数的.定理1.9.4 设()011a x a x a x f n n n n +++=-- 是一个整系数多项式,而sr 是它的一个有理根,其中s r ,互素,那么必有n a s ,0a r .特别地,如果()x f 的首项系数1=n a ,那么()x f 的有理根都是整根,而且是0a 的因子. 例题4. 求方程032234=-+-x x x 的有理根. 解:令()32234-+-=x x x x f 得:24=a 的因子为:2,1±±30=a 的因子为:1±,3± ()x f ∴的有理根可能为:21±,23±,1±,2±.判别根的方法一:0321≠-=⎪⎭⎫⎝⎛-f (不为()x f 的根,舍弃);0221≠-=⎪⎭⎫⎝⎛f (不为()x f 的根,舍弃); ()021≠-=-f (不为()x f 的根,舍弃); ()01=f (为()x f 的根); 021523≠=⎪⎭⎫ ⎝⎛-f (不为()x f 的根,舍弃); 042723≠=⎪⎭⎫ ⎝⎛f (不为()x f 的根,舍弃);()0332≠=-f (不为()x f 的根,舍弃); ()0252≠=f (不为()x f 的根,舍弃); 1∴为032234=-+-x x x 方程的有理根.方法二:即2-=x 不是方程032234=-+-x x x 的根.…………经带余除法计算可得:1=x 为032234=-+-x x x 方程的有理根.方法三:21 22002-即21=x 不是方程032234=-+-x x x 的根. …………经综合除法计算可得:1=x 为032234=-+-x x x 方程的有理根.定理1.9.5(艾森斯坦(Eisenstein )判别法)设()011a x a x a x f n n n n +++=-- 是一个整系数多项式.如果有一个素数p ,使得1. p n a ;2. 021,,,a a a p n n --;3. 2p 0a .那么()x f 在有理数域上不可约的.例题5.证明()153+-=x x x f 在有理数域上不可约. 证明:依题意可得()x f 的有理根可能为:1±.又()31-=f ,()51-=-f 都不为零1±=∴x 都不是()x f 的有理根,即()x f 在有理数域上不可约的.1.10 多元多项式定义1.10.1(n 元多项式)设P 是一个数域,n x x x ,,,21 是n 个文字. 形式为n k nk k x x ax 2121的式子,其中P a ∈,n k k k ,,,21 是非负整数,称为一个单项式. 由以上一些单项式的和∑nnn k k k k nk k k k k x x x a,,,21212121 就称为n 元多项式,或者简称多项式.(注:若两个单项式中相同文字的幂全一样,那么它们就称为同类项.)定义1.10.2(元多项式环)所有系数在数域P 中的n 元多项式的全体,称为数域P 上的n元多项式环,记为[]n x x x P ,,21.(注:n k k k +++ 21称为单项式n k nk k x x ax 2121的次数;系数不为零的单项式的最高次数就称为这个多项式的次数.多元多项式的排列顺序方法:字典排列法;)定理1.10.1 当()0,,,21≠n x x x f ,()0,,,21≠n x x x g 时,乘积()()n n x x x g x x x f ,,,,,,2121 的首项等于()n x x x f ,,,21 的首项与()n x x x g ,,,21 的首项的乘积.推论1.10.1.1 如果,,,2,1,0m i f i =≠那么m f f f 21的首项等于每个i f 的首项的乘积. 推论1.10.1.2 如果()()0,,,,0,,,2121≠≠n n x x x g x x x f ,那么()()0,,,,,,2121≠n n x x x g x x x f .(两个齐次多项式的乘积是齐次多项式,乘积的次数等于因子的次数的和.)1.11 对称多项式定理1.11.1(一元多项式根与系数的关系)设()n n n a x a x x f +++=- 11是[]x P 中的一个多项式.如果()x f 在数域P 中有个根n ααα,,,21 ,那么就可以分解成()()()()n x x x x f ααα---= 21.将其展开即得根与系数的关系如下:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-+++=+++=-∑-n n n k k k k i in n n a i a a a j i αααααααααααααααα 211312122111121,的乘积之和个不同的所有可能的. 定义1.11.1(对称多项式)n 元多项式()n x x x f ,,,21 ,如果对于任意的n j i j i ≤≤≤1,,,都有()()n i j n j i x x x x f x x x x f ,,,,,,,,,,,,11 =,那么这个多项式称为对称多项式. 定理1.11.2 对于任意一个n 元对称多项式都有一个n 元多项式()n y y y ,,,21 ϕ,使得()()n n x x x f σσσϕ,,,,,,2121 =.(其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=----n n nn n n n n n n x x x xx x x x x x x x x x x x x x x x x x 21322211211131212211σσσσ称为n 元初等对称多项式.)例题6. 把三元对称多项式333231x x x ++表为321,,σσσ的多项式. 解:令()333231321,,x x x x x x f ++=得首项为:31x 对应的有序数对()0,0,3,()()332133323131333231321,,x x x x x x x x x x x x f ++-++=-++=∴σ()132123223132222132122163g x x x x x x x x x x x x x x x =-+++++-=得首项:2213x x 对应的有序数对()0,1,2.()()32123223132222132122132123223132222132122121133633x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x g +++++++-+++++-=+σσ23213g x x x =-=对应数对()1,1,1又0332=+σg ()3213132133,,σσσσ+-=∴x x x f .课后习题1. 用()x g 除()x f ,求商()x q 与余式()x r :1)()1323---=x x x x f ,()1232+-=x x x g ; 解:()9113-=∴x x q ,()99+-=x r . 2)()524+-=x x x f ,()22+-=x x x g解:()12-+=∴x x x q ,()75+-=x x r . 3)()1434--=x x x f ,()132--=x x x g 解:()1032++=∴x x x q ,()929+=x x r . 4)()13235-+-=x x x x f ,()233+-=x x x g . 解:()x g233+-x x22+x()22+=∴x x q ,()562-+=x x x r . 5)()x x x x f 85235--=,()3+=x x g 解:带余除法:()109391362234+-+-=∴x x x x x q ,()()3327-=-=f x r . 6)()x x x x f --=23,()i x x g 21+-=. 解:综合除法:i 21-1 i 2- i 25-- i 89+-()i x r 89+-=∴,()i ix x x q 2522---=. 2. m ,p ,q 适合什么条件时,有 1)q px x mx x ++-+321 解:方法一:带余除法:12-+mx xm x -即:()()m q x p m x r ++++=12,又q px x mx x ++-+321()0=∴x r 可得⎩⎨⎧-==++q m p m 012. 2)q px x mx x ++++2421. 解:方法二:待定系数法:设商为:()c bx x x q ++=2,又由q px x mx x ++++2421可得:()()q px x x q mx x ++=++2421即⎪⎪⎩⎪⎪⎨⎧==+=++=+q c b m c p m b c b m 010.()⎩⎨⎧=-=+-∴0112q m p m q . 3. 把()x f 表成0x x -的方幂和,即表成()() +-+-+22010x x c x x c c 的形式:1)()5x x f =,10=x ;解:辗转相除法:即:()()()111234+++++-=x x x x x x f .即:()()()()[]()()()1154321154321123223+-++++-=+++++--=x x x x x x x x x x x f()()()()[]()()()()()11511063111510631122322+-+-+++-=+-++++--=∴x x x x x x x x x x x f()()()()[])()()()()115110110411151101041123423+-+-+-++-=+-+-+++--=x x x x x x x x x x x f ()()()()()1151101101512345+-+-+-+-+-=x x x x x ()()()()()()1151101101512345+-+-+-+-+-=∴x x x x x x f .2)()3224+-=x x x f ,20-=x 解:综合除法:2-2-2- 2-14a = 38a =-()()()()()11124122181234+---+---=∴x x x x x f . 3)()()i xx i ix x x f ++-+-+=7312234,i x -=0. 解:综合除法:i - i - i - i -即:()()()()()()i i x i x i i x i i x x f 57512234+++-++-+-+=. 4. 求()x f 与()x g 的最大公因式:1)()143234---+=x x x x x f ,()123--+=x x x x g 解:带余除法:即:1322即:()()()1434121322+-⎪⎭⎫ ⎝⎛+----=x x x x x g又:()()1121322++-=---x x x x()()()1,+=∴x x g xf .2)()1434+-=x x x f ,()1323+-=x x x g . 解:带余除法:即:()()()2312+--=x x x g x f .即:()()13213232-+⎪⎭⎫ ⎝⎛+-+-=xx x x g .即:41942729132232-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=+-x x x .()()()1,=∴x g x f .3)()11024+-=x x x f ,()124624234+++-=x x x x x g . 解:即:()()x x f x g 242423-=即:()()12232124241624223++-⎪⎭⎫ ⎝⎛--++-=x x x x x x x f .即:()93292889323241223241624223++⎪⎪⎭⎫ ⎝⎛-++-=++-x x x x x x x .即:12192426328827932928812232+⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=++-x x x x . ()()()1,=∴x g x f .5. 求()x u ,()x v 使()()()()()()():,x g x f x g x v x f x u =+1)()242234---+=x x x x x f ,()22234---+=x x x x x g . 解:()13即:()()()221223 -++-=x x x x x g()()32223 x x x x -=- ()()()2,2-=∴x x g x f将(1)代入(2)得:()()()()2212-=+++-x x g x x f x即:取()1--=x x u ,()2+=x x v 可得:()()()()()()()x g x f x g x v x f x u ,=+.2)()951624234++--=x x x x x f ,()45223+--=x x x x g 解:即:()()622--=x x x g x f 即:()()()213139362 +-⎪⎭⎫⎝⎛+-+--=x x x x x g()()()39619362 ++-=+--x x x x()()()1,-=∴x x g x f ,将(1)式代(2)式得:()()()()1322311312-=--+--x x g x x x f x .即:取()()131--=x x u ,()()322312--=x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 3)()144234++--=x x x x x f ,()12--=x x x g 解:即:1232 -+-=x x x g x f()()()()2312 ++-=x x x g()()()1,=∴x g x f将(1)式代入(2)式得:()()13233123=--+++-x g x x x x f x 即取()()131+-=x x u ,()()233123--+=x x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 6. 设()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式,t ,u 的值. 解:又()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式()()u tx x u x t x t +++-++∴3221.即()()()()[]()c x u x t x t u tx x t ++-++=+++21123即:()()()()⎪⎩⎪⎨⎧+=+=-+=++-u t cu t t t c u t c t 112012解得:⎩⎨⎧=-=04u t ,或⎪⎩⎪⎨⎧=+=02321u i t ,或⎪⎩⎪⎨⎧=-=0231u i t ,或⎪⎩⎪⎨⎧--=+-=i u i t 11721121,或⎪⎩⎪⎨⎧+-=--=i u i t 1172111. 7. 证明:如果()()x f x d ,()()x g x d ,且()x d 为()x f 与()x g 的一个组合,那么()x d 是()x f 与()x g 的一个最大公因式.证明:()x d 为()x f 与()x g 的一个组合即:()()()()()x d x g x v x f x u =+.又()()x f x d ,()()x g x d ,即()x d 是()x f 与()x g 的一个公因式.()()x f x h ∀,且()()x g x h 则()()x d x h ()x d ∴是()x f 与()x g 的一个最大公因式.8. 证明:()()()()()()()()()x h x g x f x h x g x h x f ,,=,(()x h 的首项系数为1). 证明:()()()()x f x g x f , ,()()()()x g x g x f ,()()()()()()x h x f x h x g x f ,∴,()()()()()()x h x g x h x g x f ,. 即:()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个公因式. 又()()()()()()()()()x g x f x g x v x f x u st x v x u ,:,=+∃. 则()()()()()()()()()()x h x g x f x h x g x v x h x f x u ,=+()()()x h x f x c ∀,()()()x h x g x c 有()()()()()x h x g x f x c ,. 即()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个最大公因式. 又()x h 的首项系数为1.()()()()()()()()()x h x g x f x h x g x h x f ,,=∴.9. 如果()x f ,()x g 不全为零,证明:()()()()()()()()1,,,=⎪⎪⎭⎫ ⎝⎛x g x f x g x g x f x f .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.()()()0,≠∴x g x f ,又()x u ∃,()x v ()()()()()()()x g x f x g x v x f x u st ,:=+()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u .即:()()()()()()()()1,,,=⎪⎪⎭⎫⎝⎛x g x f x g x g x f x f 成立. 10.证明:如果()x f ,()x g 不全为零,且()()()()()()()x g x f x g x v x f x u ,=+,那么()()()1,=x v x u .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.且()()()()()()()x g x f x g x v x f x u ,=+()()()0,≠∴x g x f ()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u ()()()1,=x v x u .11.证明:如果()()()1,=x g x f ,()()()1,=x h x f ,那么()()()()1,=x h x g x f . 证明:()()()1,=x g x f ,()()()1,=x h x f .()x u 1∃∴,()x v 1,()x u 2,()x v 2使得:()()()()()1111 =+x g x v x f x u ()()()()()2122 =+x h x v x f x u . 由(1)式与(2)式相乘可得:()()()()()()()()()()()()()()()121212121=+++x h x g x v x v x f x g x u x v x h x v x u x f x u x u即()()()()1,=x h x g x f .12. 设()x f 1, ,()x f m ,()x g 1, ,()x g n 都是多项式,而且()()()1,=x g x f ji()n j m i ,,1;,,1 ==.求证:()()()()()1,11=x g x g x f x f nm.证明:由11题可得:()()()1,=x g x f ,()()()1,=x h x f ()()()()1,=⇒x h x g x f 又()()()1,=x g x f j i (其中m i ,,1 =;n j ,,1 =)可得,对于i 取m ,,2,1 中的任何一个固定值有:()()()()1,1=x g x g x f n i . 再将()()x g x g n 1看作一个整体可得:()()()()()1,11=x g x g x f x f n m . 13. 证明:如果()()()1,=x g x f ,那么()()()()()1,=+x g x f x g x f . 证明:()()()1,=x g x f 故有:()()()()1=+x g x v x f x u .即:()()()()()()()()()()()()()()()()1=++-=+-+x g x f x v x f x v x u x g x v x f x v x f x v x f x u()()()()1,=+∴x f x g x f ;同理可得:()()()()1,=+x g x f x g()()()()()1,=+∴x g x f x g x f .14. 求下列多项式的公共根:()12223+++=x x x x f ,()12234++++=x x x x x g . 解:()()()212+-=∴x x x f x g 即:()()()112+++=x x x x f()()()1,2++=∴x x x g x f 令:012=++x x 解得:2311i x +-=;2312ix --=. 即:()x f 与()x g 的公共根为:2311i x +-=和2312ix --=.(提示:公共根出现在多项式的公因式中.)15. 判别下列多项式有无重因式: 1)()842752345-+-+-=x x x x x x f解:()()()x x x x x x x x f 1524421205'2234+-=+-+-=又()()()1284275232345++-=-+-+-=x x x x x x x x x f即:()()()()22',-=x x f x f ()x f ∴有三重因式:2-x2)()34424--+=x x x x f解:()124484'33-+=x x x f即:()()()1',=x f x f ()x f ∴没有重因式. 16.求t 值使()1323-+-=tx x x x f 有重根.解:依题意可得:待定系数法:当有()x f 重根时,可得重根为有理根时,此时只能取重根为:1±=α.当重根为:1=α 1可得:3=t .当3=t 时,()()3231133-=-+-=x x x x x f 此时1=x 是()x f 的三重根;当重根为:1-=α1-解得:5-=t ,当5-=t 时,()()()141153223--+=---=x x x x x x x f 与1-=x 为重根矛盾,舍去.设重根为二重时得()⎪⎭⎫⎝⎛+-=+-=323163'22t x x t x x x f()()()()()()()()()12,''131,'',+=⎪⎭⎫ ⎝⎛--=x x f x f x x f x f x f x f 即得:021'=⎪⎭⎫⎝⎛-f .解得:415-=t . 17.求多项式q px x ++3有重根的条件.解:()()()()()()()()132,'3','3,',23≠⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-=+++=q px x f x f x f x f p x q px x x f x f 得: ()x f q px'32+即得:027423=+q p . 18.如果()11242++-Bx Ax x ,求A ,B .解:依题意可由综合除法可得:1 1A A 2B A +3 B A 24+由()11242++-Bx Ax x 可得:⎩⎨⎧=+=++02401B A B A 解得:⎩⎨⎧-==21B A .19.证明:!!212n x x x n++++ 不能有重根.证明:令()!!212n x x x x f n ++++= 得:()()!1!21'12-++++=-n x x x x f n反证法:设()x f 的重根为α得:()()⎩⎨⎧==0'0ααf f 即:()()0'=-ααf f 0!=∴n nα得:0=α 又()010≠=f 矛盾.∴!!212n x x x n++++ 不能有重根.20.如果a 是()x f '''的一个k 重根,证明a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根.证明:依题意可得:()()()[]()()0''2=+-+-=a f a f a f a f aa a g ()()()[]()()0'''22'''=--++=a f a f aa a f a f a g()()()()()a f a f aa a f a f a g '''''22''2''''--++=又()0'''=a f ()0''=∴a g()()()()02'''21'''4=-+-=a f a a a f a g又a 是()x f '''的一个k 重根a ∴是()x g '''的一个k 重根. 又()()()()0''''''====a g a g a g a g∴a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根. 21.证明:0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k证明: 0x 是()x f 的k 重根()()x f x x k0-∴即()x g ∃,使得:()()()x g x x x f k0-=,其中0x x -不整除()x g()()()()()x g x x x g x x k x f kk ''010-+-=∴-可得:()()x f x x k '10--()0'0=∴x f同理由此类推可得到:()()()()0'0100====-x f x f x f k 若()()00=x f k 得:()()()x f x x k 0-()()x f x x s k s10+--⇒其中k s ≤,即()()x f x x k 10+-这与0x 是()x f 的k 重根矛盾.()()00≠∴x f k反之显然成立.∴0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k .22.举例说明断语“如果a 是()x f '的m 重根,那么a 是()x f 的1+m 重根”是不对的. 解:例如:()()111111+-=+m a x x f 则()()()ma x m x f -+=1'a 是()x f '的m 重根,但a 不是()x f 的1+m 重根.23. 证明:如果()()n x f x 1-,那么()()n n x f x 1-. 证明:令:n x y =得:()()y f x 1-即()()011==f f n ∴()()y f y 1-即()()n n x f x 1-.24. 证明:如果()()()323121x xf x f x x +++,那么()()x f x 11-,()()x f x 21-证明:.令:012=++x x 解得:2311i x +-=,2312ix --= 又()()()323121x xf x f x x +++即:()()()32311x f x f x x +-,()()()32312x f x f x x +-()()()()⎩⎨⎧=+=+∴0032223213121311x f x x f x f x x f 即:()()()()⎪⎪⎩⎪⎪⎨⎧=--+=+-+0123110123112121f i f f i f 又0323112311≠-=--+-i i i即该方程程组只有唯一零解:()()⎩⎨⎧==010121f f∴()()x f x 11-,()()x f x 21-.25. 求多项式1-n x 在复数域范围内和在实数范围内的因式分解. 解:在复数域上分解:()()()111----=-n n x x x x εε 其中ni n ππε2sin 2cos +=. 在实数范围内因式分解:当n 为奇数:()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--=-+---111112222222212x x x x x x x x n n n n nεεεεεε 其中:n i i n i πεε2cos2=+-为一个实数,21,,2,1-=n i . 当n 为偶数时:()()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--+=-+---1111112222222212x x x x x x x x x n n n n nεεεεεε 26. 求下列多项式的有理根: 1)1415623-+-x x x解:令()1415623-+-=x x x x f 则()x f 的有理根可能为:1±,2±,7±,14±.由综合除法计算得:1即:()41-=f同理:()361-=-f ,()762-=-f ,()02=f ,()7567-=-f ,()1407=f ,()414414-=-f()176414=f∴1415623-+-x x x 多项式的有理根为:2.2)157424---x x x解:令()157424---=x x x x f 则的有理根可能为:41±,21±,1± 将根挨个代入原式得:641114154174144124-=--⨯-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-f同理:6417141-=⎪⎭⎫ ⎝⎛f ,021=⎪⎭⎫ ⎝⎛-f ,521-=⎪⎭⎫⎝⎛f ,()11=-f ,()91-=f∴157424---x x x 多项式的有理根为:21-.3)3111462345----+x x x x x解:令()3111462345----+=x x x x x x f 则()x f 的有理根可能为:1±,3±由带余除法计算得:即:()01=-f 同理:()321-=f ,()963-=-f ,()03=f .∴3111462345----+x x x x x 多项式的有理根为:1-,3. 27. 下列多项式在有理数域上是否可约? 1)12+x解:不可约;理由如下:依题意可得令()12+=x x f 则()x f 的有理根可能为:1± 又()()0211≠=-=f f 即1±不为()x f 的有理根∴多项式12+x 在有理数域上是不可约的.(二次有理多项式在有理数域上可约的话必有有理根)2)2128234++-x x x解:不可约;理由如下: 取素数2=p 得: (1)p 41a =.(2)38a p =-,212a p =,10a p =,02a p = (3)42=p 02a =由艾森斯坦判别法可得:多项式2128234++-x x x 是不可约的. 3)136++x x解:不可约;理由如下:令()136++=x x x f ,1+=y x 得:原多项式39182115623456++++++=y y y y y y 这时只要取3=p 可由艾森斯坦判别法得出:39182115623456++++++y y y y y y 不可约;∴136++x x 不可约.4)1++px x p ,p 为奇素数;解:令1+=y x 作转化,再由艾森斯坦判别法判别不可约; 5)144++kx x ,k 为整数. 解:同4),不可约:。
大一下学期高等代数知识点在大一下学期的高等代数课程中,我们将进一步学习和掌握一些高级的代数知识和技巧。
本文将介绍一些主要的知识点,帮助读者更好地理解和掌握这门课程。
一、复数与复数域复数是由实数和虚数构成的数。
复数的表示形式为a+bi,其中a和b都是实数,i为虚数单位。
在高等代数中,我们将学习复数的运算法则,包括复数的加、减、乘、除等运算。
我们还将学习复数的共轭、模、辐角等概念,并了解复数在计算中的应用,如复数在电路分析中的使用等。
另外,我们还会学习复数域的概念。
复数域是由所有复数构成的集合,它是一个拓展了实数域的数域。
在复数域中,我们可以进行各种代数运算,并且可以解决一些实数域中无法解决的方程。
二、线性代数基础线性代数是代数学的一个重要分支,它研究的是线性方程组、向量空间、线性变换以及矩阵等概念和性质。
在线性代数基础知识中,我们将学习线性方程组的解法,包括高斯消元法、克拉默法则等。
我们还将学习向量的运算法则,包括向量的加、减、数量积和向量积等。
此外,我们还将学习矩阵的代数运算法则,包括矩阵的加、减、乘法以及矩阵的逆等。
通过学习线性代数基础,我们可以更好地理解和解决实际问题中的线性方程组和向量空间等数学模型。
三、线性空间与线性变换线性空间是线性代数中一个重要的概念,它是由一组向量构成的集合,并满足一定的线性性质。
在线性空间的学习中,我们将学习线性空间的定义和性质,如线性空间的加法和数量乘法运算的性质等。
另外,我们还会学习线性变换的概念和性质。
线性变换是指将一个向量空间中的向量映射到另一个向量空间中的变换,它是线性代数中的重要内容。
通过学习线性空间和线性变换,我们可以更好地理解和分析实际问题中的线性关系和线性变化。
四、特征值与特征向量特征值与特征向量是线性代数中的一个重要概念。
在矩阵的运算中,我们经常需要求解矩阵的特征值和特征向量,并利用它们来研究矩阵的性质和应用。
特征值和特征向量可以帮助我们了解矩阵的各种性质,比如矩阵的对角化、可逆性等。
构造法在高等代数中的应用
构造法(Construction)指的是通过某种方式构造一个新的数
学对象,这种方式可以是从已知对象中提取信息、进行运算、组合,或者是通过更抽象的方式,例如通过极限过渡、构造性证明等。
在
高等代数中,构造法被广泛应用于各种数学结构的构建和证明中。
以下是一些高等代数中应用构造法的例子:
1. 群和环的构造:群和环是最基本的抽象代数结构之一。
构造
法可以用来构造新的群和环,例如通过群的直积、半直积、商群等
方式来构造新的群;通过态射同构、理想、商环等方式来构造新的环。
2. 向量空间的构造:向量空间是线性代数中的重要概念。
构造
法可以用来构造新的向量空间,例如通过向量的张量积、双线性函数、外代数等方式来构造新的向量空间。
3. 域的构造:域是代数学中的基本概念。
构造法可以用来构造
新的域,例如通过有限扩张、代数闭包、分式域等方式来构造新的域。
4. 哈密顿四元数的构造:哈密顿四元数是一种四维的超复数。
通过构造法,我们可以将哈密顿四元数看作是复数和二维向量的轮
换积,从而可以更加直观地理解哈密顿四元数的性质。
5. 矩阵群的构造:矩阵群是代数拓扑中的重要概念。
构造法可
以用来构造新的矩阵群,例如通过李群的指数映射,我们可以将矩
阵群看作是一个向量场在单位元上的切向量,从而使得矩阵群的性
质显得更加清晰。
总之,构造法在高等代数中是一个非常重要的方法,它可以帮助我们构建新的数学结构,深入理解已知的数学对象,并证明一些重要的定理和性质。
第二章 域 和 环1畅基本概念:域、子域、扩域、域的特征、素域.环、子环、理想、商环、同态、同构、同态基本定理.整环、极大理想.2畅商环的应用例子:爱森斯坦判别法的证明(整数环上多项式性质的证明)可化归到整数环的剩余类域上.3畅新域或新环的构造:复数域(作为实数域R上使x2+1=0有根的最小扩域);二元域;集合S在域F上生成的扩域;商环、剩余类环F[x]/(f(x))(包括构造F上添加任意不可约多项式f(x)的一个根的扩域)、Z/(n)(包括构造p个元素的域);理想的和、积;环的直和;整环的分式域.4畅域扩张的初步知识:代数扩张、有限扩张、单代数扩张、单超越扩张.集合S在F上生成的扩域的三种刻画: F(S)=f1(α1,α2,…,αt)f2(α1,α2,…,αt)橙t∈N(自然数),橙α1,α2,…,αt∈S,橙fi(x1,x2,…,xt)∈F[x1,x2,…,xt],i=1,2.f2(α1,α2,…,αt)≠0=由F及S的元尽可能地多次作加减乘除所得的元素的集合=含F及S的最小的域.单扩张的构造:F(α)=f1(α)f2(α)橙f1(x),f2(x)∈F[x],f2(α)≠0.若α为F上代数元,f(x)是以α为根的F上不可约多项式(α的极小多项式),其次数为n,则F(α)是F上n维线性空间,而1,α,…,αn-1是它的一组基.扩张次数[E:F]及性质:对域扩张E车H车F有[E:F]=[E:H][H:F].5畅域的应用举例:(1)二元域用于纠错码.(2)域的扩张次数的性质用于否定三大几何作图难题(给出了用圆规直尺作图作出的量满足的条件).6畅中国剩余定理.1畅这一章讲域、环的基本概念.主要是讲各种造新域和新环的方法,环是为·84·域起铺垫的作用.本章的内容充分体现总导引第一点中的思想.2畅体会造二元域的数学背景及如何用于构造纠一个错的码.思考一下能纠错的关键之点在哪里,随便指定一个矩阵H是否能起到纠错的作用?3畅体会对圆规直尺作图问题进行分析中的几个步骤:(1)用解析几何知识分析出能用圆规直尺作图作出的量(长度)满足的方程;(2)用扩域的语言表达上述作出的量所在的范围;(3)用扩张次数的性质来表达作出的量满足的条件.4畅这一章中我们充分地应用了引论章§2末尾的定理.即用了一般域上线性方程组、矩阵运算、线性空间、多项式等理论的大量性质.促进读者巩固高等代数的知识.5畅与其它近世代数教材相比,本书中域的内容(包括下一章的有限域的内容)放到整环的因式分解唯一性理论之前,并且替代它而成为教材的核心部分.内容也改变很多,加入纠错码的例子和三大几何作图难题的讨论这些应用内容,而舍去了可分扩张及分裂域等内容.由于目标明确(参看总导引第一条)且有应用内容,增加了学习的生动性.(1)造一个码长13,容量为29的能纠一个错的码集合.(2)证明上面的码一般不能纠两个错.(举例:考察码子X=(0,0,0,0,0,0,0,0,0,0,0,0,0)T错了两位成为Y=(1,1,0,0,0,0,0,0,0,0,0,0,0)T.能否用书中所述的译码方法由Y恢复成X?§1 域的例子,复数域及二元域的构造,对纠一个错的码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅令C0=ab-baa,b∈R,则(1)C0对矩阵的加法和乘法成为域.(2)C0中R0=a00aa∈R是同构于R的子域.·94· (3)干脆将R0与R等同,将a 00 a写成a,则可写ab-ba=a00a+b00b01-10=a+b01-10.作映射 CφC0a+bia+b01-10,橙a,b∈R,则φ是域同构.以下2-6题出现的运算是F2中元素的运算. 倡2畅计算1111001010110100101111110110111101100111010001110. 倡3畅求1111001111010111-1. 倡4畅解方程组x1+x2+x3+x4+x5+x6=1 x3+x4+0+x6=0x1+x2+0+x4=1 x2+x3+x4=0. 倡5畅计算(x4+x3+x+1)2,(x3+x2+1)(x5+x2+x+1). 倡6畅(1)以x2+x+1除x6+x4+x3+1,求商及余式.(2)求x2+x+1与x6+x4+x3+1的最大公因式d(x).(3)求u(x),v(x),使u(x)(x2+x+1)+v(x)(x6+x4+x3+1)=d(x).·05· 倡7畅求作一个13位0,1序列的码集合,其容量为29,有纠一个错的能力.8畅F为素数特征p的域,a,b,a1,…,an∈F,则(1)(a+b)p=ap+bp,而且无论p为奇偶皆有(a-b)p=ap-bp.(2)(a+b)pk=apk+bpk.(3)(a1+a2+…+an)pk=apk1+apk2+…+apkn.(参见引论章习题6)(4)映射 FφF,aap是F的自同态.且φ是同构当且仅当方程xp-b=0对所有b∈F都有解.1畅略.2畅111110001.3畅1001010110101110.4畅x1=x5+x6+1x2=x6+1x3=x5+x6x4=x5+1.5畅x8+x6+x2+1,x8+x7+x+1.6畅(1)x6+x4+x3+1=(x4+x3+x2+x)(x2+x+1)+x+1.(2)(x6+x4+x3+1,x2+x+1)=1.(3)x(x6+x4+x3+1)+(x5+x4+x3+x2+1)(x2+x+1)=1.7畅令H=10101010101010110011001100000111100001100000001111114×13,以HX13×1=0的解空间为码集.因秩H=4,未知数的数目为13,故解空间维数为13-4=9.由于码集合是F2上9维空间,共有29个解向量,即29个码子,码·15·集合的容量为29.与课文中例4一样有纠一个错的能力.8畅(1)由二项定理(参见引论章习题6),(a+b)p=ap+bp+∑p-1i=1Cipaibp-i.当1≤i≤p-1时,Cip=p(p-1)…2·1(p-i)!i!.而(p-i)!及i!中的素因子皆小于p,故p|Cip.题设F的特征为p,故∑p-1i=1Cipaibp-i=0.这证明了(a+b)p=ap+bp.对(a-b)p=ap+(-b)p=ap+(-1)pbp.当p为奇素数时,(-1)p=-1;当p=2时,(-1)2=1=-1.故(a-b)p=ap-bp.(2)(a+b)pk=((a+b)p)pk-1=(ap+bp)pk-1.利用归纳法可得(a+b)pk=(ap)pk-1+(bp)pk-1=apk+bpk.(3)(a1+a2+…+an)pk=apk1+(a2+…+an)pk.利用归纳法可得(a1+…+an)pk=apk1+apk2+…+apkn.(4)φ(a+b)=(a+b)p=ap+bp=φ(a)+φ(b).φ(ab)=(ab)p=apbp=φ(a)φ(b).故φ为F的自同态.又φ(a-b)=(a-b)p=ap-bp=φ(a)-φ(b),就有φ(a)=φ(b)当且仅当a=b.即φ是单射.由以上论证,φ是同构当且仅当φ是满射当且仅当对橙b∈F,有a∈F使φ(a)=ap=b也即方程xp-b=0有解.§2 域的扩张,扩张次数,单扩张的构造以下习题中打倡者为必作题,其余为选作题.1畅F炒E是域扩张.(1)α1,α2,…,αs∈E,则F(α1,α2,…,αs)=f1(α1,…,αs)f2(α1,…,αs)f1,f2∈F[x1,…,xs],f2(α1,…,αs)≠0.·25·(2)S炒E,则F(S)=∪S0炒SS0有限集F(S0). 倡2畅计算[Q(2,3):Q],[Q(2+3):Q].证明Q(2,3)=Q(2+3). 倡3畅F炒E是域扩张,且[E:F]=p是素数,则任意α∈E\F,有E=F(α). 倡4畅E车F为域扩张,α1,α2,…,αt∈E,[F(αi):F]=ni,i=1,2,…,t,则[F(α1,…,αt):F]≤n1n2…nt. 倡5畅F炒E为有限次域扩张,则必为代数扩张. 倡6畅F炒E为有限次域扩张,则有α1,…,αt∈E,使得E=F(α1,…,αt).7畅F炒E为域扩张,S炒E且S中每个元皆是F上代数元,则F(S)是F上代数扩张.进而,E中全部代数元作成F的一个扩域. 倡8畅令E=Q(u).(1)设u3-u2+u+2=0.试把(u2+u+1)(u2-u)和(u-1)-1表成au2+bu+c的形式,a,b,c∈Q.(2)若u3-2=0,把u+1u-1表成au2+bu+c的形式,a,b,c∈Q.9畅令E=F(u),u是极小多项式为奇数次的代数元.证明E=F(u2).10畅求32+5在Q上的极小多项式.11畅E车F,E是环,F是域,s∈E是F上代数元,则s可逆当且仅当有F上多项式f(x),其常数项不为零使f(s)=0.并且s-1=g(s),g(x)是F上多项式.12畅E是F上的代数扩张,则E的含F的子环都是子域.13畅设[E:F]=n,则不存在子域G,使E车G车F及[G:F]与n互素. 倡14畅R(实数域)上任意代数扩张E若不为R,则同构于C.特别地,R上除二次扩域外没有其它有限次扩域.(这正是Hamilton等数学家找不到“三维复数”的原因).1畅(1)这几令S={α1,…,αs},按命题2下面一段的约定F(α1,α2,…,αs)就是F(S).命题1中的(2)式定义了F(S).易看出本题所设的集合与F(S)的定义集合是一致的.(2)比较(1)的结果和命题1中(2)式在一般集合S下F(S)的定义即得F(S)={F(α1,…,αk)|橙{α1,α2,…,αk}炒S}·35·=∪S0炒SS0有限集F(S0).2畅易看出Q(2,3)=Q(2)(3)={(a1+b12)+(a2+b22)3|ai,bi∈Q}.我们来证1,3在Q(2)上是线性无关的.设(a1+b12)+(a2+b22)3=0,若a2+b22≠0,则3=-a1-b12a2+b22∈Q(2).令3=a+b2,a,b∈Q.将两边平方,得到3=a2+2ab2+b2.因2不是有理数,则a,b之一为零.若a=0,则32=2b2=2q2p2,(p,q)=1.又因左边为整数,必须p2|2,只能p=1,由32=2q2,必须2|32,这也不可能.若b=0,则3=a2,3=a是有理数,这也不可能.这些矛盾推出a2+b22=0,a1+b12也就为零,说明1,3在Q(2)上线性无关.因而[Q(2)(3):Q(2)]=2.结果[Q(2)(3):Q]=[Q(2)(3):Q(2)][Q(2):Q]=2×2=4.再证[Q(2+3):Q]=4.这只要证Q(2)(3)=Q(2+3).首先显然有Q(2+3)彻Q(2,3).又从3-2=12+3得3=12(3-2+3+2)=1213+2+3+2∈Q(2+3).同样可得2∈Q(2+3).这就证明了Q(2,3)彻Q(2+3).于是Q(2,3)=Q(2+3).3畅[F(α):F]|[E:F],[E:F]=p.故[F(α):F]=1或p.但α∈E\F,[F(α):F]>1.故[F(α):F]=p.因此F(α)=E.4畅[F(α1,…,αt):F]=[F(α1,…,αt):F(α1,…,αt-1)][F(α1,…,αt-1):F(α1,…,αt-2)]…[F(α1):F].由于αi在F中的极小多项式次数为ni.F上的这个极小多项式也是F(α1,…,αi-1)中的多项式,这个次数ni比αi在F(α1,…,αi-1)上的极小多项式的次数低.故[F(α1,…,αi-1,αi):F(α1,…,αi-1)]≤ni.因而[F(α1,…,αt):F]≤ntnt-1…n1=n1n2…nt.5畅F彻E是k次扩张.任一元α∈E,1,α,…,αk是E中k+1个元,必在F上线性相关.即有F上不全为零的a0,a1,…,ak使a0+a1α+…+akαk=0.由此知α满足F上的次数≤k的一个多项式.故α是F上代数元,因而E是F上代数扩张.6畅取E的F基α1,…,αt,则E=钞ti=1liαi|li∈F彻F(α1,…,αt)彻E,·45·故E=F(α1,…,αt).7畅设S中每个元皆为F上代数元.对α∈F(S),必有α1,…,αk∈S使α=f1(α1,…,αk)f2(α1,…,αk)∈F(α1,…,αk).因αi为代数元,令[F(αi):F]=ni.由习题4,[F(α1,…,αk):F]≤n1n2…nk.故F(α1,…,αk)是F上有限扩张,再由习题5,它是F上代数扩张.这就证明了任意α∈F(S)是F上代数元,于是F(S)也是F上代数扩张.现令E中全体F上代数元的集合为S.则F(S)是代数扩张,F(S)中每个元皆为F上代数元.于是F(S)彻S,即有S=F(S).故S是F上扩域.8畅(1)(u2+u+1)(u2-u)=u4-u=(u+1)(u3-u2+u+2)-4u-2=-4u-2.由于(u-1)(u2+1)-(u3-u2+u+2)=3,故(u-1)(u2+1)=3.因此(u-1)-1=13(u2+1).(2)由(u-1)(u2+u+1)=u3-1=(u3-2)+1=1,故u+1u-1=(u+1)·(u2+u+1)=u3+2u2+2u+1=(u3-2)+2u2+2u+3=2u2+2u+3.9畅设u2=a∈F(u2),则u2-a=0.故[F(u):F(u2)]≤2.因[F(u):F(u2)]|[F(u):F],及[F(u):F]=奇数,[F(u):F(u2)]≠2.所以[F(u):F(u2)]=1,即E=F(u)=F(u2).另一证法,设u在F中极小多项式是f(x).f(x)为2l+1次,满足f(u)=0,设为a2l+1u2l+1+a2lu2l+…+a1u+a0=0,ai∈F,则u(a2l+1u2l+a2l-1u2(l-1)+…+a1)+(a2lu2l+…+a0)=0.由f(x)的极小性,第一括弧不为零,所以u=a2lu2l+a2(l-1)u2(l-1)+…+a0a2l+1u2l+a2l-1u2(l-1)+…+a1∈F(u2).故F(u)=F(u2).10畅令u=32+5.则32=u-5,(u-5)3=2.于是u3-3·u2·5+3u(5)2-(5)3=u3+15u-(3u2+5)5=2.移项后得u3+15u-2=(3u2-5)5.两边平方,得到(u3+15u-2)2=(3u2-5)2·5.这是u满足的Q上6次方程,故[Q(u):Q]≤6.又(u-5)3=2,可得5∈Q(u).由[Q(5):Q]=2,及[Q(5):Q]|[Q(u):Q],知2|[Q(u):Q].而由32=5-u知32∈Q(u,5)=Q(u).又·55·[Q(32):Q]=3及[Q(32):Q]|[Q(u):Q],得3|[Q(u):Q].于是6|[Q(u):Q],因而[Q(u):Q]=6.由于(u3+15u-2)2-(3u2-5)2·5=0,故6次多项式(x3+15x-2)2-5(3x2-5)2是u在Q上的极小多项式.11畅设s为可逆的代数元,则有F上多项式f(x),使f(s)=aksk+ak-1sk-1+…+a1s+a0=0,其中k≥1,ak≠0.设a0,a1,…,ak-1,ak中不为零的最小脚标为i.则i≠k,否则aksk=0,由s可逆,得ak=0.矛盾.故i<k.用s-i乘它,则得aksk-i+…+ai=0.于是g(x)=akxk-i+…+ai满足g(s)=0且常数项ai≠0.反之,设s满足某多项式方程f(s)=aksk+…+a1s+a0=0,且a0≠0.令g(x)=-(akxk-1+…+a1),则g(s)·s=a0≠0.故s-1=1a0g(s).1a0g(x)是F上多项式.12畅设E车H是含F的子环.任取0≠s∈H.s在E中有逆,由习题11知,s-1=g(s),g(x)是F上多项式.H是子环,因此g(s)∈H.故H是E的子域.13畅设G是域,使EGF.则[G:F]|[E:F],故[G:F]不能与n=[E:F]互素.14畅设R炒E是代数扩张.任取α∈E,α是R上不可约多项式f(x)的根.R上只有1次或2次不可约多项式.若为1次,则α∈R.若E中有α碒R,则它是R上2次不可约多项式的根,设α满足α2+bα+c=0,b,c∈R.则α-b22=14(b2-4c).因α碒R,故b2-4c<0.因此b2-4c=4c-b2-1∈R(α),而有-1∈R(α).显然R(-1)=R(α),即C臣R(α).又任β∈E是R上代数元,由C是代数封闭域知R(-1)也是.于是β∈R(-1),即得E=R(-1).上面证明了代数扩域E车R,只能是E=R或E=R(-1).它们是1次和2次扩域,R上没有3次扩域.§3 古希腊三大几何作图难题的否定以下习题中打倡者为必作题,其余为选作题.·65· 倡1畅设已知量a,b及r皆大于0且a>b.试用圆规直尺作图作出a±b,ab,ar,r. 倡2畅下列哪些量可以用圆规直尺作图作出:(1)45+26 (2)21+7(3)1-527 倡3畅下列多项式中哪些多项式的实根可用圆规直尺作图作出:(1)x2-7x-13(2)x4-5(3)x3-10x2+1(4)x5-9x3+3(5)x4-2x-34畅证明:实数α可用圆规直尺作图作出当且仅当有实数的域的序列E0炒E1炒…炒En-1炒En,使α∈En,且[Ei:Ei-1]=2,1≤i≤n,其中E0是已知量的域.1畅运用中学几何作图知识来作出要求的量.2畅(1)可以.(2)可以.(3)不可以.证明 令x=527,它满足x5-27=0.再令y+2=x,则(y+2)5-27=y5+5y4·2+10y3·22+10y2·23+5y·24+25-27=y5+10y4+40y3+80y2+80y+5=0.用艾森斯坦判别法,它是y的Q上5次不可约多项式方程,527-2是它的根,于是[Q(527-2):Q]=[Q(527):Q]=5.若527能用圆规直尺作图得到,则它落在Q的某扩域E中,且[E:Q]=2l.但[Q(527):Q]嘲[E:Q],故527,因而1-527不能落在这样的域中,它们不能这样作出.3畅(1)可以.(2)可以,令x=±45=±5.5是可作的,故5也可作.(3)我们证明x3-10x2+1是Q上不可约多项式.实际上只有±1可能是它的有理根,但它们不是.因此x3-10x2+1在Q[x]中没有一次因式,故不可约.令它的实根为α,则[Q(α):Q]=3.α不属于Q的任何扩张域E,使E满足[E:Q]=2l.故α不能用圆规直尺作图作出.(4)用艾森斯坦判别法,x5-9x3+3在Q上不可约.对它的实根α,[Q(α):Q]=5.与习题1中(3)的证明类似,知α不可作.·75·(5)x4-2x-3=(x+1)(x3-x2+x-3).第二个因式的有理根只可能是±3,±1,但都不是根.因而是Q上三次不可约多项式、与本题(3)的证明一样可知,它的实根不可作,但第一因式的根为-1,是可作的.4畅课文中已证明由E0作为已知量出发,用圆规直尺作图能作出的量α一定属于某个具有题目所设性质的扩域En中.反之,设α属于具有上述性质的扩域En中.我们对n作归纳法.首先对橙i,[Ei:Ei-1]=2,即Ei是Ei-1上2维向量空间.取βi∈Ei/Ei-1.则1,βi对域Ei-1为线性无关,因而是Ei作为Ei-1上线性空间的基,故Ei=Ei-1(βi).又β2i∈Ei,它是1,βi的线性组合,因此有bi,ci∈Ei-1使β2i+biβi+ci=0,βi=-bi±b2i-4ci.n=0,E0中的任一个量显然可用圆规和直尺经有限步作出.2设En-1中任一量已可用圆规和直尺经有限步作出,即bn,cn可用有限步作出.于是b2n-4cn以至βn皆能作出.En中任一量α都是1,βn的线性组合α=a+bβn,a,b∈En-1.a,b,βn皆能用圆规直尺经有限步作出,则α也能.完成了归纳法.§4 环的例子,几个基本概念以下习题中打倡者为必作题,其余为选作题. 倡1畅举出Z/6Z=Z6中的零因子的例子. 倡2畅令Z[i]={a+bi|a,b∈Z},它是整环.2Z[i]={2a+2bi}是Z[i]的主理想.问Z[i]/2Z[i]中是否有零因子? 倡3畅写出下列商环的全部元素.(i)Z2=Z/2Z,检查它与F2是否同构.(ii)Z3=Z/3Z,检查是否是域.(iii)F2[x]/(x2+x+1),检查是否有零因子.(iv)Z3[x]/(x2+x+2),检查是否是域. 倡4畅R是环.若R的加群是循环群,则(i)R是交换环;(ii)R的子环只有R;(iii)当R的元素有无限多个时,它的任一理想也有无限多个元;(iv)当R的元素有限时,设I为它的理想,则|I|||R|;(v)R的加法子群都是R的理想.5畅找出Z6,Z8的全部理想.哪些是极大理想?对所有极大理想K,写出Z6/K及Z8/K的全部元素、加法表和乘法表.··856畅设K为交换环,M是它的理想,M作为K的加法子群满足[K:M]=素数,则商环K/M是域.7畅试将第一章§10习题6中关于群同态的结论推广到环同态的情形.8畅设f(x)=fr11(x)fr22(x)…frkk(x)是域F上的不可约多项式的乘积,且f1(x),…,fk(x)互不相伴,令R=F[x]/(f(x))是商环.(i)求出R的全体理想.(ii)这些理想中哪些是极大理想?(iii)设珡K是R的理想,K是珡K在F[x]中的原象.检验F[x]/K碖R/珡K.9畅证明Z[i]/(1+i)是域.1畅2+6Z≠0,3+6Z≠0,都是Z6中的零因子.2畅由(1+i)2=2i,((1+i)+2Z[i])2=2i+2Z[i]=0.故(1+i)+2Z[i]是Z[i]/2Z[i]中的零因子.3畅(i)Z2=Z/2Z={0+2Z,1+2Z}={0,1}.它的加法表和乘法表如下: +01001110,×01000101.建立映射Z2F20011.这是双射,且保持加法和乘法.故是同构.(ii)Z3=Z/3Z={0,1,2}.这是交换环,又(1)-1=1,(2)-1=2.故Z3是域.(iii)因0,1不是x2+x+1的根,故x2+x+1在F2[x]上不可约.因此F2[x]/(x2+x+1)是域,故无零因子.(iv)由于0,1,2都不是x2+x+2的根,故它在Z3[x]中不可约.因此Z3[x]/(x2+x+2)是域.4畅由于R是加法循环群,可设R=Za,a∈R.(i)R中任意两元可写为ma,na,而(ma)(na)=mna2=(na)(ma),故R是交换环.(ii)设1=ka,又设a2=la.则a=1·a=ka2=kla=lka=l·1.因R的子·95·环含1,就含有l1=a.故子环含Za=R.即子环必是R.(iii)R=Za有无限多个元,则它是无限循环加群.于是当m,n∈Z,m≠n时有ma≠na.设I是R的非零理想,它就是R的非零子加群,必为无限群.故I有无限个元.(iv)当R的元素有限时,它作为加群是有限循环群.而R的理想I是它的子加群,由Lagrange定理,知|I|||R|.(v)设I是R的加法子群,它也是循环群.设I=Z(ka).任ma∈R,(ma)I=Z(na)(ka)=Z(mkla)彻Z(ka)=I.故I是R的理想.5畅Z6的全部理想为Z6,2Z6,3Z6,0·Z6.其中2Z6,3Z6是Z6的极大理想.Z8的全部理想为Z8,2Z8,4Z8,0·Z8,其中2Z8是极大理想.Z6/2Z6={0,1},Z6/3Z6={0,1,2},Z8/2Z8={0,1}.它们的加法表和乘法表:Z6/2Z6: +01001110,×01000101.Z8/2Z8碖Z6/2Z6,它们有相同的加法表和乘法表.Z6/3Z6:+012001211202201×0120000101220216畅K/M是商环,作为加法商群[K:M]=素数.对K的任一理想N,若M彻N彻K、则从加法方面看N/M是K/M的子群.后者是素数阶群,故N/M是单位元群或K/M本身.因此N=M或N=K,即M是K的极大理想.于是K/M是域.7畅群同态的结论推广到环同态,结论如下:设环G到环珚G有满同态f.令N=Kerf.记f-1(珡K)为珚G的子集珡K对于f的原象.则(1)若珡K是珚G的子环,则N炒f-1(珡K),且f-1(珡K)是子环.(2)有映射{G的含N的子环}φ{珚G的子环}·06·Hf(H).它还是双射,且保持包含关系.(3)若珡K是珚G的理想,则f-1(珡K)是G的含N的理想,于是{G的含N的理想}{珚G的理想}Kf(K)是双射.(4)设珡H是珚G的理想,则有同构G/f-1(H)碖珚G/珡H.(5)G是环,N是理想.令珚G=G/N,π是自然同态GπG/N=珚G,则π建立了{G的含N的子环}到{珚G的子环}上的双射:π(H)=珡H=H/N,且保持包含关系.同时建立了{G的含N的理想}到{珚G的理想}上的双射,且有同构G/H碖珚G/珡H=G/N/H/N.证明 由于环是加群,子环、理想是子加群,环同态的核正是加群同态的核.如能证明(i)若H是G的子环(或理想),则f(H)是珚G的子环(或理想),(ii)珡H是珚G的子环(或理想),则f-1(珡H)是G的包含N的子环(或理想).再利用群同态的结论就给出上面(1)到(5)的结论都成立.对结论(i),易知子环(或理想)的满同态的象是子环(或理想),故成立.对(ii),设珡H是子环(或理想),它是珚G的子加群,故f-1(珡H)是G的子加群.又对l,k∈f-1(珡H)(或取l∈G),f(l),f(k)∈珡H(或f(l)∈珚G).由珡H是子环(或理想),f(l)f(k)=f(lk)∈珡H,故lk∈f-1(珡H).这证明了f-1(珡H)是G的子环(或理想).8畅(i)F[x]是主理想环,它的同态象R=F(x)/(f(x)).由7题,R的任一理想为J/(f(x)),其中J为F[x]的理想.J为主理想,设为J=g(x)F[x].于是R的任一理想I必有形式:I=g(x)F[x]/(f(x))是R的一个主理想.令(g(x),f(x))=m(x),g(x)=h(x)m(x).由(h(x),f(x))=1,有u(x),v(x)∈F[x],使u(x)h(x)+v(x)f(x)=1.即u(x)h(x)+(f(x))=1+(f(x)).于是m(x)F[x]/(f(x))=u(x)h(x)m(x)F[x]/(f(x))彻g(x)F[x]/(f(x))=I彻m(x)F[x]/(f(x)),故I=m(x)F[x]/(f(x)).这说明R的任一理想必为m(x)F[x]/(f(x)),其中m(x)|f(x).再设Ii=mi(x)F[x]/(f(x)),mi(x)|f(x),i=1,2都是R的理想.来证I1=I2当且仅当m1(x)与m2(x)相伴.首先设m1(x)=cm2(x),c≠0是F的元,则··16I1=m1(x)F[x]/(f(x))=cm2(x)F[x]/(f(x))=m2(x)·cF[x]/(f(x))=m2(x)F[x]/(f(x))=I2.反之,设I1彻I2.由m1(x)+(f(x))∈I1彻I2=m2(x)F[x]/(f(x)),有h2(x)∈F[x]使m1(x)+(f(x))=m2(x)h2(x)+(f(x)).进而有g2(x)使m1(x)+g2(x)f(x)=m2(x)h2(x).因m2(x)|f(x),可得m2(x)|m1(x).当I1=I2时,同样有m1(x)|m2(x).就证明了m1(x),m2(x)相伴.写gi1…ik(x)=(f1(x))i1(f2(x))i2…(fk(x))ik,其中i1,…,ik可独立地遍取1≤i1≤r1,1≤i2≤r2,…,1≤ik≤rk.则{gi1…ik(x)}是f(x)的全部不相伴的因式,而gi1…ik(x)F[x]/(f(x))是R的全部的理想.(ii)取Ji=fi(x)F[x]/(f(x)).由(i)第二部分的证明只有理想1·F[x]/(f(x))及fi(x)F[x]/(f(x))能包含Ji.故Ji是R的极大理想.R的任一理想若非Ji之一和R本身,则它是m(x)F[x]/(f(x)),其中m(x)是f1(x),…,fk(x)中至少两项的乘积.设m(x)=fi(x)fj(x)….则fi(x)|m(x),但任意一个fi(x)与m(x)不相伴.由(i)中第二部分的证明m(x)F[x]/(f(x))彻Ji,但它们不相等,故前者不是极大理想.因此R的全部极大理想为Ji,i=1,2,…,k.(iii)设珡K=m(x)F[x]/(f(x))是R的理想,其中m(x)|f(x).显然m(x)F[x]在R中的象是珡K.又任意g(x)∈F(x),若g(x)+(f(x))∈m(x)F[x]/(f(x)),用(i)中第二部分的证明可得m(x)|g(x).故g(x)∈m(x)F[x].这证明了珡K在F[x]中的原象K是m(x)F[x].作映射F[x]/m(x)F[x]πR/珡Kg(x)+m(x)F[x][g(x)+(f(x))]+珡K.首先要证明它确实规定了映射,即象元与g(x)+m(x)F[x]中的代表的选择无关,实际上g1+m(x)F[x]=g2+m(x)F[x]当且仅当g1-g2∈m(x)F[x]当且仅当(g1-g2)+(f(x))∈m(x)F[x]/(f(x))=珡K当且仅当[g1+(f(x))]与[g2+(f(x))]属于珡K的同一陪集当且仅当[g1+(f(x))]+珡K=[g2+(f(x))]+珡K.这就证明了映射是意义的,而且是单射.π显然是满射,因而是双射.又π((g1+m(x)F[x])+(g2+m(x)F[x]))=π((g1+g2)+m(x)F[x])=[(g1+g2)+(f(x))]+珡K=[(g1+(f(x)))+(g2+(f(x)))]+珡K=(g1+(f(x)))+珡K+(g2+(f(x)))+珡K=π(g1+m(x)F[x]) +π(g2+m(x)F[x]).·26·同样可证π((g1+m(x)F[x])(g2+m(x)F[x]))=π(g1+m(x)F[x])π(g2+m(x)F[x]).故π是环同构.9畅先计算Z[i]/(1+i)的全部元素.记剩余类a+bi+((1+i))为a+bi,其中a,b∈Z.我们有a+bi=a-b+b(1+i)=a-b.又(1+i)2=-2,故2=2+(1+i)2=0.于是Z[i]/(1+i)={0,1}={0+((1+i)),1+((1+i))}碖Z2.故它是域.§5 整数模n的剩余类环,素数p个元素的域以下习题中打倡者为必作题,其余为选作题.1畅求出Z8中可逆元的群及其乘法表. 倡2畅求出Z9中可逆元的群及其乘法表. 倡3畅写出Z3[x]/(x2+1)的全部元素.求出x+1与全部元素的乘积以及它的逆元素. 倡4畅427≡?(mod3) 7123≡?(mod5) 827≡?(mod6) 倡5畅p是素数,则域Zp中全部元素是方程xp-x=0的全部根.因而映射ZpZpaap是恒等自同构.1畅Z8的可逆元群是{1+8Z,3+8Z,5+8Z,7+8Z}.乘法表略.2畅Z9的可逆元群是{1+9Z,2+9Z,4+9Z,5+9Z,7+9Z,8+9Z}.乘法表略.3畅记剩余类f(x)+((x2+1))为f(x).则Z3[x]/(x2+1)={0,1,2,珔x,x+1,x+2,2x,2x+1,2x+2}.(x+1)Z3[x]/(x2+1)={0,x+1,2(x+1)}x+1的逆元素为x+24畅427≡127=1(mod3).7123≡2123≡2120·23(mod5)≡23(mod5)(因24≡1,2120=(24)30≡1)≡3(mod5).··36827≡((23)3)3≡(23)3≡23≡2(mod6).5畅Zp\{0}是p-1阶乘法循环群,故任0≠a∈Zp,满足ap-1=1.于是ap=a.又0p=0,所以Zp中全部元是xp-x=0的全部根.这就证明了ZpZpaap是恒等自同构.§6 F[x]模某个理想的剩余类环,添加一个多项式的根的扩域以下习题中打倡者为必作题,其余为选作题. 倡1畅Z3[x]中计算(x2+x+1)(x3+2x+1)及(x4+2x+1)(x3+x+1) 倡2畅证明x2+1,x3+2x+1是Z3[x]中不可约多项式.问Z3[x]/(x2+1),Z3[x]/(x3+2x+1)分别是几个元素的域.3畅写出Z3[x]/((x2+1)(x3+2x+1))中的全部理想和极大理想. 倡4畅证明Q[x]/(x2-2)与Q(2)={a+b2|a,b∈Q}都是域,且互相同构.1畅(x2+x+1)(x3+2x+1)=x5+x4+1.(x4+2x+1)(x3+x+1)=x7+x5+x3+2x2+1.2畅x2+1,x3+2x+1在Z3中无根,于是在Z3[x]中无一次因式,因此不可约.Z3[x]/(x2+1)是有9个元的域,Z3[x]/(x3+2x+1)是有27个元的域.3畅用§4习题8,它的全部理想为零理想及Z3[x]/((x2+1)(x3+2x+1)),(x2+1)Z3[x]/((x2+1)(x3+2x+1)),(x3+2x+1)Z3[x]/((x2+1)(x3+2x+1)).后面两个理想是极大理想.4畅Q[x]/(x2-2)与Q(2)都是域,略证.作映射Q[x]φQ(2)p(x)p(2)·46·这是同态映射,且是满射.Kerφ={p(x)|p(2)=0}.由于x2-2是2的极小多项式,故Kerφ=(x2-2)Q[x]=((x2-2)).由同态基本定理得Q[x]/((x2-2))碖Q(2).§7 整环的分式域,素域以下习题中打倡者为必作题,其余为选作题.1畅证明:有限整环是域. 倡2畅R是交换环,P≠R是R的理想,则RP是整环当且仅当P有性质:若a,b∈R满足ab∈P,则a∈P或b∈P.有这种性质的理想P称为素理想. 倡3畅R是交换环,则R的极大理想必为素理想. 倡4畅设n∈Z,n>1,Z中主理想(n)=nZ是素理想当且仅当n是素数. 倡5畅设R是一个域,则R的分式域就是自身. 倡6畅令Z(2)={a+b2|a,b∈Z},Q(2)={α+β2|α,β∈Q}.证明Q(2)是Z(2)的分式域.7畅令Z[i]={a+bi|a,b∈Z},Q[i]={α+βi|α,β∈Q}Z.证明Q[i]是Z[i]的分式域.8畅域F上多项式f(x)的次数≥1.F[x]中主理想(f(x))是素理想当且仅当f(x)是不可约多项式.1畅设R是有限整环,R={r1,…,rt}.令rt=0.橙0≠r∈R,当ri≠rj时有rri≠rrj.故rr1,…,rrt-1是R的全部非零元,必有某rj使rrj=1,即rj为r的逆元.R的每个非零元都有逆,故是域.2畅设R/P为整环.橙a,b∈R,若ab∈P,则(a+P)(b+P)=ab+P=0.于是a+P=0或b+P=0,即a∈P或b∈P.故P为素理想.反之,设P是素理想,橙a,b∈R,若ab∈P则a∈P或b∈P.现设R/P中(a+P)(b+P)=ab+P=0.即ab∈P,于是a∈P或b∈P,即a+P=0或b+P=0.故R/P是整环.3畅设I是R的极大理想,则R/I是域,当然是整环.由习题2,I是素理想.·56· 4畅设Z中(n)=nZ是一个理想.若n不是素数,则n=ab,a,b为大于1的正整数.由于a和b都不是n的倍数,故a∈(n),b∈(n).但ab=n∈(n),故(n)不是素理想,这就证明了(n)是素理想则n为素数.当n是素数时,对ab∈(n),则n|ab.若n嘲a,则(n,a)=1.于是n|b.即a∈(n)或b∈(n),(n)是素理想.5畅R是域,则也是整环.它的分式域F以R为子环,且F中的元是R的元的商.由于R是域,它的元的商仍在R中,故R=F.6畅我们已知Q(2)是域.对任意α+β2∈Q(2),可写α=ac,β=bc,a,b,c∈Z.则α+β2=a+b2c是Z(2)中两元素的商.又Z(2)中两元素的商为:a+b2c+d2=(c-d2)(a+b2)c2-2d2=ac-2bdc2-2d2+bc-adc2-2d22∈Q(2).现在Z(2)是Q(2)的子环,且Q(2)是由Z(2)中两元素的商组成,故Q(2)是Z(2)的分式域.7畅易证Q[i]是域.对任意α+βi∈Q[i],可写α=ac,β=bc,则α+βi=a+bic是Z[i]中两元素的商.又Z[i]中两元素的商为a+bic+di=ac+bdc2+d2+bc-adc2+d2i∈Q[i].即Q[i]由Z[i]的两元素的商组成.故Q[i]是Z[i]的分式域.8畅完全可仿照习题4的证明.设(f(x))是F[x]中理想,f(x)的次数≥1.若f(x)=g(x)h(x),g(x)及h(x)的次数皆大于等于1,这时g(x),h(x)皆不是f(x)的倍数,故g(x),h(x)∈(f(x)),但g(x)h(x)∈(f(x)).即(f(x))不是素理想.故若(f(x))是素理想,则f(x)不可约.反之,若f(x)不可约.对g(x)h(x)∈(f(x)),则有g(x)h(x)=f(x)k(x).若f(x)|g(x)则g(x)∈(f(x)).若f(x)嘲g(x),则(f(x),g(x))=1,于是f(x)|h(x).即有h(x)∈(f(x)),故(f(x))是素理想.§8 环的直和与中国剩余定理以下习题中打倡者为必作题,其余为选作题. 倡1畅解同余方程组.·66·(i)x≡1(mod2)x≡2(mod5)x≡3(mod7)x≡4(mod9) (ii)x≡5(mod7)x≡4(mod6) 倡2畅韩信点兵问题:有兵一队,若列5列纵队,则末行1人.成6列纵队,则末行5人.成7列纵队,则末行4人.成11列纵队,则末行10人.求兵数. 倡3畅R1,…,Rs是环.U1,…,Us分别是它们的可逆元的群.证明R1磑…磑Rs的可逆元群为U=U1×U2×…×Us(见第一章§4定义2).4畅设n=m1m2…ms,mi两两互素.令U(Zm)表Zm的可逆元群,则Z/nZ=Zn的可逆元群同构于U(Zm1)×…×U(Zms).进而有,φ(n)=φ(m1)φ(m2)…φ(ms),这里φ(n)是欧拉函数.当n=pes1…pess,pi为不同素数时,φ(n)=n1-1p1…1-1ps.(见第二章§5定义1及最后一段).1畅(i)解为157(mod630)(ii)解为40(mod42)2畅2111(mod2310)3畅(a1,a2,…as)是R1磑…磑Rs的可逆元当且仅当有(b1,…,bs)使(a1,…,as)(b1,…,bs)=(a1b1,…,asbs)=(1,…,1)当且仅当aibi=1,i=1,2,…,s当且仅当ai∈Ui,i=1,2,…,s当且仅当(a1,…,as)∈U1×…×Us.4畅这时Zn碖Zm1磑…磑Zms.Zm的可逆元群U(Zn)={k+nZ|(k,n)=1}.故|U(Zn)|=φ(n).(见第二章§5定义1).由习题3,U(Zn)碖U(Zm1)×…×U(Zms).|U(Zmi)|=φ(mi),i=1,2,…,s.故得φ(n)=φ(m1)…φ(ms).对素数幂pk,1,2,…,pk-1中与pk不互素的数为p的所有倍数lp,1≤l≤pk-1-1.故此中与pk互素的数共(pk-1)-(pk-1-1)=pk-pk-1=pk1-1p(个).即φ(pk)=pk1-1p.当n=pe11pe22…pess时,φ(n)=φ(pe11)φ(pe22)…φ(pess)=pe11…pess1-1p1…1-1ps.·76·。