正态分布变差系数的置信区间
- 格式:pdf
- 大小:190.68 KB
- 文档页数:4
第四节 正态总体的置信区间与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。
在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色.本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间;4. 双正态总体均值差(方差已知)的置信区间;5. 双正态总体均值差(方差未知但相等)的置信区间;6. 双正态总体方差比的置信区间.注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的.分布图示★ 引言★ 单正态总体均值(方差已知)的置信区间★ 例1 ★ 例2★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间★ 例7 ★ 例8★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4内容要点一、单正态总体均值的置信区间(1)设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间,,2/2/⎪⎪⎭⎫⎝⎛⋅+⋅-n u X n u X σσαα二、单正态总体均值的置信区间(2)设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量n S X T /μ-=,从第五章第三节的定理知).1(~/--=n t nS X T μ对给定的置信水平α-1, 由αμαα-=⎭⎬⎫⎩⎨⎧-<-<--1)1(/)1(2/2/n t n S X n t P ,即 ,1)1()1(2/2/αμαα-=⎭⎬⎫⎩⎨⎧⋅-+<<⋅--n S n t X n S n t X P因此, 均值μ的α-1置信区间为.)1(,)1(2/2/⎪⎪⎭⎫ ⎝⎛⋅-+⋅--n S n t X n S n t X αα三、单正态总体方差的置信区间上面给出了总体均值μ的区间估计,在实际问题中要考虑精度或稳定性时,需要对正态总体的方差2σ进行区间估计.设总体),,(~2σμN X 其中μ,2σ未知,n X X X ,,,21 是取自总体X 的一个样本. 求方差2σ的置信度为α-1的置信区间. 2σ的无偏估计为2S , 从第五章第三节的定理知,)1(~1222--n S n χσ, 对给定的置信水平α-1, 由,1)1()1()1()1(,1)1(1)1(22/12222/222/2222/1αχσχαχσχαααα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---=⎭⎬⎫⎩⎨⎧-<-<---n S n n Sn P n S n n P 于是方差2σ的α-1置信区间为⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(22/1222/2n S n n S n ααχχ而方差σ的α-1置信区间.)1()1(,)1()1(22/1222/2⎪⎪⎭⎫ ⎝⎛-----n S n n S n ααχχ四、双正态总体均值差的置信区间(1)在实际问题中,往往要知道两个正态总体均值之间或方差之间是否有差异,从而要研究两个正态总体的均值差或者方差比的置信区间。
正态分布总体总体均值已知方差的置信区间【文章开头】一、引言在统计学中,正态分布总体是相当常见的一种总体类型。
当我们需要对一个正态分布总体的总体均值进行推断时,有时候我们会面临到总体均值已知,但方差未知的情况。
对于这样的情况,我们可以使用置信区间来进行推断。
二、什么是置信区间?置信区间是指在统计推断中,对总体参数的估计范围。
通常,我们会给出一个置信水平,比如95%的置信水平,表示对总体参数的估计有95%的把握是正确的。
置信区间由一个下限和一个上限组成,表示总体参数可能落在这个范围内的概率。
三、正态分布总体的总体均值已知的情况下,方差的置信区间如何计算?当正态分布总体的总体均值已知时,我们可以使用样本标准差来作为总体方差的估计。
我们可以利用样本大小、置信水平和样本标准差来计算方差的置信区间。
四、计算步骤1. 收集样本数据:从正态分布总体中随机抽取样本,并记录样本数据。
2. 计算样本标准差:利用样本数据计算样本标准差。
样本标准差是总体方差的一个无偏估计。
3. 确定置信水平:根据需要的置信水平,确定置信水平对应的临界值。
临界值可以从统计表中查找。
4. 计算置信区间:利用样本大小、样本标准差和置信水平的临界值,计算方差的置信区间。
五、示例假设我们想研究某种药物对血压的影响。
我们从正态分布的总体中随机抽取了100个样本,并记录了每个样本的血压数据。
我们已知总体均值为120,方差未知。
现在,我们想要计算方差的95%置信区间。
1. 收集样本数据:从正态分布总体中随机抽取100个样本,并记录血压数据。
2. 计算样本标准差:利用样本数据计算样本标准差。
假设计算得到样本标准差为10。
3. 确定置信水平:我们希望得到95%的置信区间,因此置信水平为0.95。
4. 计算置信区间:根据样本大小100,样本标准差10,和置信水平0.95的临界值,我们可以计算得到方差的置信区间。
【文章主体】六、方差的置信区间是如何帮助我们进行推断的?方差的置信区间为我们提供了一个总体参数可能的取值范围。
正态分布的置信区间
置信区间的常用计算方法如下:
pr(c1\uc=μ\uc=c2)=1-α
其中:α就是显著性水平(基准:0.05或0.10);
pr表示概率,是单词probability的缩写;
%*(1-α)或(1-α)或指置信水平(比如:95%或0.95);
表达方式:interval(c1,c2) - 置信区间。
资料开拓:
置信区间是指由样本统计量所构造的总体参数的估计区间。
在统计学中,一个概率样
本的置信区间(confidence interval)是对这个样本的某个总体参数的区间估计。
置信
区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测
量参数的测量值的可信程度,即前面所要求的“一个概率”。
置信区间就是一种常用的区间估算方法,所谓置信区间就是分别以统计数据量的置信
下限和置信上限为上下界形成的区间。
对于一组取值的样本数据,其平均值为μ,标准
偏差为σ,则其整体数据的平均值的(1-α)%置信区间为(μ-ζα/2σ , μ+ζα/2σ) ,其中α为非置信水平在正态分布内的覆盖面积,ζα/2即为对应的标准分数。
正态分布分位数与变异系数的置信限正态分布分位数与变异系数的置信限正态分布是统计学中最为常见的概率分布之一,通常用于描述自然界和社会现象中的随机变量。
正态分布的特点是对称、钟形曲线,其分布取决于两个参数,即均值(μ)和标准差(σ)。
在实际应用中,我们经常需要通过样本数据来推断总体分布的特性。
其中两个重要的统计量是分位数和变异系数。
分位数用于描述一个随机变量的位置,而变异系数则表示数据的离散程度相对于均值的比例。
在本文中,我们将重点讨论正态分布分位数与变异系数的置信限,以及它们对统计推断的重要性。
一、正态分布分位数的定义及计算正态分布的分位数是指将概率分布曲线上分成若干等分的点。
常见的分位数包括中位数、四分位数和百分位数等。
1.中位数(Median)中位数是指将一个样本或总体的观察值按照从小到大的顺序排列,处于中间位置的数值。
对于正态分布而言,中位数与均值相等。
2.四分位数(Quartiles)四分位数将数据分为四个部分,分别是下四分位数Q1、中位数、上四分位数Q3和全距IQR(Interquartile Range)。
下四分位数Q1是将数据按照从小到大排列后,处于前25%位置的数值。
上四分位数Q3是将数据按照从小到大排列后,处于前75%位置的数值。
全距IQR则是Q3和Q1之间的差值。
3.百分位数(Percentiles)百分位数指的是将数据分为一百份,每一份包含1%的数据。
计算正态分布的分位数可以通过求解累积分布函数(Cumulative Distribution Function,CDF)的逆函数来实现。
在常见的统计软件中,可以直接使用相应的函数来计算分位数。
二、正态分布的置信限置信限是指在给定的显著水平下,通过样本数据来估计总体参数的区间范围。
常见的置信限包括均值的置信限、比例的置信限和方差的置信限等。
对于正态分布的均值和标准差的置信限,我们通常使用样本均值和样本标准差来进行估计。
这里,我们将重点讨论正态分布的分位数和变异系数的置信限。
两正态总体均值差的区间估计基于Wolfram Mathematica ,给出了两正态分布Ν[μ1,σ1]、Ν[μ2,σ2]总体均值差μ1-μ2在两总体方差已知、未知但相等、未知但样本量相等、未知但已知方差比、未知近似、未知精确的置信区间估计方法。
最后对理论结果进行程序模拟。
设X i ~Ν(μ1,σ1),i =1,2,...,n ,为正态总体X ~Ν(μ1,σ1)的一i.i.d.,样本均值X -=1n i =1n X i ,样本方差S X 2=1n -1 i =1n X i -X - 2。
设Y i ~Ν(μ2,σ2),i =1,2,...,m ,为正态总体Y ~Ν(μ2,σ2)的一i.i.d.,样本均值Y -=1m i =1m Y i ,样本方差S Y 2=1m -1 i =1m Y i -Y - 2。
一、两总体方差σ12=σ102、σ22=σ202已知定理1:X -Ν μ1,σ1n ,Y -Ν μ2,σ2m .CharacteristicFunction NormalDistribution [μ,σ],t n n;特征函数CharacteristicFunction 正态分布NormalDistribution μ,σn ,t ;%⩵%%//完全简化FullSimplify [#,n >0&&属于Element [n,整数域Integers ]]&True定理2:X --Y -Νμ1-μ2,⇔X --Y --(μ1-μ2)Ν[0,1].转换分布TransformedDistribution X -Y,X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m转换分布TransformedDistribution(X -Y )-(μ1-μ2), X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m //完全简化FullSimplifyNormalDistribution μ1-μ2,NormalDistribution [0,1]下面简要给出求μ1-μ2置信区间的方法:由α2≤Φ≤1-α2,得μ1-μ2的置信水平为1-α的置信区间为X --Y --Z1≤μ1-μ2≤X --Y --Zα2即X --Y --Z1-α2≤μ1-μ2≤X --Y -+Z1其长度:L =2Z 1-α2以下是程序模拟:需要Needs ["HypothesisTesting`"]μ10=10;μ20=1;σ10=3;σ20=4;X =伪随机变数RandomVariate [正态分布NormalDistribution [μ10,σ10],2000];Y =伪随机变数RandomVariate [正态分布NormalDistribution [μ20,σ20],1000];α=0.05;"(一)两方差已知""1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ102,σ202 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M "(二)两方差未知"清除Clear [μ,σ]{μ1,σ1}={μ,σ}/.求分布参数FindDistributionParameters [X,正态分布NormalDistribution [μ,σ]];2 正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb求分布参数正态分布{μ2,σ2}={μ,σ}/.求分布参数FindDistributionParameters [Y,正态分布NormalDistribution [μ,σ]];"1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ12,σ22 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M(一)两方差已知1.计算法{8.75322,9.31447}2.MeanDifferenceCI {8.75322,9.31447}3.NormalCI{8.75322,9.31447}区间长度:0.561248相对区间长度:0.0621273(二)两方差未知1.计算法{8.75899,9.30871}2.MeanDifferenceCI {8.75899,9.30871}3.NormalCI{8.75899,9.30871}区间长度:正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb30.549724相对区间长度:0.0608516二、两总体方差σ12=σ22未知σ12=σ22未知,由定理2,知X--Y- Ν μ1-μ2,σ,X--Y- -(μ1-μ2)σΝ[0,1]。
正态分布置信区间EXCEL计算公式1.确定样本数量、样本均值和样本标准差。
在Excel中,假设样本数量为n,样本均值为x̄,样本标准差为s。
你可以使用诸如COUNT、AVERAGE和STDEV.S等函数来计算这些值。
2.确定置信水平。
置信水平是一个概率,表示我们对总体参数的估计有多大的信心。
常用的置信水平有90%、95%和99%。
你需要将这个置信水平转换为与其对应的α值。
例如,对于95%的置信水平,α值为0.053.确定临界值。
根据样本数量和置信水平,你需要确定正态分布的临界值。
在Excel 中,可以使用函数NORM.S.INV来计算这个临界值。
公式如下:```临界值=NORM.S.INV(1-α/2,0,1)```其中,α/2表示α值的一半。
4.计算置信区间的下限值和上限值。
接下来,你可以使用以下公式来计算置信区间的下限值和上限值:```下限值=x̄-(临界值*s/√n)上限值=x̄+(临界值*s/√n)```下限值表示总体参数可能的最小值,上限值表示总体参数可能的最大值。
例如,假设样本数量为100,样本均值为50,样本标准差为10,置信水平为95%。
可以使用以下公式来计算置信区间:```临界值=NORM.S.INV(1-0.05/2,0,1)=1.96下限值=50-(1.96*10/√100)=47.04上限值=50+(1.96*10/√100)=52.96```因此,95%的置信区间为(47.04,52.96)。
以上就是在Excel中计算正态分布置信区间的公式和步骤。
使用这些公式,你可以根据样本数据和置信水平来估计总体参数的取值范围。
标准正态分布的置信区间标准正态分布是统计学中非常重要的一个分布,它是指均值为0,标准差为1的正态分布。
在实际的统计分析中,我们经常需要对样本数据进行推断,而置信区间就是用来估计总体参数的范围。
在本文中,我们将介绍如何利用标准正态分布来计算置信区间。
首先,我们需要明确什么是置信区间。
置信区间是用来估计总体参数的范围,它可以告诉我们总体参数落在一个区间内的概率有多大。
在统计学中,常用的置信水平有95%和99%。
以95%置信水平为例,如果我们得到一个95%置信区间为(a,b),那么意味着有95%的概率总体参数落在a和b之间。
接下来,我们将介绍如何利用标准正态分布来计算置信区间。
首先,我们需要明白标准正态分布的性质。
标准正态分布的概率密度函数是一个钟形曲线,均值为0,标准差为1。
利用标准正态分布的性质,我们可以计算出给定置信水平下的临界值。
在95%置信水平下,临界值为±1.96;在99%置信水平下,临界值为±2.58。
然后,我们可以利用样本数据来计算置信区间。
假设我们有一个样本数据,我们可以计算出样本均值和标准差。
接着,我们可以利用样本均值和标准差来计算标准误差,标准误差是总体标准差的估计量。
最后,我们可以利用标准误差和临界值来计算置信区间。
举个例子来说明,假设我们有一个样本数据,样本均值为10,样本标准差为2,样本容量为100。
我们希望计算出95%置信水平下的置信区间。
首先,我们可以计算出标准误差,标准误差等于标准差除以样本容量的平方根,即2/√100=0.2。
然后,我们可以利用标准误差和临界值来计算置信区间,即10-1.960.2到10+1.960.2,最终得到的置信区间为(9.6,10.4)。
在实际的统计分析中,我们经常需要计算置信区间来估计总体参数的范围。
利用标准正态分布来计算置信区间是一种常用且有效的方法。
通过本文的介绍,相信读者对于标准正态分布的置信区间有了更深入的理解。
数值计算置信区间置信区间的计算涉及到样本均值、标准差和样本量等,根据总体分布的特点和样本的抽样方法,可以采用不同的计算方法。
下面将介绍几种常见的数值计算置信区间的方法。
1.正态分布的置信区间当样本的大小足够大,并且总体呈现近似正态分布时,可以采用正态分布的置信区间计算方法。
下面是正态分布置信区间的计算公式:置信区间=样本均值±Z*(标准差/√n)其中,Z是标准正态分布的分位数,可以根据所需的置信水平来确定。
例如,对于95%的置信水平,Z为1.96;对于99%的置信水平,Z为2.582.t分布的置信区间当样本的大小较小,总体的分布未知或总体不是正态分布时,可以采用t分布的置信区间计算方法。
下面是t分布置信区间的计算公式:置信区间=样本均值±t*(标准差/√n)其中,t是t分布的分位数,可以根据所需的置信水平和自由度来确定。
3.二项分布的置信区间当需要估计总体比例时,且样本符合二项分布时,可以采用二项分布的置信区间计算方法。
下面是二项分布置信区间的计算公式:置信区间=样本比例±Z*√((样本比例*(1-样本比例))/n)其中,Z是标准正态分布的分位数,可以根据所需的置信水平来确定。
除了上述方法外,还有其他一些适用于特定情况的置信区间计算方法,例如泊松分布的置信区间、贝叶斯置信区间等。
需要注意的是,置信区间是对总体参数的估计范围,不是总体参数的准确值。
置信区间的计算依赖于样本数据,不同的样本可能得到不同的置信区间。
因此,在进行置信区间的解释和应用时,需要考虑到置信区间的范围和置信水平的选择。
在实际应用中,数值计算置信区间可以帮助我们了解样本数据的可靠性和总体参数的不确定性,从而做出更准确的推断和决策。