§5-4 差分方程的z变换解法
- 格式:ppt
- 大小:224.01 KB
- 文档页数:8
Z变换及差分⽅程的求解第⼆讲离散时间动态经济系统运动分析及稳定性分析2.1离散时间函数与Z变换⽬的要求:通过本节的学习使学⽣掌握离散时间函数及Z变换的概念,会使⽤Z变换的性质解决问题,掌握差分⽅程及离散时间系统的运动分析⽅法。
教学内容:我们经常会遇到利⽤离散时间函数表⽰的差分⽅程或差分⽅程组,这在经济管理中经常遇到。
现介绍离散时间函数,差分⽅程后⾯介绍。
⼀、离散时间函数例1 ⼈⼝离散时间函数设全国⼈⼝普查每年进⾏⼀次。
每年的7⽉1⽇凌晨零点的⼈⼝数代表该年的⼈⼝数。
我们以t=0 代表1990年7⽉1⽇凌晨的这个时刻,那么t=1,2,3,……分别表⽰1991年、1992年、1993年等各年度7⽉1⽇凌晨零点。
各年度普查的实际⼈⼝数如下表所⽰中国实际⼈⼝数据(亿⼈)x(0)=11.4333, x(1)=11.5823, x(2)=11.7171,x(3)=11.8517, x(4)=11.9850, x(5)=12.1121,x(6)=12.2389, x(7)=12.3626,……由于在离散时间离取值,故称之为离散时间函数例2 国民⽣产总值GNP(gross national product)离散时间函数。
则,GNP(t)表⽰第t年的GNP数值。
GNP(O)=33560.5, GNP(1)=46670.0, GNP(2)=57494.9,……例3 企业⽉产量离散时间函数。
表为电视机⼯⼚⽣产⽉报表(万台)则,Y(0)=1.5, Y(1)=2, Y(2)=1.8,……可以看出,经济管理实践中基本上采⽤离散时间函数来表达各种变量的变化,并该函数没有解析表达式,只有图象、列表表达式。
其⾃变量为离散时间。
⼆、Z 变换及其逆变换导⾔:Z 变换是怎么发明出来的?⽜顿、莱布尼兹等发明了微积分,之后发明了常系数微分⽅程及⽅程组。
在求解⽅程时总结经验,简化计算,如⽤符号s 表⽰微分运算s=d/dt,即s 〃f(t)=df(t)/dt 。
第3章线性离散时间系统的描述及分析差分方程及其时域分析3.1.1 差分方程3.1.2 差分方程的解A递推解B古典解C Z变换求解Z变换3.2.1 Z变换的定义3.2.2 Z变换的性质3.2.3 Z反变换A长除法B留数法C部分分式法离散时间系统的Z域分析3.3.1 零输入响应3.3.2 零状态响应3.3.3 完全响应Z传递函数及其求法3.4.1 Z传递函数的定义3.4.2 离散系统的运算3.4.3 由G(s)求G(z)——连续时间系统的离散化A对G(s)的讨论B对离散化方法的评价C 留数法D直接代换法E系统等效法Ⅰ——冲击响应不变法;F系统等效法Ⅱ——阶跃响应不变法G部分分式法3.4.4 离散化方法小结线性离散时间系统的稳定性分析3.5.1 闭环极点与输出特性之间的关系3.5.2 稳定判据线性离散时间系统的频率特性分析法3.6.1 线性离散时间系统的频率特性3.6.2 线性离散时间系统的频率特性分析法第3章 线性离散系统的描述及分析 3.1 差分方程及其时域分析 3.1.1差分方程 在线性离散时间动态系统中,输入激励序列u (k )与输出响应序列y (k )之间的动态关系在时域中用差分方程来描述,差分方程一般写成升序方式1101101-1()(1)(1)()()(1)(1)()0(0),(1),...,(-1)n n m m n y k n a y k n a y k a y k b u k m b u k m b u k b u k k y y y y y n y m n--+++-++++==+++-++++≥===≤有始性:初始条件:时间因果律:或写成∑∑==-+--+=+m i nj j i j n k y a i m k u b n k y 01)()()(上式表明某一离散时间点上输出值可能与当前时间点上的输入值(当00,b m n ≠=)以及此前若干个输入和输出值有关。
推论开来,当前的输出值是“此前”全部激励和内部状态共同作用的“积累”效应。
差分方程常用解法1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ (1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (2)为方程(1)对应的齐次方程。
如果(2)有形如n n x λ=的解,代入方程中可得:0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出方程(3)的根,则可以得到方程(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:n k k n n n c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(3)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan ,22=+=,则(2)的通解中有构成项:n c n c n n ϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +*n x (4)方程(4) 的特解可通过待定系数法来确定。
例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1)中确定出系数即可。
z变换到差分方程z变换(Z-transform)是一种在数字信号处理中广泛应用的数学工具,用于将离散时间域中的信号转换为连续时间域中的信号,从而更方便地对信号进行分析与处理。
通常情况下,我们可以将差分方程(difference equation)通过Z变换来求解,从而得到其对应的Z变换函数(Z-transform function)。
具体地说,对于给定的差分方程:y(n) + a1*y(n-1) + a2*y(n-2) + ... + ak*y(n-k) = b0*x(n) + b1*x(n-1) + b2*x(n-2) + ... + bm*x(n-m)其中,y(n)和x(n)分别表示输出和输入信号在时间点n的取值,a1、a2、…、ak和b0、b1、…、bm为常数系数,k和m为差分方程的阶数。
我们可以通过将差分方程中的所有项进行变换,得到其对应的Z变换函数:Y(z) + a1*Y(z)*z^{-1} + a2*Y(z)*z^{-2} + ... + ak*Y(z)*z^{-k} =b0*X(z) + b1*X(z)*z^{-1} + b2*X(z)*z^{-2} + ... + bm*X(z)*z^{-m}其中,Y(z)和X(z)分别表示输出和输入信号的Z变换函数,z^{-n}表示Z域中的时间延迟,也可以将其视为离散时间域中的退化因子,它对应的函数形式为z^{-n} = e^{-jwn},其中w为频率。
通过对上述等式进行变换和整理,我们可以将Y(z)和X(z)表示为如下形式:Y(z) = [b0*X(z) + b1*X(z)*z^{-1} + b2*X(z)*z^{-2} + ... +bm*X(z)*z^{-m}] / [1 + a1*z^{-1} + a2*z^{-2} + ... + ak*z^{-k}]X(z) = [X(z) + X(z)*z^{-1} + X(z)*z^{-2} + ... + X(z)*z^{-m}] / [m0 + b1*z^{-1} + b2*z^{-2} + ... + bm*z^{-m}]其中,Y(z)表示差分方程的输出信号的Z变换函数,X(z)表示差分方程的输入信号的Z变换函数。
差分方程z 变换概述说明以及解释1. 引言1.1 概述差分方程是描述离散时间系统行为的重要数学工具。
在现实生活中,许多系统的变化是按照离散时间步骤进行的,例如数字信号处理、数字滤波、通信系统等。
而差分方程则可以描述这些系统在每个时间步骤上的状态和演变。
与此同时,z变换是一种重要的数学工具,用于分析离散信号和离散系统。
它将差分方程从时域(自变量是时间)转换到z域(自变量是复平面上的复数z),并且能够提供更加简洁和便于分析的表达形式。
本文将概述差分方程z变换的基本概念以及其在离散系统分析和设计中的应用。
我们将解释差分方程z变换过程,并讨论其优势和局限性。
最后,我们将总结主要观点和结论,并对未来发展提出展望和建议。
1.2 文章结构本文共分为五个部分:引言、差分方程z变换概述、解释差分方程z变换过程、差分方程z变换的优势与局限性以及结论和总结。
1.3 目的本文的目的是介绍差分方程z变换的基本概念和原理,并探讨其在离散系统分析和设计中的应用。
通过阐述z变换与时域之间的关系,传递函数和频率响应描述以及求解差分方程的步骤与方法,读者将能够理解并运用这一重要数学工具。
同时,我们还将提供对差分方程z变换优势与局限性的考察,以及对未来发展的展望和建议。
2. 差分方程z 变换概述:2.1 差分方程基础知识:差分方程是离散时间系统建模和分析中的重要工具,它可以描述离散时间的动态过程。
差分方程以递推关系式的形式表示系统的行为,其中当前时刻输出值与过去一段时间内输入值和输出值之间存在着数学上的关系。
2.2 z 变换介绍:z 变换是一种用于将差分方程从时域转换到复平面上的方法。
在信号处理领域中,z 变换常被用于对离散系统进行频域分析和设计数字滤波器。
z 变换将离散时间信号表示成复变量z 的函数,使得我们可以通过对复平面上的频率响应进行分析来理解系统的特性。
2.3 z 变换的应用领域:z 变换在许多领域都有广泛的应用。
在控制系统工程领域,z 变换可用于建立数字控制器模型、设计数字滤波器以及实现各种控制算法。